初中数学四边形综合题

合集下载

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)一、选择题1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.2.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.3.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD1③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为1故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.6.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=43,⑤S△DOC=S四边形EOFB中,正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.9.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】 【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,可添加的条件不正确的是( )A .AB ∥CDB .∠B =∠DC .AD =BC D .AB =CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.15.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个 【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。

初三数学四边形试题

初三数学四边形试题

初三数学四边形试题1.如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).【答案】AB=DC(或∠ABC=∠DCB、∠A=∠D)等【解析】当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,又∵AB=DC,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,【考点】1、梯形;2、全等三角形的判定.2.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等【答案】C【解析】A、不在同一直线上的三点确定一个圆,故A错误;B、菱形的对角线垂直但不一定相等,故B错误;C、正确;D、平行四边形的四条边不一定相等.故D错误故选C.【考点】命题与定理3.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是(写出一个即可).【答案】AB=AD(答案不唯一).【解析】利用菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.试题解析:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵邻边相等的平行四边形是菱形,∴添加的条件是AB=AD(答案不唯一).【考点】菱形的判定.4.下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形【答案】A.【解析】设多边形的边数是n,则(n-2)•180=360,解得n=4.故选A.【考点】多边形内角与外角.5.下列命题是假命题的是()A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等【答案】C【解析】C项因为矩形的对角线相等但不一定垂直错误,是假命题;A、B、D选项正确,是真命题.6.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是 ()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形【答案】C【解析】已知:如图,四边形EFGH是矩形,且E、F、G、H分别AB、BC、CD、AD的中点,求证:四边形ABCD是对角线互相垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD.7.如图,AD是△ABC的角平分线,过点D作DE∥AB,DF∥AC,分别交AC、AB于点E和F.(1)在图中画出线段DE和DF;(2)连接EF,则线段AD和EF互相垂直平分,这是为什么?【答案】(1)作图见解析;(2)证明见解析.【解析】(1)根据题目要求画出线段DE、DF即可;(2)首先证明四边形AEDF是平行四边形,再证明∠EAD=∠EDA,根据等角对等边可得EA=ED,由有一组邻边相等的平行四边形是菱形可证明四边形AEDF是菱形,再根据菱形的性质可得线段AD和EF互相垂直平分.试题解析:(1)如图所示;(2)∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∵AD是△ABC的角平分线,∴∠FAD=∠EAD,∵AB∥DE,∴∠FAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED(等角对等边),∴平行四边形AEDF是菱形,∴AD与EF互相垂直平分.考点: 1.作图;2.菱形的判定与性质.8.如图,在Rt△ABC中,∠C =,AC = BC,AB = 30,矩形DEFG的一边DE在AB上,顶点G、F分别在AC、BC上,若DG︰GF = 1︰4,则矩形DEFG的面积是 .【答案】100【解析】又∵四边形DEFG是矩形,∴9.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【答案】D【解析】因为顺次连接任意一个四边形的各边中点,得到的是平行四边形,而要得到矩形,根据矩形的判定(有一个角是直角的平行四边形是矩形),所以该四边形的对角线应互相垂直,只有②④符合.10.已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,BD=8.(1)若AC⊥BD,试求四边形ABCD的面积;(2)若AC与BD的夹角∠AOD=60°,求四边形ABCD的面积;(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=θ,AC=a,BD=b,试求四边形ABCD的面积(用含θ,a,b的代数式表示).【答案】(1)四边形ABCD的面积=40;(2)四边形ABCD的面积S=4S△AOD=20;(3)四边形ABCD的面积=absinθ.【解析】(1)因为AC⊥BD,所以四边形ABCD的面积等于对角线乘积的一半;(2)过点A分别作AE⊥BD,CF⊥BD,根据平行四边形对角线互相平分和正弦定理求出△AOD的面积,那么四边形ABCD的面积=4△AOD的面积;(3)作辅助线AE⊥BD,CF⊥BD,利用正弦定理求出△BCD、△ABD的高,那么四边形ABCD的面积=△BCD的面积+△ABD的面积.试题解析:(1)∵AC⊥BD,∴四边形ABCD的面积=AC•BD=40;(2)分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.∵四边形ABCD为平行四边形,∴AO=CO=AC=5,BO=DO=BD=4.在Rt△AOE中,sin∠AOE=,∴AE=AO•sin∠AOE=AO×sin60°=5×=.∴S△AOD=OD•AE=×4××5=5.∴四边形ABCD的面积S=4S△AOD=20;(3)如图所示,过点A,C分别作AE⊥BD,CF⊥BD,垂足分别为E,F.在Rt△AOE中,sin∠AOE=,∴AE=AO•sin∠AOE=AO•sinθ.同理可得CF=CO•sin∠COF=CO×sinθ.∴四边形ABCD的面积S=S△ABD +S△CBD=BD•AE+BD•CF=BDsinθ(AO+CO)=BD•ACsinθ=absinθ.【考点】1.平行四边形的性质,2.三角形的面积,3.解直角三角形.11.如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.(1)求证:四边形EMCN是矩形;(2)若AD=2,S梯形ABCD=,求矩形EMCN的长和宽.【答案】解:(1)证明:∵点A、F关于BD对称,∴AD=DF,DE⊥AF。

