基于动态模型的异步电动机调速系统

合集下载

电力拖动自动控制系统复习要点(河科大)

电力拖动自动控制系统复习要点(河科大)

第一章绪论1 电力拖动实现了电能与机械能之间的能量变换。

2 运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量。

3 功率放大器与变换装置有电机型、电磁型、电力电子型(晶闸管SCR为半控型)等4 转矩控制是运动控制的根本问题,与磁链控制同样重要。

5 风机、泵类负载特性。

第一篇直流调速系统1 电力拖动自动控制系统有调速系统、伺服系统、张力控制系统、多电动机同步控制系统等多种类型。

2 直流电动机的稳态转速公式:3 调节电动机转速的方法:1)调压调速2)弱磁调速3)变电阻调速第二章转速反馈控制的直流调速系统1 晶闸管整流器—电动机调速系统(V-M系统)通过调节触发装置GT的控制电压来移动触发脉冲的相位,改变可控整流器平均输出直流电压,从而实现直流电动机的平滑调速。

2 在动态过程中,可把晶闸管触发与整流装置看成一个滞后环节(由晶闸管的失控时间引起)。

3 与V-M系统相比,直流PWM调速系统在很多方面有较大的优越性:(1)主电路线路简单,需用的电力电子器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;(5)电力电子开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。

4 直流PWM调速系统的机械特性(电流连续时,机械特性曲线相平行)1)稳态:电动机的平均电磁转矩与负载转矩相平衡的状态;2)机械特性:平均转速与平均转矩(电流)的关系。

5调速系统转速控制的要求(1)调速—在一定的最高转速和最低转速范围内,分挡地(有级)或平滑地(无级)调节转速;(2)稳速—以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量;(3)加、减速—频繁起动、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起动、制动尽量平稳。

第六章 基于动态模型的异步电动机调速系统(电力拖动自动控制系统)

第六章 基于动态模型的异步电动机调速系统(电力拖动自动控制系统)

图8-7 多台同步电动机的恒压频 比控制调速系统
2.在π/2<θ<π范围内
图8-8 变压变频器供电的同步 电动机调速系统
2.在π/2<θ<π范围内
图8-9 自控变频同步电动机调速原理图 UI—逆变器 BQ—转子位置检测器
2.在π/2<θ<π范围内
图8-10 PWM控制的自控变频同步电动机 及调速原理图
(或永久磁钢)外,还可能有自身短路的阻尼绕组。
4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之 分。 5)由于同步电动机转子有独立励磁,在极低的电源频率下也能运 行,因此,在同样条件下,同步电动机的调速范围比异步电动机 更宽。
2.机械特性的斜率与最大转矩
6)异步电动机要靠加大转差才能提高转矩,而同步电动机只需加
2.定子电压矢量的控制作用
图6-37 定子磁链圆轨迹扇区图
1.定子磁链计算模型
2.转矩计算模型 1.直接转矩控制系统的特点 2.直接转矩控制系统存在的问题 1.电动机在次同步转速下作电动运行 2.电动机在反转时作倒拉制动运行 3.电动机在超同步转速下作回馈制动运行
4.电动机在超同步转速下作电动运行
用这两个控制信号产生输出电压,省去了旋转变换和电流控制, 简化了控制器的结构。 2)选择定子磁链作为被控量,计算磁链的模型可以不受转子参数 变化的影响,提高了控制系统的鲁棒性。 3)由于采用了直接转矩控制,在加减速或负载变化的动态过程中, 可以获得快速的转矩响应,但必须注意限制过大的冲击电流,以
免损坏功率开关器件,因此实际的转矩响应也是有限的。
在异步电动机转子回路串电阻调速时,其理想空载转速就是其同 步转速,而且恒定不变,调速时机械特性变软,调速性能差。在 串级调速系统中,由于电动机的极对数与旋转磁场转速都不变, 同步转速也是恒定的,但是它的理想空载转速却能够连续平滑地 调节。

基于PLC实现的三相异步电动机变频调速控制

基于PLC实现的三相异步电动机变频调速控制

基于Plc控制电机调速实验报告电控学院电气0904班李文涛07 —、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。

