ArcGIS地统计分析

合集下载

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解

利用ARCGIS进行地类计算与统计讲解ARCGIS是一款强大的地理信息系统软件,可以进行地类计算与统计。

地类计算与统计是对地表覆盖类型进行分类、计算和统计的过程,可以帮助我们了解地表覆盖的分布情况、变化趋势等。

在ARCGIS中,我们可以利用不同的工具和功能来进行地类计算与统计。

首先,我们需要准备一份具有地表覆盖类型信息的矢量数据。

这些数据可以是卫星遥感图像、航空影像等,或者是由人工标注的地表覆盖类型数据。

在ARCGIS中,可以将这些数据导入到地理数据库中,然后进行进一步分析。

一种常用的地类计算方法是栅格化。

即将矢量数据转化为栅格数据,使得每个栅格单元代表一种地表覆盖类型。

ARCGIS中有专门的工具可以进行栅格化操作。

我们可以选择适当的栅格分辨率来进行栅格化,以平衡地表覆盖类型的细节和计算效率。

在得到栅格数据后,我们可以利用栅格数据进行地类计算与统计。

ARCGIS提供了很多工具来进行地类计算,如栅格计算器、遥感分类工具等。

栅格计算器可以进行诸如加减乘除、逻辑运算、统计等操作,可以用来对不同地类进行运算和统计。

遥感分类工具可以通过训练样本或者其他分类方法将栅格数据分类为不同的地表覆盖类型。

地类计算与统计极大地依赖于分类结果的准确性。

为了提高分类精度,我们可以利用ARCGIS提供的功能进行后处理。

例如,可以利用空间滤波器对分类结果进行平滑处理,去除噪声和误分类。

还可以通过多时相的数据进行时序分析,了解地表覆盖类型的变化趋势和演化过程。

另外,ARCGIS还提供了丰富的可视化功能,可以帮助我们更直观地理解地表覆盖类型的分布情况。

我们可以通过色彩映射、分层渲染、饼图等方式将地表覆盖类型数据可视化,以便更好地观察和分析结果。

最后,ARCGIS还支持地类数据的导出和共享。

我们可以将地类计算与统计的结果导出为各种格式的数据,如栅格图像、矢量数据、统计表格等。

这样,我们可以将计算与统计结果与其他人共享,以便更多人能够参与到地表覆盖类型的分析和研究中。

ArcGIS 9 教程_第10章 地统计分析

ArcGIS 9 教程_第10章 地统计分析

第十章地统计分析地统计分析方法被广泛应用许多领域,已成为空间统计学的一个重要分支。

很长时间以来,地统计分析一直没能很好的和GIS分析模型紧密结合在一起,这成为GIS软件一大遗憾。

ArcGIS地统计分析模块在地统计学与GIS之间架起了一座桥梁,使得复杂的地统计方法可以在软件中轻易实现,体现了以人为本、可视化发展的趋势。

这种结合具有重要的开创性意义,通过测定预测表面的统计误差,GIS应用人员首次能够对预测表面的模型质量进行量化。

本章主要通过对地统计分析的概念介绍,逐步引导读者在ARCGIS中如何应用地统计分析解决实际问题。

10.1 地统计基础10.1.1 基本原理地统计(Geostatistics)又称地质统计,是在法国著名统计学家G. Matheron大量理论研究的基础上逐渐形成的一门新的统计学分支。

它是以区域化变量为基础,借助变异函数,研究既具有随机性又具有结构性,或空间相关性和依赖性的自然现象的一门科学。

凡是与空间数据的结构性和随机性,或空间相关性和依赖性,或空间格局与变异有关的研究,并对这些数据进行最优无偏内插估计,或模拟这些数据的离散性、波动性时,皆可应用地统计学的理论与方法。