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析1.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明见解析;(2)BE=5.【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长;试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【考点】1、平行四边形的判定与性质;2、菱形的性质2.如图,在▱ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=4,CF=2.(1)从对称性质看,▱ABCD是_________对称图形;(2)求平行四边形ABCD的周长.【答案】(1)中心;(2)40【解析】(1)根据平行四边形的性质可知:对角线互相平分,所以O为旋转中心,即平行四边形ABCD是中心对称图形;(2)根据平行四边形中对角、对边分别相等,∠B=∠ADC=60°,再根据已知边长,由勾股定理可求出AB、AD的长,进而可求出平行四边形ABCD的周长.试题解析:1)∵四边形ABCD是平行四边形,∴对角线互相平分,∴O为旋转中心,即平行四边形ABCD是中心对称图形,(2)∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∵BE=4,∴AB=8,∴CD=AB=8,∵CF=2,∴DF=6,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=12,∴平行四边形ABCD的周长=2(12+8)=40.【考点】1.平行四边形的性质;2.中心对称图形3.下列性质中,正方形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角【答案】A.【解析】A、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.B、正方形和矩形的对角线都互相平分,故本选项错误;C、正方形和矩形的对角线都相等,故本选项错误;D、正方形和矩形的四个角都是直角,故本选项错误.故选A.【考点】1.正方形的性质2.矩形的性质.4.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?用你学过的方法进行解释.【答案】3cm.【解析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.试题解析:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=.∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3.∴EC的长为3cm.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理;4.方程思想的应用.5.ABCD中, ∠A比∠B小200,则∠A的度数为( )A.600B.800C.1000D.1200【答案】B.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B-∠A =20°,∴∠B=100°,∴∠A=80°.故选B.【考点】平行四边形的性质.6.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+)D.1+【答案】C.【解析】本题已知条件涉及矩形的对角线和周长,可考虑用“矩形的对角线相等且相互平分”性质来解.如图所示,∠AOB=120°,AD=2∵ABCD为矩形,∴AD=BC=2,AO=B0=1(矩形的对角线相等且相互平分),∴△AOB为等腰三角形,∠BAO=30°;在Rt△ABD中,∠BAO=30°,AD=2∴AB= ,BD=1,∴矩形ABDC的周长为.【考点】矩形性质.7.如图,在梯形中,为的中点,交于点.(1)求证:;(2)当,且平分时,求的长.【答案】(1)证明详见解析.(2)EF=4.【解析】根据题意构造辅助线,利用中线性质和平行四边形性质即可得出结论.(1)过D作DM∥AB,∵AD∥BC,DM∥AB,∴四边形ABMD为平行四边形,∴BM=AD∵,∴EF∥DM,又∵E为CD的中点∴F为CM中点即MF=CF,∴BF=BM+MF=AD+CF.(2)过E作EH⊥AB,∵BE平分,∴CE=EH=DE(角平分线上一点到角两边的距离相等),在Rt△ADE和Rt△AHE中,DE=EH,AE=AE∴Rt△ADE≌Rt△AHE(SH定理)∴AH=AD=1,同理可得BH=BC=7,∴AB=AH+BH=8∵四边形ABMD为平行四边形,∴DM=AB=8,又∵E、F 分别为CD、CM中点,∴.【考点】1.平行四边形性质;2.角平分线性质;3.全等三角形.8.已知O是口ABCD对角线的交点,△ABC的面积是3,则口ABCD的面积是()A.3B.6C.9D.12【答案】B.【解析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选B.【考点】平行四边形的性质.9.矩形、菱形与正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线平分一组对角D.对角线相等【答案】B.【解析】A、矩形对角线不互相垂直,故本选项错误;B、平行四边形的对角线互相平分,以上三个图形都是平行四边形,故本选项正确;C、三个图形中,只有菱形和正方形的对角线平分一组对角,故本选项错误;D、菱形对角线不相等,故本选项错误.故选B.【考点】1.正方形的性质2.菱形的性质3.矩形的性质.10.如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论.【答案】(1)证明见解析;(2)当O运动到AC中点.【解析】(1)根据MN∥BC,CE平分∠ACB,CF平分∠ACD及等角对等边即可证得OE=OF;(2)根据矩形的性质可知:对角线且互相平分,即AO=CO,OE=OF,故当点O运动到AC的中点时,四边形AECF是矩形.(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF.(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF=∠BCD,∴∠ECF=90°,∴四边形AECF是矩形.【考点】矩形的判定.11.如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为_______【答案】24cm2.【解析】因为AD=12cm,AB=7cm,且AE:BE=5:2,则AE=5,BE=2,则阴影部分的面积=12×7﹣12×5=24cm2.故答案是24cm2.【考点】矩形的性质.12.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为 ( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶2【答案】A.【解析】∵四边形ABCD是平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE-AF=1,BE=AB-AE=2∴AE:EF:BE=4:1:2.故选A.考点: 平行四边形的性质.13.(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A 向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:①填空:将点C向下平移个单位,再向右平移个单位与点B重合;②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.【答案】(1)①2,3;②见解析;(2)有3个,(5,-1),(-1,-5),(-3,3).【解析】(1)①根据平移的规律:上加下减,左加右减即可得出将点C向下平移2个单位,再向右平移3个单位与点B重合;②根据平移的规律:上加下减,左加右减得出将点D的坐标为(4,2),然后根据一组对边平行且相等的四边形是平行四边形证出四边形ABDC是平行四边形;(2)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)①∵B(3,0),C(0,2),∴将点C向下平移2个单位,再向右平移3个单位与点B重合.故答案为2,3;②点D位置如图所示.证明:由图可知AB∥CD,AB=CD,∴四边形ABCD是平行四边形;以△ABC的两条边为边,第三边为对角线的平行四边形共有3个.①以AB、AC为边可作一平行四边形,第四个顶点的坐标为(5,-1);②以CA、CB为边可作一平行四边形,第四个顶点的坐标为(-1,-5);③以BA、BC为边也可作一平行四边形,则第四顶点的坐标为(-3,3).【考点】坐标与图形变化-平移;平行四边形的判定.14.如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是_________cm.【答案】2【解析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.【考点】平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,试求出此梯形的周长和面积.【答案】(8+20)cm,(48+32)cm2【解析】过A、D点作梯形的高AE、DF,根据等腰直角三角形性质可求得BE、AE的长,从而可以求得结果.过A、D点作梯形的高AE、DF∵等腰梯形ABCD中,∠B=45°,AB=8cm∴BE=AE=4cm∵AD=4cm∴BC=4+8cm∴梯形的周长=(8+20)cm,面积=(AD+BC)×AE=(48+32)cm2.【考点】等腰梯形的性质点评:等腰梯形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.16.在梯形ABCD中,AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是______________【答案】1:4【解析】解:过A作AG⊥BC,交EF与H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF•AH=xcm2,∴EF•AH=2xcm2,∴S梯形ABCD=(AD+BC)•AG=×2EF×2AH=2EF•AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.【考点】梯形的中位线定理点评:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.17.如图所示,在平行四边形ABCD中,BD=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.【答案】【解析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°-∠ADB=90°-70°=20°.【考点】平行四边形的性质,等腰三角形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.18.如图所示,矩形的边,,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,平行四边形的面积为.【答案】【解析】先根据平行四边形的面积公式分别计算,得到规律,再根据所得的规律求解即可.由题意得平行四边形的面积为平行四边形的面积为所以平行四边形的面积为.【考点】找规律-图形的变化点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题. 19.如图在平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF,求证:四边形EBFD是平行四边形.【答案】连接BD,交AC于点O,由四边形ABCD为平行四边形可得AO=CO,BO=DO,又AE=CF,所以EO=FO,即可证得结论.【解析】连接BD,交AC于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO又∵AE=CF∴EO=FO∴四边形EBFD是平行四边形.【考点】平行四边形的判定和性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:(填一个即可)【答案】AB=CD或AD∥BC【解析】两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形. 由题意可补充AB=CD或AD∥BC.【考点】平行四边形的判定点评:本题属于基础应用题,只需学生熟练掌握平行四边形的性判定方法,即可完成.21.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当AC⊥BD时,它是菱形D.当∠ABC=900时,它是矩形【答案】B【解析】根据矩形、菱形、正方形的判定方法依次分析各项即可判断.A.当AB=BC时,它是菱形,C.当AC⊥BD时,它是菱形,D. 当∠ABC=900时,它是矩形,均正确,不符合题意;B. 当AC=BD时,无法判定它是正方形,故错误,本选项符合题意.【考点】矩形、菱形、正方形的判定点评:本题属于基础应用题,只需学生熟练掌握矩形、菱形、正方形的判定方法,即可完成. 22.已知EF是梯形ABCD的中位线,且EF=9,上底AB=6,那么下底CD= .【答案】12【解析】因为梯形的中位线长等于上底加下底的和除以2,根据题意,9×2-6=12【考点】梯形的中位线点评:基础题目,学生需要掌握梯形的中位线的运算公式,代入得出答案。

