平面向量经典习题-提高篇63045

合集下载

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .2.已知向量a=(1,-6),b=(-2,14),则向量 13a-2b 的坐标= .3.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 .6.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .AEDBCADBC7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a用b、c表示。

则a= .8.已知向量a=(x,5√3+11),b=(x+2√3+1,-1),若a,b互相垂直,则x的值为 .9.已知向量a(1,√2),b(-√2,x)它们的夹角为α,且sin2α=1,则x= .10.已知向量a=(1-x,1),b=(-2,2x),若向量2a+b与a-b平行,则a·b= .二、解答题11.已知向量a=(1,1),b=(√2,-1),若(xa-b)⊥(2a+b),求实数x的值.12.已知|a|=1,|b|=2,它们的夹角为60°,设c=3a+xb,d= -xa+2b,若c⊥d,求实数x的值.参考答案 一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .解:AB→ + AD→ + CD→ + DB→ +BA→=AB→ + AD→ + CD → +(DB→ +BA→ )=AB→ + AD→ + CD→ +DA→=(AB→ + CD→ )+(AD→ +DA→ )(因为AB→ ,CD→ 大小相等,方向相反,它们的和为0)=0+0 =0故原题的答案为:02.已知a=(1,-6),b=(-2,14),则 13a-2b= .解: 13a = 13(1,-6)=(13,-2)2b=2(-2,14)=(-4, 12)13a-2b =(13+4,-2- 12)=( 133,- 52)故原题的答案为: 133,- 523.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .解:由已知,得|a |2=4,|b |2=20,|a |·|b |=4√5(a-b )·(2a-3b )=2a 2-5ab+3b 2=8-5ab+ 60 =68-5ab=68-10√15则ab=2√15cosa = ab |a |.|b|= 2√154√5= √32所以向量a ,b 的夹角为30° 故原题的答案为:30°4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .解:BC→ =m ,BA→ =n则AC→ = m-n又AD DC= 45所以DC→ = 59AC→= 59m - -59nBD→ = BC→ - DC→=m -( 59m - 59n )= 49m + 59n故原题的答案为: 49m + 59nADBC5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 . 解:因为a ,b 共线所以2·(m+1)=(3m -4)·(m -5) 整理,得m 2-7m+6=0 解得,m=1或m=6 故原题的答案为:1或66.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .解:CD→ = b→ - a →CB → = 43CD → = 43(b→ - a→)= 43b→ - 43a→EC → = 13AC → = 13a→EB→ = EC→ +CB→ =(13a→)+(43b → - 43a →)= 43b→- a→故原题的答案是: 43b→- a→7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a 用b 、c 表示。

高中数学平面向量经典练习题(附答案)

高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3

=

=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角

高中数学必修4平面向量典型例题及提高题

高中数学必修4平面向量典型例题及提高题

精品文档平面向量【任何时候写向量时都要带箭头】【根本概念与公式】aAB 1.向量:既有大小又有方向的量。

记作:。

或||AB||a或。

2.向量的模:向量的大小〔或长度〕,记作:e1 |e| 是单位向量,那么。

3.单位向量:长度为 1 的向量。

假设00 。

【0的向量。

记作:方向是任意的,且与任意向量平行】 4. 零向量:长度为:方向相同或相反的向量。

5. 平行向量〔共线向量〕:长度和方向都相同的向量。

6. 相等向量BA AB:长度相等,方向相反的向量。

7. 相反向量三角形法那么:8.CB AEABAC BC ACAB BC CD DEAB〔指向被减数〕;;9.平行四边形法那么:ba ba b,a ,以为临边的平行四边形的两条对角线分别为。

b/ a/b a00baa与b与反向。

当 10. 共线定理:时,时,同向;当11.基底:任意不共线的两个向量称为一组基底。

2 2222)a b|a b| (),ya x( yx a|| |a |a ,,那么,12.向量的模:假设b a cosb| |a| |a b cos13.数量积与夹角公式:;|b|a| |b xy xya b a b 0 xx a//ba yy 0 14.平行与垂直:;22121112题型 1. 根本概念判断正误:。

,那么 1〕假设与共线,〔与 2 共线,那么与〕假设共线。

〔ma naababnm ma mba bcabbca都不是零向量。

与,那么与不共线,那么。

〔 4〕假设〔 3〕假设。

〕假设 6,那么〕假设5〔,那么a//ba b||| a bba| b|||ba a |〔题型 2. 向量的加减运算精品文档.精品文档AC 为 AB 与 ADAC a,BD bAB AD,的和向量,且 4.,那么。

