2017浙教版数学八年级上册53《一次函数》练习题基础

合集下载

【八年级数学试题】初二数学上册一次函数测试卷(有答案浙教版)

【八年级数学试题】初二数学上册一次函数测试卷(有答案浙教版)

初二数学上册一次函数测试卷(有答案浙教版)
初二数学上册一次函数测试卷(有答案浙教版)(时间90分钟,满分100分)
一、选择题(每小题3分,共30分)
1对于圆的周长式c=2 R,下列说法正确的是()
A.、R是变量,2是常量 B.R是变量,c、是常量
c.c是变量,、R是常量 D.c、R是变量, 2、是常量
2已知一次函数,当增加3时,减少2,则的值是()
A B c D
3已知一次函数随着的增大而减小,且,则在直角坐标系内它的大致图象是()
4已知直线 = -4(<0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为()
A. =- -4 B. =-2 -4 c. =-3 +4 D. =-3 -4
5若一次函数的图象交轴于正半轴,且的值随值的增大而减小,则()
A B c D
6小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段 1、 2分别表示小敏、小聪离B 地的距离()与已用时间(h)之间的关系,则小敏、小聪行走的速度分别是()
A.3 /h和4 /h B.3 /h和3 /h
c.4 /h和4 /h D.4 /h和3 /h
7若甲、乙两弹簧的长度 c与所挂物体质量 g之间的函数表达式分别为 =1 + 1和
=2 + 2,如图所示,所挂物体质量均为2 g时,甲弹簧长为 1,。