要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。

三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。

变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。

矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。

对于对动态性能要求较高的应用,可以采用矢量控制方式。

矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。

由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,这种控制方式被称为矢量控制(Vectory Control)。

基于PLC实现的三相异步电动机变频调速控制

基于PLC实现的三相异步电动机变频调速控制

基于Plc控制电机调速实验报告电控学院电气0904班李文涛0906060427—、实验名称:基于PLC实现的三相异步电动机变频调速控制二、实验目的:通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。

要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。

三、实验器材:220V PLC实验台一套、380V变频器实验台一套、万用表一个、导线若干三、实验各部分原理:1.实验主要器件原理1)光电编码器:COM01030002040CH光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

2)变频器:I原理概述变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。

变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。

矢量控制:U/f控制方式建立于电机的静态数学模型,因此,动态性能指标不高。

对于对动态性能要求较高的应用,可以采用矢量控制方式。

矢量控制的基本思想是将异步电动机的定子电流分解为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流),并分别加以控制。

异步电动机的动态数学模型-完整版

异步电动机的动态数学模型-完整版
卡盟排行榜 卡盟
1、绕组自感 对于每一相绕组来说,它所交链的磁通是公共主磁通
(互感磁通)与漏感磁通之和,考虑绕组是对称的,因此 定子和转子各相绕组电感分别为:
LAA=LBB=LCC=L’m+Lls Laa=Lbb=Lcc=L’m+Llr
(6-5)
2、绕组互感 互感与公共主磁通相对应,互感分为两类:
三相异步电机的等效物理模型如下: 定子A、B、C的轴线在空间上固定,以A轴为参考坐标轴; 转子a、b、c的轴线随转子旋转,转速为ωr; 电角度θr为空间角位移变量。
异步电动机的动态数学模型由电压方程、磁链方程、转 矩方程和运动方程组成。
一、电压方程
定子电压方程:
u
A
u
B
u
C
iA R s iB R s iC R s
电机的磁链可表达为:
A LAA
B
LBA
Ca
LLCaAA
b
LbA
c LcA
简写成:
LAB LAC LAa LAb LAciA
LBB
LBC
LBa
LBb
LBc
iB
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
LbB
LbC
Lba
Lbb
Lbc
ib
LcB LcC Lca Lcb Lcc ic
d A
dt d B
dt d C
dt
转子电压方程:
u
a
u
b
u
c
ia R r ib R r ic R r
d a
dt d b
dt d c

运动控制系统专业选修课教学大纲

运动控制系统专业选修课教学大纲

《运动控制系统》课程教学大纲Motion Control Systems适用于四年制本科电气工程及其自动化专业学分:2.5 总学时:40 理论学时:36 实验/实践学时:4 /0一、课程作用与目的本课程(运动控制系统)是电气工程及其自动化专业的一门专业选修课,在学生学习过多门专业基础课的基础上开设,是对电气工程及其自动化本科阶段所学知识的总结和提高。

课程涵盖知识的内容多,范围广,难度大,实用性强,能够培养学生对知识融会贯通的能力,提高学生综合应用理论知识解决实际问题的能力。

二、课程基本要求1. 第一篇(直流调速系统)重点在于掌握以直流电动机为对象组成的运动控制系统,包括单闭环调速系统、多环调速系统、可逆调速系统和直流脉宽调速系统的基本组成和控制规律、静态、动态性能分析及工程设计方法;2. 第二篇(交流调速系统)重点在于掌握以交流电动机为对象组成的运动控制系统,包括调压调速系统、串级调速系统和变频调速系统的基本组成、工作原理和性能特点及系统设计方法;并了解国内国际自动控制领域的前沿科技。

三、教材及主要参考书1. 使用教材《电力拖动自动控制系统——运动控制系统》(第四版),机械工业出版社,阮毅.2010.2. 参考书[1]李宁.运动控制系统. 北京:高等教育出版社,2004[2]宋书中. 交流调速系统. 北京:机械工业出版社,2002[4]王成元. 现代电机控制技术. 北京:机械工业出版社,2009四、教学内容第一章绪论主要内容:运动控制系统的组成,运动控制系统的历史与发展,转矩控制规律,生产机械的负载转矩特性。