地统计学与经典统计学的共同之处在于:它们都是在大量采样的基础上,通过对样本属性值的频率分布或均值、方差关系及其相应规则的分析,确定其空间分布格局与相关关系。

但地统计学区别于经典统计学的最大特点即是:地统计学既考虑到样本值的大小,又重视样本空间位置及样本间的距离,弥补了经典统计学忽略空间方位的缺陷。

地统计分析理论基础包括前提假设、区域化变量、变异分析和空间估值。

1.前提假设(1) 随机过程与经典统计学相同的是,地统计学也是在大量样本的基础上,通过分析样本间的规律,探索其分布规律,并进行预测。

地统计学认为研究区域中的所有样本值都是随机过程的结果,即所有样本值都不是相互独立的,它们是遵循一定的内在规律的。

因此地统计学就是要揭示这种内在规律,并进行预测。

arcgis学习--地统计分析

arcgis学习--地统计分析

ArcGIS软件应用实验7一、实验目的使用默认参数值创建模型来生成臭氧浓度表面的整个过程。

二、实验内容1、学习Geostatistical Analyst 扩展模块2、生成臭氧浓度表面三、实验步骤(一)准备工作1、激活地统计模块在主菜单上,单击自定义→扩展模块,选中GeostatisticalAnalyst复选框,单击关闭;图1-1扩展模块2、调出地统计工具条在主菜单上,单击自定义→工具条→GeostatisticalAnalyst,GeostatisticalAnalyst工具条即被添加到ArcMap会话中;图1-2工具条3、添加数据单击标准工具工具条上的添加数据按钮添加数据,按住CTRL键并选择O3_Sep06_3pm和ca_outline两个数据集,单击添加。

图1-3添加数据4、修改属性1、右键单击内容列表中的ca_outline图层图例(图层名称下面的框),然后单击无颜色,确保图层无颜色,只有范围;图1-4无颜色2、双击内容列表中O3_Sep06_3pm图层的名称。

打开图层属性对话框,在图层属性对话框中,单击符号系统选项卡。

在显示对话框中,○1单击数量,然后单击分级色彩;○2在字段框中,将值设置为OZONE;○3选择“黑色到白色”色带,以便这些点可以在本教程将要创建的颜色表面之上凸出来;符号系统对话框应如下所示:图1-5分级符号3、经过属性修改后,图层如下:图1-6结果(二)使用默认选项创建表面使用默认GeostatisticalAnalyst设置创建(插值)臭氧浓度表面。

臭氧点数据集(O3_Sep06_3pm)将用作输入数据集,并采用普通克里金法对值未知的位置处插入臭氧值。

在一系列对话框中单击下一步来接受默认设置。

1、地统计分析对话框单击GeostatisticalAnalyst工具条上的GeostatisticalAnalyst箭头,然后单击地统计向导,将弹出地统计向导对话框;图2-1地统计工具条地统计向导对话框,在方法列表框中,单击克里金法/协同克里金法。

ArcGIS地统计分析报告

ArcGIS地统计分析报告

实验四ArCGIS地统计分析一、实习容1:使用缺省参数创建一个表面2:数据检查3:制作臭氧浓度图4:模型比较5:制作超岀某一临界值的臭氧概率图二、实习过程练习1:利用缺省参数创建一个表面1・添加数据并调整显示设置:當选择丨显示:符号系统自义查谊I I标i∏⅛接和关联I时间I HTML弹出窗显示⑶ 要芽类别数里〕分级色彩r分级符号比例符号图丧多个匡性值0: OZONE ▼归一化(N) 无色帝(B Jiai符号范圉Im |O .021 MX)- .037000 .021 σ∞..037000o .037M)I - .052000 .037031 - .0520000 052001 - 070000 052W1 - .070000◎.070001-.091(XX) .07(XM1 -.091000©.091001-.121000 .ωιωι-.121000侯用颜色表示藪里。

亠√∕1T-Fx分类官然同飾点分级法(Jenk8) 类⑸ 5 ▼[分类©..・2 •使用默认选项创建表面鹹计向导.克里金法步琛4洪6・半变异幽协方差建模) ⊂□ I Ξ∣∣f ⅛⅜]一模型•已丢弃 + □Ψffi.¾ (Meg •),h ・10吒模型:δTδδΓ1451*Nugget÷l. 1451*Stable (1013D0,2) 协万差 H 视≡S≡ 显示.・.False 显示… False 显示点已丢・・・田导出视圉设實B 常规优化複型检査二元分布 FaISe变里 协方差日複型块金值 启用 TrUe 计算块金值 TrUe 块金值 0.001145128测里误差100%B 複型#1类型 稳定的参数 21主交程 101303.2 各向异性 FaISe 计箕偏基台值 TrUe 偏基台值1.145128S 複型X2 S 複型03□步长步长犬小16838.5 1□> < 更多■ 克里金法是一种依赖于测里戻差模型买现精硝或平看命 值的插值法。