浙教版八年级数学上5.3一次函数(一) 基础训练含答案试卷分析详解

浙教版八年级数学上5.3一次函数(一) 基础训练含答案试卷分析详解

5.3 一次函数(一)1.下列y 关于x 的函数中,是一次函数的是(B )A. y =1-xB. y =15x +1C. y =x 2+1D. y =x2.若y =(m -3)x +1是一次函数,则(C )A. m =3B. m =-3C. m ≠3D. m ≠-33.(1)在一次函数y =5-13x 中,系数k =-13,b =__5__. (2)已知y 与x 成正比例,且当x =-2时,y =4,则y 与x 之间的函数表达式是y =-2x .(3)已知函数y =(3m -4)x n -2+(m +2n )是正比例函数,则m =-6,n =__3__,此时函数表达式为y =-22x .4.已知函数y =3x +1,当自变量增加3时,相应的函数值增加多少?【解】 由y =3x +1,y +a =3(x +3)+1,两式相减,得a =9.∴相应的函数值增加9.5.请说出下列函数中k 和b 的值:(1)y =60x .(2)y =3000-300x .(3)y =9+8x .(4)y =-3(2+x )-7.【解】 (1)k =60,b =0.(2)k =-300,b =3000.(3)k =8,b =9.(4)代简,得y =-3x -13,∴k =-3,b =-13.6.已知y -3与x 成正比例,且当x =2时,y =7.(1)求y 与x 之间的函数表达式.(2)当x =-2时,求y 的值.(3)当y =-3时,求x 的值.【解】 (1)设y -3=kx .∵当x =2时,y =7,∴7-3=2k ,∴k =2.∴y =2x +3.(2)当x =-2时,y =-2×2+3=-1.(3)当y =-3时,-3=2x +3,∴x =-3.7.定义[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”为[1,m -3]的一次函数是正比例函数,则关于x 的方程mx -6=0的解为多少?【解】 ∵“关联数”为[1,m -3]的一次函数是正比例函数,∴y =x +m -3是正比例函数,即m -3=0,解得m =3.把m =3代入mx -6=0,得3x -6=0,解得x =2.8.写出下列各小题中y 关于x 的函数表达式,并判断y 是否为x 的一次函数?是否为x 的正比例函数?(1)长方形的面积为20,长方形的长y 与宽x 之间的函数表达式.(2)某地西瓜刚上市时的价格为3.6元/千克,买西瓜的总价y (元)与所买西瓜x (kg)之间的函数表达式.(3)地面气温为28 ℃,高度每升高1 km ,气温下降5 ℃,气温y (℃)与高度x (km )之间的函数表达式.(4)小林的爸爸为小林存了一份教育储蓄,首次存入10000元,以后每个月存入500元,存入总钱数y (元)与月数x 之间的函数表达式.【解】 (1)y =20x,不是一次函数,也不是正比例函数. (2)y =3.6x ,是一次函数,也是正比例函数.(3)y =28-5x ,是一次函数,但不是正比例函数.(4)y =10000+500x ,是一次函数,但不是正比例函数.9.某市住宅电话的资费标准为:通话前3 min 计费0.20元,以后每分钟(不足1 min 按1 min 计算)加收0.10元.(1)某人一次通话的时间为10 min ,他这次通话的资费是0.90元.(2)某人一次通话的资费为1.50元,他这一次的通话时间t 的范围是15__min<t ≤16__min .【解】 (1)当通话时间为10 min 时,通话前3 min 收费0.20元,后7 min 收费7×0.10=0.70(元),∴总资费为0.20+0.70=0.90(元).(2)当一次通话的资费为1.50元时,此人通话时间最多为3+(1.50-0.20)÷0.10=16(min),∴通话时间t 应满足15 min<t ≤16 min.10.(1)已知一次函数y =kx +b ,当x 的值减少1时,y 的值减少2,则当x 的值增加2时,y 的值(A )A. 增加4B. 减少4C. 增加2D. 减少2【解】 由y =kx +b ,y -2=k (x -1)+b ,两式相减,得k =2.由y =2x +b ,y +a =2(x +2)+b ,两式相减,得a =4,∴y 的值增加4.(2)设m ,n (m ≠0)为常数,如果在正比例函数y =kx 中,自变量x 增加m ,对应的函数值y 增加n ,那么k 的值是(A )A. n mB. m nC. -n mD. -m n【解】 由题意,得⎩⎪⎨⎪⎧y =kx ,①y +n =k (x +m ),② ②-①,得n =km ,解得k =n m. 11.若函数y =(2k -5)x +(k -25)为正比例函数,求12+16+112+…+1k +k 2的值. 【解】 ∵函数y =(2k -5)x +(k -25)为正比例函数,∴k -25=0,解得k =25.∵1k +k 2=1k (k +1)=1k -1k +1,∴12+16+112+…+1k +k 2=1-12+12-13+13-14+125-126=1-126=2526.(第12题)12.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用45 min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 km /h ,两车之间的距离y (km )与货车行驶时间x (h )之间的函数图象如图所示,有下列结论:①快递车从甲地到乙地的速度为100km /h ;②甲、乙两地之间的距离为120 km ;③图中点B 的坐标为(3.75,75);④快递车从乙地返回时的速度为90 km /h .其中正确的是(C )A. ①②③B. ②③④C. ①③④D. ①③ 【解】 根据题意可得:点A 表示快递车已到达乙地,y 表示两车距离,3 h 时两车相距120 km .设快递车从甲地到乙地的速度为a (km /h ),则有3a -3×60=120,解得a =100,故①正确.两地距离为3×100=300(km ),故②错误.∵快递车到达后装卸货物共用时45 min ,即34h , ∴点B 的横坐标x =3.75.∵45 min 货车走了60×34=45(km ), ∴点B 的纵坐标为120-45=75,故③正确.BC段中的点B表示快递车装好货后又出发,点C表示两车相遇.∵4.25-3.75=0.5(h),即两车经过0.5 h相遇,∴快递车返回的速度为(75-0.5×60)÷0.5=90(km/h),故④正确.综上所述,①③④正确.。

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。

中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)