重点和难点:转矩控制规律。

第二章转速反馈控制的直流调速系统主要内容:直流调速的基本类型,直流调速系统用的可控直流电源,反馈控制闭环直流调速系统的稳态分析和设计,动态分析和设计,比例积分控制规律和无静差调速系统。

重点和难点:掌握反馈控制系统的稳态和动态分析与设计。

第三章转速、电流反馈控制的直流调速系统主要内容:双闭环直流调速系统的组成,静特性,数学模型和动态性能分析,调节器1的工程设计方法,按工程设计方法设计双闭环系统调节器,按离散控制系统设计数字控制器。

毕设论文--异步电动机SPWM变频调速原理与仿真分析

毕设论文--异步电动机SPWM变频调速原理与仿真分析

异步电动机SPWM变频调速原理与仿真分析摘要在分析SPWM原理的基础上,利用MATLAB/SIMULINK软件构造了SPWM调速系统的仿真模型并说明了规则采样法的可行性。

该模型主要利用S-函数模拟自然采样法和规则采样法的控制规则并应用电力系统工具箱构建逆变桥和电机,能够比较好的模拟真实的系统并实现变频调速的功能。

通过对仿真结果的分析,对比自然采样法和规则采样法控制性能的差异,得出了规则采样法在工程实际中应用的可行性。

关键词:SPWM,异步电机,MATLAB,仿真,规则采样法,自然采样法The Simulation and Analysis of the Fundmental Principle of Asynchronous Motor SPWM Speed AdjustingABSTRACTBase on analizing SPWM principle, the SPWM velocity modulation system's simulation model has been constructed by using the MATLAB/SIMULINK software.After analizing the results of simulation,the feasibility of the regular sample law is given out. This model mainly uses the S- function analogue natural sampling law and the regular sampling method control rule and construct inverter and machine ,this model can simulate the real system and realize the frequency conversion velocity modulation function. The simulation results is given out in this paper, though analizing the simulation results and constrasting the difference of the control performance of natural sampling law and regular sampling,the application feasibility of the regular sampling law in the project has been obtained.KEYWORDS: SPWM ,aynchronous motor,MATLAB,simulation, regular sampling law, ntural sampling law目录摘要 (I)ABSTRACT .................................................................................................................................................... I I 1 绪论 (1)1.1交流调速系统的发展 (1)1.2交流调速系统的基本类型 (2)1.2.1 异步电动机调速系统的基本类型 (2)1.2.2 同步电动机调速的基本类型 (4)2 Siulink 仿真基础 (5)2.1 Simulink简介 (5)2.1.1 Simulink 启动 (5)2.1.2 Simulink 组成 (5)2.1.3 仿真过程 (6)2.2 Simulink 模块库简介 (6)2.3电力系统工具箱简介 (6)2.4 S-函数简介 (6)2.4.1 S-函数的基本概念 (6)2.4.2 S-函数的使用 (7)2.4.3 与S-函数相关的一些术语 (7)2.4.4 S-函数的工作原理 (8)2.4.5 编写M文件S-函数 (9)3 异步电动机变压变频调速系统 (11)3.1概述 (11)3.2变压变频调速的基本控制方式 (11)3.2.1 基频以下调速 (11)3.2.2 基频以上调速 (12)3.3异步电动机电压-频率协调控制时的机械特性 (12)4 PWM控制技术 (15)4.1 正弦脉宽调制原理及其优点 (15)4.1.1 SPWM原理 (15)4.1.2 SPWM的优点 (18)4.1.3关于SPWM的开关频率 (19)4.2 同步调制和异步调制 (19)4.2.1 异步调制 (19)4.2.2 同步调制 (19)4.2.3 分段同步调制 (20)4.3 SPWM波形的生成 (20)4.3.1 自然采样法 (20)4.3.2 规则采样法 (21)5 异步电动机SPWM变频调速仿真系统的设计 (23)5.1自然采样法系统的设计 (23)5.1.1 三角波的生成 (23)5.1.2 自然采样法SPWM 脉冲的生成 (25)5.1.3 直流电源 (25)5.1.4 逆变器的设计 (25)5.1.5 系统总框图的设计 (26)5.2 规则采样法系统的设计 (26)5.2.1 规则采样法脉冲的生成 (26)5.2.2 规则采样法系统总框图的设计 (28)5.3仿真分析 (28)5.3.1 额定转速(50HZ)的波形 (29)5.3.2 性能对比分析 (30)致谢 (36)参考文献 (37)1 绪论1.1 交流调速系统的发展[1]直流电气传动和交流电气传动在19世纪先后诞生。