河北省中考数学复习 四边形 第28讲 正方形与四边形综合试题(含解析)-人教版初中九年级全册数学试题

河北省中考数学复习 四边形 第28讲 正方形与四边形综合试题(含解析)-人教版初中九年级全册数学试题

第28讲正方形与四边形综合1. (2013,某某) 一个正方形和两个等边三角形的位置如图所示.若∠3=50°,则∠1+∠2的度数为(B)第1题图A. 90°B. 100°C. 130°D. 180°【解析】如答图.∠BAC=180°-90°-∠1=90°-∠1,∠ABC=180°-60°-∠3=120°-∠3,∠ACB=180°-60°-∠2=120°-∠2.在△ABC中,∠BAC+∠ABC+∠ACB =180°,∴90°-∠1+120°-∠3+120°-∠2=180°.∴∠1+∠2=150°-∠3.∵∠3=50°,∴∠1+∠2=150°-50°=100°.第1题答图2. (2015,某某,导学号5892921)如图所示的是甲、乙两X不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则(A)第2题图A. 甲、乙都可以B. 甲、乙都不可以C. 甲不可以,乙可以D. 甲可以,乙不可以【解析】甲、乙都可以拼一个与原来面积相等的正方形,所拼图形如答图所示.第2题答图3. (2016,某某)关于▱ABCD的叙述,正确的是(C)A. 若AB⊥BC,则▱ABCD是菱形B. 若AC⊥BD,则▱ABCD是正方形C. 若AC=BD,则▱ABCD是矩形D. 若AB=AD,则▱ABCD是正方形【解析】∵在▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形.故选项A错误.∵在▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形.故选项B错误.∵在▱ABCD中,AC=BD,∴四边形ABCD是矩形.故选项C正确.∵在▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形.故选项D错误.4. (2017,某某)如图所示的是边长为10 cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是(A)第4题图A B C D【解析】该正方形的对角线的长是10 2 cm≈14.14 cm,所以正方形内部的每一个点,到正方形的顶点的距离都要小于14.14 cm.正方形的性质例1 (2018,某某二模)如图,P为正方形ABCD的对角线BD上任意一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中正确的结论是(C)例1题图A. ①②B. ①④C. ①②④D. ①③④【解析】 如答图,连接PC .∵P 为正方形ABCD 的对角线BD 上任意一点,∴PA =PC ,∠BCD =90°.∵PE ⊥BC ,PF ⊥CD ,∴∠PEC =∠DFP =∠PFC =∠BCD =90°.∴四边形PECF 是矩形.∴PC =EF .∴PA =EF .故②正确.∵BD 是正方形ABCD 的对角线,∴∠ABD =∠BDC =∠DBC =45°.∵∠PFD =∠BCD =90°,∴PF ∥BC .∴∠DPF =∠DBC =45°.∴△FPD 是等腰直角三角形.故①正确.在△PAB 和△PCB 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△PAB ≌△PCB .∴∠BAP =∠BCP .易证∠PFE =∠BCP ,∴∠PFE =∠BAP .故④正确.∵P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD .故③错误.例1答图针对训练1 (2018,某某丰南区二模)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 的度数为(B)训练1题图A. 75°B. 60°C. 55°D. 45°【解析】 ∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°.∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE .∴∠BAE =90°+60°=150°,AB =AE .∴∠ABE =∠AEB =12×(180°-150°)=15°.∴∠BFC =∠BAF +∠ABE =45°+15°=60°.正方形的判定例2 (2018,某某灌阳县模拟)如图,在△ABC 中,O 是AC 上一动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠ACD 的平分线于点F .若点O 运动到AC 的中点,要使四边形AECF 是正方形,则∠ACB 的度数是(D)例2题图A. 30°B. 45°C. 60°D. 90°【解析】∵CE,CF分别为∠ACB,∠ACD的平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECB.∵∠ECB=∠ECO,∴∠FEC=∠ECO.∴OE=OC.同理OC=OF.∴OE=OF.∵点O 运动到AC的中点,∴OA=OC.∴四边形AECF为矩形.若∠ACB=90°,则AC⊥EF.∴四边形AECF为正方形.针对训练2 如图,在菱形ABCD中,对角线AC,BD交于点O.添加一个条件,能使菱形ABCD 成为正方形的是(C)训练2题图A. BD=ABB. AC=ADC. ∠ABC=90°D. OD=AC【解析】要使菱形成为正方形,只要菱形满足以下条件之一即可:①有一个内角是直角;②对角线相等.平行四边形、矩形、菱形、正方形的关系例3 (2018,某某)如图,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点.下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是(A)例3题图A. 1B. 2C. 3D. 4【解析】 由三角形中位线定理可知四边形的四边中点组成的四边形是平行四边形.本题中,当AC =BD 时,四边形EFGH 是菱形;当AC ⊥BD 时,四边形EFGH 是矩形;当AC =BD 且AC ⊥BD 时,四边形EFGH 是正方形.反之,四边形EFGH 是正方形时,AC 与BD 互相垂直且相等.只有说法④正确.针对训练3 (2018,某某盐都区模拟)如图,在四边形ABCD 中,AB =CD ,E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,顺次连接E ,G ,F ,H .(1)求证:四边形EGFH 是菱形;(2)当∠ABC 与∠DCB 满足什么关系时,四边形EGFH 为正方形,并说明理由;(3)猜想:∠GFH ,∠ABC ,∠DCB 三个角之间的关系.(直接写出结果)训练3题图【思路分析】 (1)根据三角形中位线的性质得到EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD .根据菱形的判定定理即可得到结论.(2)根据平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义得到∠GFH =90°,于是得到结论.(3)由平行线的性质得到∠ABC =∠HFC ,∠DCB =∠GFB .根据平角的定义即可得到结论.(1)证明:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴EG =12AB ,EH =12CD ,HF =12AB ,GF =12CD . ∵AB =CD ,∴EG =EH =HF =GF .∴四边形EGFH 是菱形.(2)解:当∠ABC +∠DCB =90°时,四边形EGFH 为正方形.