中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。

一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。

中考数学复习:专题3-4 一次函数考点分析及典型试题

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

2019—2020年新浙教版数学八年级上册5.3《一次函数》练习题(基础)题.doc

2019—2020年新浙教版数学八年级上册5.3《一次函数》练习题(基础)题.doc

5.3一次函数练习题(基础)1.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数2.下列函数中,y是x的一次函数的是()D.A.y=-3x+5B.y=-3xx3.已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20-2x,则其自变量的取值范围是()A.0<x<10B.5<x<10C.x>0D.一切实数4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是(•)A.y=2x+1B.y=-2x+1C.y=2x-1D.y=-2x-15.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________.7.已知A、B、C是一条铁路线(直线)上顺次三个站,A、B 两站相距100•千米,现有一列火车从B站出发,以75千米/时的速度向C站驶去,设x(•时)表示火车行驶的时间,y(千米)表示火车与A站的距离,则y与x的关系式是_________.8.某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费50元,另外,每通话1分缴费0.25元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某用户本月通话120分钟,他的费用是多少元?•(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?9.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖(1)小明要买20个练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式,它们都是正比例函数吗(3)小明现有24元钱,最多可买多少个本子?10.我国现行个人工资、薪金所得税征收办法规定:月收入低于800•元的部分不收税;月收入超过800元但低于1300元的部分征收5%•的所得税……如某人月收入1200元,他应该缴个人工资、薪金所得税为(1200-88)×5%=20(元).(1)当月收入大于800元而又小于1300元时,写出应缴所得税y•(元)与月收入x(元)之间的函数关系式.y是x的一次函数吗?(2)某人月收入为1000元,他应缴所得税多少元?(3)如果某人本月缴所得税18元,那么此人本月工资、薪金是多少元?。

2017年中考复习《一次函数》压轴题练习含答案

2017年中考复习《一次函数》压轴题练习含答案

2017年中考复习《一次函数》压轴题练习含答案2017年中考复习《一次函数》压轴题练习一、选择题1.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B. C.D.2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<03.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y 与x的函数图象大致是()7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B. C.D.8.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点9.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为.11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b= .12.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()13.如图,若直线y=kx+b经过A,B两点,直线y=mx 经过A点,则关于x的不等式kx+b>mx的解集是.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是.三、解答题15.已知一次函数的图象经过(3,5)和(﹣4,﹣9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.16.已知一个正比例函数和一个一次函数的图象交于点P(﹣2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.17.小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需要几小时?此时离家多远?(2)何时开始第一次休息?休息时间多长?(3)小强何时距家21km?(写出计算过程)18.雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6m,B 种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获得的总利润为y元.(1)请帮雅美服装厂设计出生产方案;(2)求y(元)与x(套)的函数关系,利用一次函数性质,选出(1)中哪个方案所获利润最大?最大利润是多少?19.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.参考答案一、选择题1.D2.D3.A4.C 5.C6.A7.B8.C9.A二、填空题10. y=x+.11. 16.12.2.13. x>1.14. x=﹣2.三、解答题15解:(1)设一次函数的解析式y=ax+b,∵图象过点(3,5)和(﹣4,﹣9),将这两点代入得:,解得:k=2,b=﹣1,∴函数解析式为:y=2x﹣1;(2)将点(a,2)代入得:2a﹣1=2,解得:a=.16.解:设正比例函数解析式为y=mx,一次函数解析式为y=nx+4,将(﹣2,2)代入可得2=﹣2m,2=﹣2n+4,解得:m=﹣1,n=1,∴函数解析式为:y=﹣x;y=x+4.(2)根据过点(﹣2.2)及(0,4)可画出一次函数图象,根据(0,0)及(﹣2,2)可画出正比例函数图象.(3)面积=|OQ|•|P横坐标|=×2×4=4.17.解:观察图象可知:(1)小强到离家最远的地方需要3小时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)点C(11,15),D(12,30),用待定系数可得DC的解析式:y=15x﹣150,当y=21时x=11.4,即11:24时;点E(13,30),F(15,0),用待定系数法可得EF的解析式:y=﹣15x+225,当y=21时x=13.6,即13:36时.∴小强在11:24时和13:36时距家21km.18.解:(1)设生产N型号的时装套数为x,则生产M 型号的时装为(80﹣x),由题意,得,解得:40≤x≤44.∵x为整数,∴x取40,41,42,43,44.∴有5种方案:方案1:M型号40套,N型号40套;方案2:M型号39套,N型号41套;方案3:M型号38套,N型号42套;方案4:M型号37套,N型号43套;方案5:M型号36套,N型号44套;(2)由题意,得y=45(80﹣x)+50x=5x+3600.∵k=5>0,∴y随x的增大而增大,∴当x=44时,y最大=3820元.∴选择方案5所获利润最大.19.解:(1)由题意,得小明骑车的速度为:20÷1=20km/时,小明在南亚所游玩的时间为:2﹣1=1小时.(2)由题意,得小明从南亚所到湖光岩的时间为25﹣(2﹣)×60=15分钟=小时,∴小明从家到湖光岩的路程为:20×(1+)=25km.∴妈妈的速度为:25÷=60km/时.C点横坐标为: +=,C(,25).设直线CD的解析式为y=kx+b(k≠0),由题意,得,解得:,∴直线CD的解析式为y=60x﹣110.。