基于动态模型的异步电动机调速系统设计

基于动态模型的异步电动机调速系统设计

基于动态模型的异步电动机调速系统设计
1. 异步电动机调速系统简介:
异步电动机是目前工业领域中使用最为普遍的电机之一。

它具
有体积小、重量轻、成本低、可靠性高等优点,因此应用广泛。


步电动机调速系统是将电机的转速和负载转矩进行控制,以实现电
机性能的优化。

常用的调速方法有电压调制、变频调速、脉宽调制等。

2. 动态模型简介:
异步电动机的动态模型是控制系统设计中的重要基础,它描述
了电机输入电压、输出机械转矩和电机转速之间的关系,用于分析
和优化控制方案。

异步电动机一般采用dq坐标系下的动态模型,其
中d轴代表电机转矩,q轴代表磁场转矩。

3. 异步电动机调速系统的设计过程:
步骤1:确定系统的调速要求,包括电机的负载特性、转矩、
速度等参数。

步骤2:建立异步电动机的数学模型,可以采用dq坐标系下的
动态模型或者其他常用的电机模型。

步骤3:设计控制器,常用的控制方法有PID控制、模糊控制、神经网络控制等。

步骤4:进行仿真分析,验证控制系统的性能和可行性。

步骤5:进行实验验证,对设计的控制器进行调试和优化。

步骤6:对系统进行性能评价,包括响应速度、稳态误差、动态误差等指标。

4. 结论:
基于动态模型的异步电动机调速系统设计可以提高电机的控制性能,并且可以根据实际需求进行优化。

在实际应用中,需要根据具体的负载要求选择合适的控制方法和控制器,以达到最佳的调速效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)忽略空间谐波,三相绕组对称,产生 的磁动势沿气隙按正弦规律分布。
(2)忽略磁路饱和,各绕组的自感和互感 都是恒定的。
(3)忽略铁心损耗。 (4)不考虑频率变化和温度变化对绕组电
阻的影响。
6.2 异步电动机的三相数学模型
图6-1 三相异步电动机的物理模型
定子三相绕组轴 线A、B、C在空间 是固定的。 转子绕组轴线a、 b、c随是转子旋 转的。 以A轴为参考坐 标轴,转子a轴和 定子A轴间的电角 度为空间角位移
i
r
ψs A B C T
is iA iB iC T
电力拖动自动控制系统 —运动控制系统
第6章
基于动态模型的异 步电动机调速系统
基于动态模型的异步电动机调速
从动态模型出发,分析异步电动机的转矩 和磁链控制规律,研究高性能异步电动机 的调速方案(矢量控制和直接转矩控制是 两种基于动态模型的高性能的交流电动机 调速系统)。
内容提要
异步电动机动态数学模型(6.1、6.2、 6.3、6.4)
自感
➢主磁通:由电机学可知,当对称三相绕组通以三 相对称交流电时,即在气隙内建立以同步转速1旋 转的磁场,该磁场的磁通称为主磁通。
➢主磁通的作用是实现机电能量的转换与传递, 交链于定子和转子绕组。 ➢漏磁通:除此之外,还在绕组端部、定子槽内建 立磁场,这种磁场的磁通只与绕组本身交链,称为 漏磁通。
6.1异步电动机动态数学模型的性质
基本工作原理: 定子绕组通交流电;产生旋转磁场, 切割转子绕组;感应产生电动势,转 子绕组流过电流;转子在安培力矩的 作用下转起来;转子绕组电流产生转 子主磁通,和定子主磁通合成构成气 隙磁通。
6.1异步电动机动态数学模型的性质
异步电动机变压变频调速时需要进行电压(或电 流)和频率的协调控制,有电压(或电流)和频 率两种独立的输入变量。
磁通的建立和转速的变化同时进行,因此输出变 量中,转速和磁通都是输出变量,两者存在严重 交叉耦合,电流乘磁通产生转矩,转速乘磁通 产生感应电动势,含两个变量的乘积,不能对磁 通单独控制,即使不考虑磁路饱和等因素,数学 模型也是非线性的。
6.1异步电动机动态数学模型的性质
异步电动机定子绕组空间对称,转子也 可等效为空间对称,各绕组间存在严重 的交叉耦合。