理由:∵E ,F ,G ,H 分别为AD ,BC ,BD ,AC 的中点,∴HF ∥AB ,GF ∥CD .∴∠ABC =∠HFC ,∠DCB =∠GFB .∵∠ABC +∠DCB =90°,∴∠HFC +∠GFB =90°.∴∠GFH =90°.∴菱形EGFH 是正方形.(3)解:∠GFH +∠ABC +∠DCB =180°.一、 选择题1. (2018,某某二模)如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是(A)第1题图A. 44°B. 45°C. 46°D. 47°【解析】 如答图.∵四边形为正方形,∴∠2=45°.∵∠1<∠2,∴∠1<45°.第1题答图2. (2018,某某)如图,正方形ABCD 的边长为1,E ,F 分别是对角线AC 上的两点,EG ⊥AB ,EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J ,则图中阴影部分的面积为(B)第2题图A. 1B. 12C. 13D. 14【解析】 根据对称性,可知四边形EFHG 的面积与四边形EFJI 的面积相等.∴S 阴影= 12S 正方形ABCD =12.3. (2018,某某)如图,在正方形ABCD 中,A ,B ,C 三点的坐标分别是(-1,2),(-1,0),(-3,0).将正方形ABCD 向右平移3个单位长度,则平移后点D 的坐标是(B)第3题图A. (-6,2)B. (0,2)C. (2,0)D. (2,2)【解析】∵在正方形ABCD中,A,B,C三点的坐标分别是(-1,2),(-1,0),(-3,0),∴点D的坐标为(-3,2).∴将正方形ABCD向右平移3个单位长度,平移后点D的坐标是(0,2).4. (2018,湘西州)下列说法中,正确的有(B)①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A. 1个B. 2个C. 3个D. 4个【解析】①对顶角相等,故①正确.②两直线平行,同旁内角互补,故②错误.③对角线互相垂直平分的四边形为菱形,故③错误.④对角线互相垂直平分且相等的四边形为正方形,故④正确.5. (2018,某某)如图,已知E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH 是(B)第5题图A. 正方形B. 矩形C. 菱形D. 平行四边形【解析】由菱形对角线的性质和三角形中位线定理可得四边形EFGH是矩形.6. 如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE 的长为(A)第6题图A. 2-1B.22C. 1D. 1-22【解析】 如答图,过点E 作EF ⊥DC 于点F .∵四边形ABCD 是正方形,∴AC ⊥BD .∵CE 平分∠ACD ,∴EO =EF .∵正方形ABCD 的边长为1,∴AC = 2.∴CO =12AC =22.∴CF =CO =22.∴EF =DF =DC -CF =1-22.∴DE =2DF =2-1.第6题答图7. 如图,正方形OABC 的两边OA ,OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上.以点C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是(C)第7题图A. (-2,0)B. (-2,10)C. (2,10)或(-2,0)D. (10,2)或(-2,10)【解析】 因为点D (5,3)在边AB 上,所以AB =BC =5,BD =5-3=2.①若把△CDB 顺时针旋转90°,则点D ′在x 轴上,OD ′=2,所以D ′(-2,0).②若把△CDB 逆时针旋转 90°,则点D ′到x 轴的距离为10,到y 轴的距离为2,所以D ′(2,10).综上,旋转后点D 的对应点D ′的坐标为(-2,0)或(2,10).8. 如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是(D)第8题图A. 12B. 33C. 1-33D. 2-1 【解析】 ∵绕顶点A 顺时针旋转45°,∴∠D ′CE =45°,∠CD ′E =90°.∴CD ′=D ′E .∵AC =12+12=2,∴CD ′=2-1.∴正方形重叠部分的面积是12×1×1-12×(2-1)×(2-1)=2-1.二、 填空题9. 如图,在正方形ABCD 中,E 为AD 的中点,连接EC ,过点E 作EF ⊥EC ,交AB 于点F ,则tan ∠ECF =( 12).第9题图【解析】∵四边形ABCD是正方形,∴AD=DC,∠A=∠D=90°.∵AE=ED,∴CD=AD=2AE.∵∠FEC=90°,∴∠AEF+∠DEC=90°.∵∠DEC+∠DCE=90°,∴∠AEF=∠DCE.∵∠A=∠D,∴△AEF∽△DCE.∴EFEC=AEDC=12.∴tan∠ECF=EFEC=12.10. 如图,E为正方形ABCD外一点,AE=AD,∠ADE=75°,则∠AEB=30°.第10题图【解析】∵AE=AD,∠ADE=75°,∴∠DAE=180°-2∠ADE=180°-2×75°=30°.∴∠BAE=∠BAD+∠DAE=90°+30°=120°.∵AB=AD,∴AB=AE.∴∠AEB=1 2(180°-∠BAE)=12×(180°-120°)=30°.11. (2018,某某)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是30°或150°.【解析】如答图①.∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD =AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°.∴∠BAE=∠CDE=150°.∴∠AEB=∠CED=15°.∴∠BEC=∠AED-∠AEB-∠CED=30°.如答图②.同理∠CDE=∠ADC-∠ADE=90°-60°=30°.∴∠CED=∠ECD=12×(180°-30°)=75°.∴∠BEC=360°-75°×2-60°=150°.第11题答图12. (2018,某某)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(-1,5).第12题图【解析】 如答图,过点E 作x 轴的垂线EH ,垂足为H ,过点G 作x 轴的垂线GM ,垂足为M ,连接GE ,FO 相交于点O ′.∵四边形OEFG 是正方形,∴OG =EO .易证∠GOM =∠OEH ,∠OGM =∠EOH .∴△OGM ≌△EOH (ASA).∴GM =OH =2,OM =EH =3.∴G (-3,2).∴O ′⎝ ⎛⎭⎪⎫-12,52.∵点F 与点O 关于点O ′对称,∴点F 的坐标为(-1,5).第12题答图三、 解答题13. (2018,某某)如图,已知E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作⊥BE ,垂足为M ,交AB 于点N .(1)求证:△ABE ≌△B ;(2)若N 为AB 的中点,求tan ∠ABE .第13题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)根据全等三角形的性质和三角函数解答即可.(1)证明:如答图.∵四边形ABCD 为正方形,∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90°.∵CM ⊥BE ,∴∠2+∠3=90°.∴∠1=∠3.在△ABE 和△B 中,⎩⎪⎨⎪⎧∠A =∠CBN ,AB =BC ,∠1=∠3,∴△ABE ≌△B (ASA). (2)解:∵N 为AB 的中点, ∴BN =12AB .