数学八年级上浙教版7.3一次函数同步练习1

数学八年级上浙教版7.3一次函数同步练习1

7.3 一次函数 同步练习一、选择题1、以下函数①y=x -6;②y=x 2;③y=8x;④y=7-x 中,y 是x 的一次函数的是〔 〕 A 、①②③ B 、①③④ C 、①②③④ D 、②③④ 2、以下函数中,既是一次函数,又是正比例函数的是〔 〕 A 、215y x = B 、()25y x x x =-- C 、12y x=D 、51y x =- 3、如果()2213m y m x-=-+是一次函数,那么的值是〔 〕A 、1B 、-1C 、±1D 、 4、函数23y x =-,当1x =时,的值是〔 〕A 、1B 、0C 、-1D 、-5 二、填空题5、在函数:①y=-x ;②y=-3x -6;③y=2〔x -3〕;④y=x 2+3;⑤y=4-x 中,正比例函数有 ,一次函数有 。

6、甲乙两地相距264千米,一辆汽车从甲地开往乙地,每小时行驶24千米,t 小时后,停在途中加水,那么所剩路程s 与行驶时间t 之间的关系式是 ,s 是t 的 函数。

7、等腰三角形周长为20,那么底边长y 与腰长x 之间的函数关系式是 ,自变量x 的取值范围是 。

8、y 与x 成正比例,且当x=1时,y=0.5,那么函数关系式是 . 三、解答题9、以下函数关系中,哪些属于一次函数,其中哪些又属于正比例函数? (1)面积为10cm 2的三角形的底a (cm)与这边上的高h (cm); (2)长为8(cm)的平行四边形的周长L (cm)与宽b (cm);(3)食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨; (4)汽车每小时行40千米,行驶的路程s 〔千米〕和时间t 〔小时〕.10、见下表:的正比例函数?11、函数y=ax+b,当x=1时,y=1;当x=2时,y=-5。

〔1〕求a、b的值。

〔2〕当x=0时,求函数值y ;〔3〕当x取何值时,函数值y为0?12、y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.[一、综合渗透1、“五一〞黄金周期间,李娟同学和父母自驾车去外地旅游,出发时,油箱中有油b升,行使过程中每千米耗油k升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017浙教版数学八年级上册5.3《一次函数》word练习题(基础)
5、3一次函数练习题(基础)
1.下列说法正确的是( )A。

正比例函数是一次函数B。

一次函数是正比例函数C。

正比例函数不是一次函数D。

不是正比例函数就不是一次函数
2.下列函数中,y是x的一次函数的是( )
A。

y=—3x+5 B.y=-3x2 C.y=1
x
D.y=2x
3。

已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20—2x,则其自变量的取值范围是( )
A。

0<x<10 B.5〈x<10 C.x〉0 D.一切实数
4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是(•)
A。

y=2x+1 B.y=—2x+1 C.y=2x-1 D.y=-2x-1
5。

已知函数y=(k—1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.
6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2、4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________。

7。

已知A、B、C是一条铁路线(直线)上顺次三个站,A、B两站相距100•千米,现有一列火车从B站出发,以75千米/时的速度向C站驶去,设x(•时)表示火车行驶的时间,y(千米)表示火车与A站的距离,则y与x的关系式是_________。

8。

某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费50元,另外,每通话1分缴费0、25元。

(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某用户本月通话120分钟,他的费用是多少元?•(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?
9.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖
(1)小明要买20个练习本,到哪个商店购买较省钱?
(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式,它们都是正比例函数吗
(3)小明现有24元钱,最多可买多少个本子?
10。

我国现行个人工资、薪金所得税征收办法规定:月收入低于800•元的部分不收税;月收入超过800元但低于1300元的部分征收5%•的所得税……如某人月收入1200元,他应该缴个人工资、薪金所得税为(1200-88)×5%=20(元).
(1)当月收入大于800元而又小于1300元时,写出应缴所得税y•(元)与月收入x(元)之间的函数关系式.y是x的一次函数吗?
(2)某人月收入为1000元,他应缴所得税多少元?
(3)如果某人本月缴所得税18元,那么此人本月工资、薪金是多少元?。

相关文档
最新文档