B
LBA
LBB
LBC
LBa
LBb
LBc
iB
Ca
LCA LaA
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
b
LbA
LbB
LbC
Lba
Lbb
Lbc
ib
c LcA LcB LcC Lca Lcb Lcc ic
或写成: ψ Li
异步电动机按转子磁链定向的矢量控制 系统(6.5)
异步电动机按定子磁链控制的直接转矩 控制系统(6.6)
直接转矩与矢量控制系统的比较(6.7)
6.1异步电动机动态数学模型的性质
问题1:机电能量是如何转换的?
电磁耦合是机电能量
转换的必要条件。
(适用于直流电机和
F
交流电机)
电流乘磁通产生转矩
自感
对于每一相绕来说,它所交链的磁通是 互感磁通(主磁通)与漏感磁通之和。
➢主磁通对应于定子、转子绕组间的互感Lms; ➢漏磁通对应的电感为定漏感Lls 、转子漏感Llr
定子各相自感
LAA LBB LCC Lms Lls
转子各相自感
Laa Lbb Lcc Lms Llr
互感
绕组之间的互感又分为两类:
①定子三相彼此之间和转子三相彼此之 间位置都是固定的,故互感为常值;
②定子任一相与转子任一相之间的相对 位置是变化的,互感是角位移的函数。
第一类:定子三相间或转子三相间互感
三相绕组轴线彼此在空间的相位差
2
3
在假定磁动势沿气隙按正弦规律分布的条件下:
互感
2
2 1
Lms cos 3 Lms cos( 3 ) 2 Lms
cos(
2
3
)
LAc
LcA
LBa
LaB
LCb
LbC
Lms
cos(
2
3
)
当定、转子两相绕组轴线重合时,两者之
间的互感值最大 Lms
图6-1 三相异步电动机的物理模型
1.磁链方程
A LAA LAB LAC LAa LAb LAc iA
B
LBA
LBB
LBC
LBa
LBb
LBc
iB
Ca
定子三相间或转子三相间互感
LAB
LBC
LCA
LBA
LCB
LAC
1 2
Lms
Lab
Lbc
Lca
Lba
Lcb
Lac
1 2
Lms
第二类:定、转子绕组间的互感
由于相互间位置的变化可分别表示为
LAa LaA LBb LbB LCc LcC Lms cos
LAb
LbA
LBc
LcB
LCa
LaC
Lms
LCA LaA
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
b
LbA
LbB
LbC
Lba
Lbb
Lbc
ib
c LcA LcB LcC Lca Lcb Lcc ic
磁链方程,用分块矩阵表示
ψs ψr
Lss Lrs
式中
Lsr is
Lrr
每个绕组都有各自的电磁惯性,再考虑 运动系统的机电惯性,转速与转角的积 分关系等,动态模型是一个高阶系统。
6.1异步电动机动态数学模型的性质
异步电动机的动态数学模型: 一个高阶、非线性、强耦合的多变量系统。
6.2 异步电动机的三相数学模型
在研究异步电动机数学模型时,以三相机 为例,并常作如下的假设:
转速乘磁通产生感应 电动势
直流电机特点:励磁绕组和电枢绕组相互 独立,忽略电枢反应或通过补偿绕组抵消 电枢反应,励磁和电枢各自产生磁动势空 间相差90度,无交叉耦合,通过励磁电流 控制磁通,保持励磁电流恒定时通过电枢 电流控制电磁转矩。
直流电机动态数学模型:一个输入-电枢电 压,一个输出-转速,可用单输入单输出的 线性系统描述。
变量 。
6.2.1 异步电动机三相动态模型的 数学表达式
异步电动机的动态模型由磁链方程、电压 方程、转矩方程和运动方程组成。
磁链方程
异步电动机每个绕组的磁链是它本身的自感磁链 和其它绕组对它的互感磁链之和,因此,六个绕 组的磁链可表达为:
A LAA LAB LAC LAa LAb LAc iA
相关文档
最新文档