∵△ABE ≌△B , ∴AE =BN =12AB .在Rt △ABE 中,tan ∠ABE =AE AB =12AB AB =12.第13题答图14. (2018,某某)如图,在正方形ABCD 中,对角线BD 所在的直线上有两点E ,F 满足BE =DF ,连接AE ,AF ,CE ,CF .(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第14题图【思路分析】 (1)根据正方形的性质和全等三角形的判定定理证明即可.(2)四边形AECF 是菱形,根据对角线垂直且互相平分的四边形是菱形即可判断.(1)证明:∵四边形ABCD 是正方形, ∴AB =AD . ∴∠ABD =∠ADB . ∴∠ABE =∠ADF .在△ABE 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF ,BE =DF ,∴△ABE ≌△ADF (SAS). (2)解:四边形AECF 是菱形.理由:如答图,连接AC . ∵四边形ABCD 是正方形, ∴OA =OC ,OB =OD ,AC ⊥EF . ∴OB +BE =OD +DF . ∴OE =OF .∴四边形AECF 是菱形.第14题答图15. (2018,某某)如图,在矩形ABCD 中,E 是AD 边上的一个动点,F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:△BGF ≌△FHC ;(2)设AD =a ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.第15题图【思路分析】 (1)根据三角形中位线定理和全等三角形的判定证明即可.(2)利用正方形的性质和矩形的面积公式解答即可.(1)证明:∵F ,G ,H 分别是BC ,BE ,CE 的中点, ∴FH ∥BE ,FH =12BE ,GE =BG =12BE ,BF =FC .∴∠CFH =∠CBG ,FH =BG . ∴△BGF ≌△FHC .(2)解:如答图,连接EF ,GH .当四边形EGFH 是正方形时,得EF ⊥GH 且EF =GH . ∵在△BEC 中,G ,H 分别是BE ,CE 的中点, ∴GH =12BC =12AD =12a ,且GH ∥BC .∴EF ⊥BC .∵四边形ABCD 为矩形,∴AB =EF =GH =12a .∴矩形ABCD 的面积为AB ·AD =12a ·a =12a 2.第15题答图16. (2018,某某)如图,正方形ABCD 的对角线交于点O ,点E ,F 分别在AB ,BC 上(AE <BE ),且∠EOF =90°,OE ,DA 的延长线相交于点M ,OF ,AB 的延长线相交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.(结果保留根号)第16题图【思路分析】 (1)证△OAM ≌△OBN 即可得.(2)作OH ⊥AD ,由正方形的边长为4且E 为OM 的中点知OH =HA =2,HM =4,再根据勾股定理得OM =2 5.由等腰直角三角形的性质知MN=2OM .(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°. ∵∠EOF =90°,∠AOB =90°, ∴∠AOM =∠BON .∴△OAM ≌△OBN (ASA).∴OM =ON . (2)解:如答图,过点O 作OH ⊥AD 于点H .∵正方形ABCD 的边长为4, ∴OH =HA =2. ∵E 为OM 的中点, ∴HM =4.∴OM =22+42=2 5. ∴MN =2OM =210.第16题答图1. (2018,某某)如图,已知E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G ,H 都在边AD 上.若AB =3,BC =4,则tan ∠AFE 的值为(A)第1题图A. 37B. 33C. 34 D. 随点E 位置的变化而变化 【解析】 ∵EF ∥AD ,∴∠AFE =∠FAG .∴HE ∥CD .∴△AEH ∽△ACD .∴EH AH =CD AD =34.设EH =3x ,AH =4x ,∴HG =GF =3x .∴tan ∠AFE =tan ∠FAG =GF AG =3x 3x +4x =37. 2. (2018,某某)如图,已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为 (342).(结果保留根号) 第2题图【解析】 ∵四边形ABCD 为正方形,∴∠BAE =∠D =90°,AB =AD .∵AE =DF ,∴△ABE ≌△DAF (SAS).∴∠ABE =∠DAF .∵∠ABE +∠BEA =90°,∴∠DAF +∠BEA =90°.∴∠BGF =∠AGE =90°.∵H 为BF 的中点,∴GH =12BF .∵BC =5,CF =CD -DF =5-2=3,∴BF =BC 2+CF2=34.∴GH =12BF =342.3. (2018,某某,导学号5892921)如图,在正方形ABCD 中,AB =3,点E ,F 分别在CD ,AD 上,CE =DF ,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2∶3,则△BCG 的周长为15+3.(结果保留根号)第3题图【解析】 ∵阴影部分的面积与正方形ABCD 的面积之比为2∶3,∴阴影部分的面积为23×9CE =DF ,BC =CD ,∠BCE =∠CDF =90°,可得△BCE ≌△CDF ,∴△BCG 的面积与四边形DEGF 的面积相等,均为12×3=32.易证∠BGC =90°.设BG =a ,CG =b ,则12ab =32.又∵a 2+b 2=32,∴a 2+2ab +b 2=9+6=15,即(a +b )2=15.∴a +b =15,即BG +CG =15.∴△BCG 的周长为15+3.4. (2018,,导学号5892921)如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH .(1)求证:GF =GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.第4题图【思路分析】 (1)连接DF ,根据对称的性质,得△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论.(2)作辅助线,构建AM =AE ,先证明∠EDG =45°,得DE =EH ,证明△DME ≌△EBH ,则EM =BH ,根据勾股定理得EM =2AE ,得结论.(1)证明:如答图,连接DF . ∵四边形ABCD 是正方形, ∴DA =DC ,∠A =∠C =90°. ∵点A 关于直线DE 的对称点为F , ∴△ADE ≌△FDE .∴DA =DF ,∠DFE =∠A =90°.∴DF =DC ,∠DFG =90°.在Rt △DFG 和Rt △DCG 中,⎩⎪⎨⎪⎧DG =DG ,DF =DC ,∴Rt △DFG ≌Rt △DCG (HL). ∴GF =GC . (2)解:BH =2AE .证明:如答图,在线段AD 上截取AM ,使AM =AE . ∵AD =AB , ∴DM =BE .由(1)知∠1=∠2,∠3=∠4. ∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°. ∴∠2+∠3=45°,即∠EDG =45°. ∵EH ⊥DE , ∴∠DEH =90°.∴∠AED +∠BEH =∠AED +∠1=90°,△DEH 是等腰直角三角形. ∴∠1=∠BEH ,DE =EH . ∴△DME ≌△EBH . ∴EM =BH .在Rt △AEM 中,∠A =90°,AM =AE , ∴EM =2AE . ∴BH =2AE .第4题答图。