3AC BCBCABAC AB 。

5.点 C 在线段 AB 上,且, ,那么53. 题型向量的数乘运算13,8)( (1, 4),b ab 3a。

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。

2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。

3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。

5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。

6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。

7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。

8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。

9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。

二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。

A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。

A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。

(完整版)平面向量练习题(附答案)

(完整版)平面向量练习题(附答案)

(完整版)平⾯向量练习题(附答案)平⾯向量练习题1 . AC DB CD BA 等于______________ .2. 若向量a =( 3, 2), b =( 0,—1),则向量2b —a的坐标是 _____________ .3. ______________ 平⾯上有三个点A (1, 3), B (2, 2), C (7, x),若/ ABC = 90°,贝U x 的值为 .4. _________________________________________________________________________ 向量a、b满⾜|a|=1,bl=J2 ,(a+b)丄(2a-b),则向量a与b的夹⾓为 _______________ .f f ⼻5. 已知向量a = (1 , 2), b = (3 , 1),那么向量2a ——b的坐标是___________ .6. 已知A (—1 , 2), B (2 , 4), C (4, —3), D (x , 1),若AB 与CD 共线,则| BD |的值等于________ .7. 将点A (2 , 4)按向量a =(—5, —2)平移后,所得到的对应点A'的坐标是 ______ .8. 已知a=(1, —2),b=(1,x),若a丄b,则x 等于__9. 已知向量a,b的夹⾓为120,且|a|=2,|b|=5则(2a-b) ? a= _______10. 设a=(2,—3),b=(x,2x),且3a- b=4,则x 等于____11. 已知AB (6,1),BC (x,y),CD ( 2, 3),且BC // DA ,则x+2y 的值为________________12. 已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|z 0,|b|z 0,贝U a与b的夹⾓为__________uuu uuu imr13. 在⼛ABC中,O为中线AM上的⼀个动点,若AM=2 ,则OA OB OC 的最⼩值是___________________ .14. ___________________________________________________________________________将圆x2y22按向量v= (2 , 1 )平移后,与直线x y 0相切,则⼊的值为______________________ .⼆.解答题。

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。

2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。

3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。

5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。

6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。

7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。

8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。

9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。

二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。

A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。

A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。

高三数学 提高题专题复习平面向量多选题练习题附解析

高三数学 提高题专题复习平面向量多选题练习题附解析

高三数学 提高题专题复习平面向量多选题练习题附解析一、平面向量多选题1.已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断.【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y =所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在xy e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.2.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 【答案】ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥ C .//FG BC D .FG EF ⊥ 【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底,则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.5.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .22OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为2【答案】AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.6.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+【答案】ABD【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.7.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .12C .1D .-1【答案】ABD 【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-, 故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.8.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 【答案】BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.二、立体几何多选题9.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=; C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈ ⎪⎝⎭;D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,1A P PD +===则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD. 【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为)A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断. 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。