初中数学中考一轮05、四边形的综合应用(学生版)

初中数学中考一轮05、四边形的综合应用(学生版)

四边形的综合应用学生姓名年级学科授课教师日期时段核心内容平行四边形的性质与判定特殊平行四边形的性质与判定图形变换课型一对一/一对N教学目标熟练应用特殊四边形的性质与判定熟练的解决以特殊四边形为背景的综合题重、难点熟练的解决以特殊四边形为背景的综合题课首沟通1、知识点回顾2、作业检查3、询问学校进度及掌握情况知识导图课首小测1.[单选题] 下列命题中,正确的是(). A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形 D.两组对边分别相等的四边形是平行四边形2.[单选题] 对角线互相垂直平分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形3.[单选题] 在下列图形的性质中,平行四边形不一定具有的是().A.对角相等B.对角互补C.邻角互补D.内角和是4.如图,四边形ABCD中,当∠1=∠2,且∥时,这个四边形是平行四边形.5.若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为cm²。

6.已知菱形的两条对角线分别为6cm和8cm,则该菱形的周长为cm。

7.(2015年四川广安中考)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.8.(2013年广东广州中考)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.9.(2015年广州中考)如图,正方形ABCD中,点E、F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.导学一:平行四边形的性质与判定知识点讲解 1:平行四边形的性质与判定证:.例 1. [单选题] (2015年广州中考)下列命题中,真命题的个数有( ) ①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形. A. 3个 B. 2个C.1个D.0个例 2. [单选题] ( 2014年广东中考)如图,▱ABCD 中,下列说法一定正确的是( )A.AC=BDB. AC⊥BDC. AB=CDD.AB=BC例 3. (2014年广州中考)如图, 的对角线 、 相交于点 ,过点 且与、 分别交于点 、 ,求我爱展示1. (2015年梅州中考)如图,在▱ABCD 中,BE 平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于cm .2. (2015年大连中考)在□ABCD中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB=10cm ,AD=8cm , OB=cm .3. [单选题] (2014年昆明中考)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是 ()A.AB∥CD,AD∥BCB. OA=OC ,OB=ODC.AD=BC ,AB∥CDD.AB=CD ,AD=BC4. [单选题] (2015年绵阳中考)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD=90°,BC=4,BE=ED=3, AC=10,则四边形ABCD 的面积为()A. 6B.12C.20D.245.(2012年荔湾一模)已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.导学二:矩形的性质与判定知识点讲解 1:矩形的性质与判定应用例 1. [单选题] (2015年益阳中考)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B. AC=BDC.OA=OBD.OA=AD例 2. 如图,在矩形ABCD中,对角线AC,BD交于点O,已知,AB=2.5,则AC的长为。

初中数学四边形专项训练解析附答案

初中数学四边形专项训练解析附答案

初中数学四边形专项训练解析附答案一、选择题1.如图,在菱形ABCD 中,AB =10,两条对角线相交于点O ,若OB =6,则菱形面积是( )A .60B .48C .24D .96【答案】D【解析】【分析】 由菱形的性质可得AC ⊥BD ,AO =CO ,BO =DO =6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO =6,∴AO =22100368AB OB -=-=,∴AC =16,BD =12, ∴菱形面积=12162⨯=96, 故选:D .【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得 226810BD =+=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.4.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∴AO=3,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.5.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.6.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .1313【答案】B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF 中,222313BE + ∴313cos 13BF EBF BE ∠=== 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.7.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.8.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183-πC .32316π-D .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3843⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=2120(43)84332316360ππ⨯⨯-=-. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形 ∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.11.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【答案】C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S ,即可得S△PEB=S△PFD,从而得到阴影的面积.矩形MPFD【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE= 12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v3v=3v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.【答案】D【解析】【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质17.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.18.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12 BC,∴AE=BE=12 BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S△ABC=12AB•AC,故②错误;∵BE=EC,∴E为BC中点,O为AC中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.19.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∴∠ACB=90°,∴∠AED=90°,∴AC⊥DF,∴平行四边形ADCF为菱形故选:D.【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。

初中数学 第19章 平行四边形综合检测题(三)及答案

初中数学 第19章 平行四边形综合检测题(三)及答案

第19章 平行四边形综合检测题(三)一、选择题(每题3分,共30分)1、一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点 2、如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5、如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6、如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 7、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28、如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( ) A.123m B.20m C.22m D.24m图3A DCBHEFG图2OABD C图19、如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3B .23C .5D .2510、如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( ) A.36 m B.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11、如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12、如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13、如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14、已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.图6图4FEDCBA图5D CBA 图7图9图8 KNM Q CB15、如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16、如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17、如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___. 18、将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19、如图14,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.……第一次对折第二次对折第三次对折图13图11A 1B 1C 1D 1D ABC D ABCEF图12FE DCBA 图14图10ED CB A20、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21、如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G . (1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.ABCDABCDDCBA图15图1622、如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).23、如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.ECDBAOABCDE F图1724、已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结____________;(2)猜想:______=______; (3)证明:25、如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.O C图19DABEF图20EM F CO DBA图21EFOCMDAB参考答案一、1,C ;2,D ;3,D ;4,C ;5,C ;6,A ;7,D ;8,B ;9,D ;10,C .二、11,30°;12,=;13,14,;15,1212S S =;16,20;17,7;18,15、2n -1.三、21,由题意得△BEF ≌△DFE,∴DE=BE,∵在△BDE 中,DE=BE,∠DBE=45°,∴∠BD E=∠DBE=45°,∴∠DEB=90°,∴DE ⊥BC.∴EC=12(BC -AD)= 12(8-2)=3.∴BE=5;22,(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点); 23,:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=.2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24,(1)说明△CED ≌△CEA 即可,(2)BC =2AB ,理由略;25,(1)四边形ABCD 是矩形.连结OE .∵四边形ABCD 是平行四边形,∴DO =OB ,∵四边形DEBF 是菱形,∴DE =BE ,∴EO ⊥BD ,∴∠DOE = 90°,即∠DAE = 90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形,∴∠FDB =∠EDB ,又由题意知∠EDB =∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°,则∠ADB = 60°,∴在Rt △ADB 中,有AD ∶AB =1:3,即3=BCAB;26,(1)连结AF ;(2)猜想AF =AE ;(3)连结AC ,交BD 于O ,因为四边形ABCD 是菱形,所以AC ⊥BD 于O ,DO =BO ,因为DE =BF ,所以EO =BO 所以AC 垂直平分EF ,所以AF =AE ;27,(1)因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,所以∠MEA =∠AFO ,所以Rt △BOE 可以看成是绕点O 旋转90°后与Rt △AOF 重合,所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,OB=OA又因为AM BE,所以∠F+∠MBF=90°=∠B+∠OBE,又因为∠MBF=∠OBE,所以∠F=∠E,所以Rt△BOE可以看成是由Rt△AOF绕点O旋转90°以后得到的,所以OE=OF;。