答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。

答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。

答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。

答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。

答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。

答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。

答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。

答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。

答案:两个向量相互垂直的条件是a·b = 0。

计算得到a·b = 14,因此向量a和向量b不相互垂直。

(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。

答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量:1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23[答案] C[解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1.2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C[解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3.(理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( )A .-611B .-116 C.611 D.116 [答案] C[解析] a +b =(4,1),a -λb =(1-3λ,2+λ),∵a +b 与a -λb 垂直,∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611. 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30°[答案] B[解析] 如图,在▱ABCD 中,∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形, ∴∠BAD =60°,∴〈a ,b 〉=120°,故选B.(理)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A.12B.13C.14D.15[答案] A[解析] ∵|a -b |=32,∴|a |2+|b |2-2a ·b =34, ∵|a |=1,〈a ,b 〉=60°,设|b |=x ,则1+x 2-x =34,∵x >0,∴x =12.4. 若AB →·BC→+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形[答案] B[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形.5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c为( ) A .-a +3b B .a -3b C .3a -b D .-3a +b[答案] B[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ),∴⎩⎪⎨⎪⎧ λ+μ=-2λ-μ=4,∴⎩⎪⎨⎪⎧λ=1μ=-3,∴c =a -3b ,故选B. (理)在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF→等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b[答案] B[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴|AB ||DF |=|EB ||DE |,∴|DF |=13|AB |,∴|CF |=23|AB |=23|CD |, ∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →) =a +23(12b -12a )=23a +13b .6. 若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC→的值为( ) A .19 B .14 C .-18 D .-19[答案] D[解析] 据已知得cos B =72+52-622×7×5=1935,故AB →·BC→=|AB →|×|BC →|×(-cos B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19.7. 若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( )A .12B .2 3C .3 2D .6[答案] D[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +y =6,等号在x =12,y =1时成立.8. 若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →=0,实数x 为( ) A .-1 B .0 C.-1+52 D.1+52[答案] A[解析] x 2OA→+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC→=0,与条件矛盾,∴x =-1. 9. (文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB→+AC→)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关 [答案] C[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →=(-1,-3)+(1,-3)=(0,-23),设P (x,0),-1≤x ≤1,则AP→=(x ,-3),∴AP →·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD→|的最小值是( ) A.12 B.32 C. 2 D.22[答案] D[解析] ∵∠A =120°,AB →·AC →=-1, ∴|AB →|·|AC →|·cos120°=-1, ∴|AB →|·|AC→|=2, ∴|AB →|2+|AC →|2≥2|AB →|·|AC→|=4, ∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22.10. 如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M ,N 是该图象与x 轴的交点,若PM →·PN →=0,则ω的值为( )A.π8 B.π4 C .4 D .8[答案] B[解析] ∵PM →·PN →=0,∴PM ⊥PN ,又P 为函数图象的最高点,M 、N 是该图象与x 轴的交点,∴PM =PN ,y P =2,∴MN =4,∴T =2πω=8,∴ω=π4.11. 如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.15B.14 C.13 D.12[答案] A[解析] 如图,取CD 的三等分点M 、N ,BC 的中点Q ,则EF ∥DG ∥BM ∥NQ ,易知AK →=15AC →,∴λ=15.12. 已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m的值为( )A.12 B .2 C .-2 D .-12[答案] C[解析] m a +4b =(2m -4,3m +8),a -2b =(4,-1), 由条件知(2m -4)·(-1)-(3m +8)×4=0, ∴m =-2,故选C.13. 在△ABC 中,C =90°,且CA =CB =3,点M 满足BM→=2MA →,则CM →·CB →等于( ) A .2 B .3 C .4 D .6[答案] B[解析] CM →·CB → =(CA →+AM →)·CB → =(CA →+13AB →)·CB →=CA →·CB →+13AB →·CB → =13|AB →|·|CB →|·cos45° =13×32×3×22=3.14. 在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD→=________. [答案] 152[解析] 由条件知,|AB →|=|AC →|=|BC →|=3,〈AB →,AC →〉=60°,〈AB →,CB →〉=60°,CD →=23CB →, ∴AB →·AD →=AB →·(AC →+CD →)=AB →·AC →+AB →·23CB →=3×3×cos60°+23×3×3×cos60°=152.15. 已知向量a =(3,4),b =(-2,1),则a 在b 方向上的投影等于________.[答案] -255[解析] a 在b 方向上的投影为a ·b |b |=-25=-255. 16. 已知向量a 与b 的夹角为2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.[答案] 1[解析] ∵〈a ,b 〉=2π3,|a |=1,|b |=4,∴a ·b =|a |·|b |·cos 〈a ,b 〉=1×4×cos 2π3=-2,∵(2a +λb )⊥a ,∴a ·(2a +λb )=2|a |2+λa ·b=2-2λ=0,∴λ=1.17. 已知:|OA →|=1,|OB →|=3,OA →·OB→=0,点C 在∠AOB ,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则m n=________. [答案] 3[解析] 设mOA→=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF→|=m |OA →|=m ,|OC →|·sin30°=|OE→|=n |OB →|=3n , 两式相除得:m 3n =|OC →|cos30°|OC →|sin30°=1tan30°=3,∴m n =3. 18. (文)设i 、j 是平面直角坐标系(坐标原点为O )分别与x 轴、y 轴正方向相同的两个单位向量,且OA →=-2i +j ,OB →=4i +3j ,则△OAB的面积等于________.[答案] 5[解析] 由条件知,i 2=1,j 2=1,i ·j =0,∴OA →·OB →=(-2i +j )·(4i+3j )=-8+3=-5,又OA →·OB →=|OA →|·|OB →|·cos 〈OA→,OB →〉=55cos 〈OA →,OB →〉,∴cos 〈OA →,OB →〉=-55,∴sin 〈OA →,OB →〉=255,∴S △OAB =12|OA →|·|OB →|·sin 〈OA →,OB →〉=12×5×5×255=5. 19. 已知平面向量a =(1,x ),b =(2x +3,-x ).(1)若a ⊥b ,求x 的值.(2)若a ∥b ,求|a -b |.[解析] (1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,整理得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,则x (2x +4)=0,解得x =0或x =-2,当x =0时,a =(1,0),b =(3,0),∴|a -b |=|(1,0)-(3,0)|=|(-2,0)|=(-2)2+02=2,当x=-2时,a=(1,-2),b=(-1,2),∴|a-b|=|(1,-2)-(-1,2)|=|(2,-4)| =22+(-4)2=2 5.。

相关文档
最新文档