2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)

2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)

2021年九年级数学中考复习分类压轴大题专题:四边形综合题(一)1.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC,BD的交点,连接CE,DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,且∠OMD=75°,求CE的长;(3)在(2)的条件下,把正方形OEFG绕点O旋转,直接写出点B到点F的最短距离.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).3.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).4.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.5.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为.6.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.7.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.8.如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的面积为S,求S的取值范围.9.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.10.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(二)11.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.12.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.13.如图1所示,边长为4的正方形ABCD与边长为a(1<a<4)的正方形CFEG的顶点C 重合,点E在对角线AC上.【问题发现】如图1所示,AE与BF的数量关系为;【类比探究】如图2所示,将正方形CFEG绕点C旋转,旋转角为α(0<α<30°),请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;【拓展延伸】若点F为BC的中点,且在正方形CFEG的旋转过程中,有点A、F、G在一条直线上,直接写出此时线段AG的长度为.14.如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.15.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.16.【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥EG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.17.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.18.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题:如图①,若E是线段AC的中点,连接EF,其他条件不变,猜想线段BE与EF的数量关系;(2)探究问题.如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题:如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=3,请直接写出AF的长度19.定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.(1)判断:①在平行四边形、矩形、菱形中,一定是神奇四边形的是;②命题:如图1,在四边形ABCD中,AB=AD,CB=CD,则四边形ABCD是神奇四边形.此命题是(填“真”或“假”)命题;③神奇四边形的中点四边形是;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是神奇四边形;②若AC=2,AB=,求GE的长;(3)如图3,四边形ABCD是神奇四边形,若AB=6,CD=,AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,求k的值.20.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(三)21.如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.(1)求证:AE=CE;(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.22.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,当AD=25,且AE<DE时,求的值;(3)如图3,当BE•EF=108时,求BP的值.24.如图①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直线上,点E在AD 上,连接DG,BE.(1)证明:BE=DG;(2)发现:当正方形AEFG绕点A旋转,如图②所示,判断BE与DG的数量关系和位置关系,并说明理由;(3)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,判断BE与DG的数量关系和位置关系是否与(2)的结论相同,并说明理由.25.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.26.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.27.如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.28.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.29.如图1,在正方形ABCD中,AD=9,点P是对角线BD上任意一点(不与B、D重合),点O是BD的中点,连接PC,过点P作PE⊥PC交直线AB于点E.初步感知:当点P与点O重合时,比较:PC PE(选填“>”、“<”或“=”).再次感知:如图1,当点P在线段OD上时,如何判断PC和PE数量关系呢?甲同学通过过点P分别向AB和BC作垂线,构造全等三角形,证明出PC=PE;乙同学通过连接PA,证明出PA=PC,∠PAE=∠PEA,从而证明出PC=PE.理想感悟:如图2,当点P落在线段OB上时,判断PC和PE的数量关系,并说明理由.拓展应用:连接AP,并延长AP交直线CD于点F.(1)当=时,如图3,直接写出△APE的面积为;(2)直接写出△APE面积S的取值范围.30.问题提出(1)如图①,点A在直线m上,点P在直线m外,请用尺规在直线m上找一点B,使得∠APB=60°(只作出满足条件一个图形即可);(2)如图②,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=10,求四边形ABCD的面积.问题解决(3)如图③,园林规划局想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN,其中OA平分∠BOC,OA=100米,∠BOC=120°,点M、N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小.你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(四)31.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.32.平面直角坐标系中一点(m,n)是二元一次方程Ax+By=C的解是指:将代入可得Am+Bn=C成立,如(2,3)是二元一次方程2x+y=7的解是指:代入可得2×2+3=7成立:(1)已知D(0,1),P(2,3),H(3,1),则点(填“D,P,H”)是方程x﹣2y=1的解;(2)已知关于x,y的方程组的解为坐标的点也是方程x+2y=4的解,求m的值;(3)若E、F为坐标系中两点,其中E点坐标是二元一次方程5x﹣y=4的解,F点坐标是二元一次方程x﹣y=4的解,且线段EF由线段AB平移得到,其中A(﹣4,0),B (0,﹣2)(A、B分别对应E、F),求四边形ABFE的面积.33.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2+PB2=PC2,则称点P为△ABC关于点C的勾股点.(1)如图2,在4×3的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点上,请找出所有的格点P,使点P为△ABC关于点A的勾股点.(2)如图3,△ABC为等腰直角三角形,P是斜边BC延长线上一点,连接AP,以AP 为直角边作等腰直角三角形APD(点A、P、D顺时针排列)∠PAD=90°,连接DC,DB,求证:点P为△BDC关于点D的勾股点.(3)如图4,点E是矩形ABCD外一点,且点C是△ABE关于点A的勾股点,若AD=8,CE=5,AD=DE,求AE的长.34.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=2,求BC的长.35.如图,在边长为2的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),PE的延长线与BC的延长线交于点Q.(1)求证:E是PQ的中点;(2)连结PB,F是BP的中点,连结EF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②求AP的长.36.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.37.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.38.四边形ABCD是矩形,点E是射线BC上一点,连接AC,DE.(1)如图1,点E在边BC的延长线上,BE=AC,若∠ACB=40°,求∠E的度数;(2)如图2,点E在边BC的延长线上,BE=AC,若M是DE的中点,连接AM,CM,求证:AM⊥MC;(3)如图3,点E在边BC上,射线AE交射线DC于点F,∠AED=2∠AEB,AF=4,AB=4,则CE=.(直接写出结果)39.如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF的两直角边EF、EG分别交CD、BC于点F、G.(1)若点F是边CD的中点,求EG的长.(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.(4)如图3,连接CE交FG于点H,若=,请求出CF的长.40.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)41.【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD 是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.42.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.43.【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.44.如图1,在平面直角坐标系中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC.已知,OA=8,tan∠OAC=,点D在BC上,且CD=3BD,点P 为线段AB上一动点(可与A、B重合),连接DP.(1)求OC的长及点D的坐标;(2)当DP∥AC时,求AP的长;(3)如图2,将△DBP沿直线DP翻折,得△DEP,连接AE、CE,问四边形AOCE的面积是否存在最小值,若存在,求出这个最小值;(4)以线段DP为边,在DP所在直线的右上方作等边△DPF,当点P从点B运动到点A时,点F也随之运动,请直接写出点F的运动路径长.45.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.如图1,在正方形ABCD中,点E为边AB上的点,BE:AE=n,连结DE、BD,过点A作AG⊥DE,垂足为点F,与BC、BD分别交于点G、H,连结EH.(1)①求证:AE=BG;②求证:DH:BH=n+1;(2)如图2,当EH∥AD时,求n的值.47.[阅读理解]构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.[经验运用]请运用上述阅读材料中所积累的经验和方法解决下列问题.(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.求证:①G是EF的中点;②CG=BE;[拓展延伸](2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,(2)中的其它条件不变,请直接写出GH的长.48.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.49.(1)问题探究:如图1,在正方形ABCD中,点E,Q分别在边BC、AB上,DQ⊥AE 于点O,点G,F分别在边CD、AB上,GF⊥AE.①判断DQ与AE的数量关系:DQ AE;②推断:的值为;(无需证明)(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.50.如图,在矩形ABCD中,AD=2AB=8,点E是边AD的中点.连结EC,P、Q分别是射线AD、EC上的动点,且EQ=AP.连结BP,PQ.过点B,Q分别作PQ,BP的平行线交于点F.(1)当点P在线段AE上(不包含端点)时,①求证:四边形BFQP是正方形.②若BC将四边形BFQP的面积分为1:3两部分,求AP的长.(2)如图2,连结PF,若点C在对角线PF上,求△BFC的面积(直接写出答案).参考答案1.解:(1)∵正方形ABCD与正方形OEFG,对角线为AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,DO=CO,∠GOD=∠COE,GD=OE,∴△DOG≌△COE(SAS);(2)∵四边形ABCD为正方形,故∠ODM=45°,故OD=,∵∠OMD=75°,∴∠DOG=60°,∵DG⊥BD,故∠ODG=90°,∴∠OGD=30°,∴OG=2OD=2,∴DG===,∵△DOG≌△COE(SAS),∴CE=DG=;(3)正方形OEFG绕点O旋转,当点O、B、F共线且点B在OF之间时,点B到点F 的距离最短,由(2)知,在正方形OEFG中,OG=2,则OF=OG=4,而OB=OD=,故OF﹣OB=4﹣.故B到点F的最短距离为4﹣.2.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠AOC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).3.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.4.解:(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B==,∴AH=AB=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B==,∴cos B==,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t≤时,如图3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2﹣[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当<t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=;②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15﹣×5t=t+t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15﹣×5t=t,解得t=.5.(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,∴菱形ABCD的面积=2S△ABC=2××42=8;故答案为:8.6.(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.7.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.8.(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC===4,∴CQ=AC=2,∴QN===,∴MN=2QN=2.(3)解:当MN过点D时,如图3所示,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,∴4≤S≤5,9.(1)【发现证明】证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)【联想拓展】解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴==3.∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=FG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF===2.10.解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.如图3,若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
F
C
E B
A
四边形综合题 1、如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,BC=2,
15ABD ∠=︒,60C ∠=︒.
(1) 求∠BDC 的度数; (2) 求AB 的长.
2、如图,在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,AB =2CD ,E 、F 分别为AB 、AD
的中点,联结EF 、EC 、BF 、CF . (1)四边形AECD 的形状是 ; (2)若CD =2,求CF 的长.
3、如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.
(1) 求证:四边形BDEF 是菱形; (2) 若12AB =cm ,求菱形BDEF 的周长.
4、已知:如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点, 过点E 作ED ⊥BC 于D ,F 在DE 的延长线上,且AF =CE ,若
AB =6,AC =2,求四边形ACEF 的面积.
5、如图,在
ABCD 中,过点B 作BE ∥AC ,在BG 上取点E ,联结DE 交AC 的延长线于点F .
(1)求证:DF =EF ;
(2)如果AD =2,∠ADC =60°,AC ⊥DC 于点C ,AC =2CF ,求BE
的长.
F
E
D
C
B
A
F
D C
B
A E
G
6、如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =DC ,联结AC ,过点D
作DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,若AE =AC . ⑴求∠EAC 的度数 ⑵若AD =2,求AB 的长.
7、如图,在□ABCD 中,AB =5,AD =10,cos B =3
5
,过BC 的中点E 作EF ⊥AB ,垂足为点F ,连结DF ,求DF 的长.
8、如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,
F
G
D
C
B
A
E
F
E
D C
B
A A
求DF 的长.
9、如图,在四边形ABCD 中,∠ABC =90︒,∠CAB =30︒, DE ⊥AC 于E ,且AE=CE ,若DE=5,EB=12,
求四边形ABCD 的周长.
10、如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.
E
D C
B A
D
E
C
B
A
11、如图,在四边形ABCD 中,AD DC ⊥,
对角线AC CB ⊥,若AD =2,AC =253
cos 5
B =. 试求四边形ABCD 的周长.
12、已知如图,在△ABC 中,AB =AC ,∠ABC =α,将△ABC 以点B 为中心,沿逆时针方向旋
转α度(0°<α<90°),得到△BDE ,点B 、A 、E 恰好在同一条直线上,连结CE . (1)则四边形DBCE 是_______形(填写:平行四边形、矩形、菱形、正方形、梯形) (2)若AB =AC =1,BC 3,请你求出四边形DBCE 的面积.
13、如图,已知矩形ABCD 中,E 是AD 上的一点,过点E 作EF ⊥EC 交边AB 于点F ,交CB
的延长线于点G , 且EF =EC . (1)求证:CD =AE ;
(2)若DE =4cm ,矩形ABCD 的周长为 32cm ,求CG
的长.
14、如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,求ED的长.。

相关文档
最新文档