ArcGIS地统计分析

ArcGIS地统计分析

探索性数据分析需要借助于ArcGIS的探索性数据分析
工具。
2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加
方法如下。
(1)开启地统计分析扩展模块:单击ArcMAP界面上 “Customize”︱“Extensions”命令,弹出“Extensions”
Geostatistical Analysis 地统计空间分析
2014/10/20
主要内容
1. ArcGIS地统计分析模块介绍 2. 探索性数据分析工具 3. 探索性数据分析
4. 空间插值技术 5. 实例——绘制臭氧浓度图 6. 小结
1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical
局部性插值方法。全局性插值方法以整个研究区的样点数据
集为基础来计算预测值,如全局多项式;局部性插值方法则 使用一个大研究区域内较小的空间区域内的已知样点来计算 预测值,如反距离权重法、局部多项式、径向基函数、核平 滑和扩散核。
4.1.1 反距离加权插值
反距离加权插值法的基本原理在于,一般来讲物体离得 近,它们的性质就越相似。反之,离得越远则相似性越小。 反距离加权插值法以插值点,与样本点间的距离为权重进行 加权平均,离插值点越近的样本点赋予的权重越大。
提供多种计算面值的方法:
简单 熵 平均值 中值 众数 标准差 聚类 四分位距
2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对
的理论半变异值和协方差,并把它们用两点间距离的函数 来表示,用此函数作图来表示。

最新ArcGIS地统计分析精编

最新ArcGIS地统计分析精编

3.Trend Analysis(趋势分析)
全局趋势分析可以通过Trend Analysis(趋势分析)工 具来实现。地物的空间趋势反映了空间物体在空间区域 上变化的主体特征。 形成以数据某一属性值为高度的三维透视图,从而帮助 用户从不同视角分析采样数据集的全局趋势。 样点的位置由X、Y和Z三个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视 图中的每个黑线就代表了样点的位置和高度,位置就是 样点X、Y平面坐标,高度即样点数据的某一属性值的 大小。
5.Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对的 半变异值和协方差,并把它们用两点间距离的函数来表 示,用此函数作图来表示。
描述空间自相物越相似。如果存在空间自相关,那么该变量本身 存在某种数学模型。半变异/协方差函数云图就是这种关 系的定量化表示。 半变异函数有三个表征空间变异特征的参数:基台值 (still)、块金值(nugget)和变程(range)
1.Histogram(直方图)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的比例,并通 过柱状图表现出来。直方图可以直观的反映采样数据 分布特征与规律。
2.QQPlot分布图
QQPlot分布图是可以将现有数据的分布与标准 正态分布对比,从而来分析和评价现有数据。 如果数据图形越接近一条直线,则它越接近于 服从正态分布。 1.Normal QQPlot分布图(正态QQPlot分布图) 2.General QQPlot分布图(普通QQPlot分布图)
插值精度评价方法
交叉验证: 假设其中一个站点的要素值未知,通过周围n-1个站点的值来估算,然后轮 流改变未知站点,最后计算所有站点实际观测值与估计值的各项误差。 ArcGIS地统计模块中的各种插值方法,采用交叉验证的方式计算出各种误差, 符合以下标准的模型最优: 误差平均值(Mean)、误差标准平均值(Mean Standardized)最接近于 0 ; 均方根预测误差( Root-Mean-Square)最小 ; 平均标准误差( Average Mean Error)最接近于均方根预测误差(RootMean-Square); 标准均方根预测误差(Root-Mean-Square Standardized)最接近于1。

ArcGIS的地统计分析、空间分析、三维数据分析实验报告

ArcGIS的地统计分析、空间分析、三维数据分析实验报告

地理空间信息软件应用Geospatial information software applications大连理工大学城市学院实验一、三维数据分析实验目的:首先了解三维数据管理的的概念,对三维数据有一定的了解及认知后,学习对三维数据的管理、分析与应用,掌握三维数据分析运用要领。

实验内容:三维数据、三维数据的获取、3D要素分析;表面创建、表面管理;栅格表面分析、Terrain和TIN表面分析、功能性表面;ArcScene的工具条、二维数据的三维显示、三维动画。

实验过程:1.三维数据⑴三维数据是在二维数据的基础上添加了一个维度(Z坐标),用来表示特定表面位置的值。

三维数据有四种基本类型:三维点数据、三维线数据、表面数据和体数据。

在Arcgis中,把三维数据分为3D要素数据和表面数据。

⑵三维数据的获取:三维点、线数据的生成常见方法分为创建包含Z值的要素类,转换二维要素类的属性、插值shape三种;多面体数据的生成。

①三维点、线数据的生成-----创建包含Z值的要素类启动ArcCatalog,右击要创建三维要素的文件夹,在弹出的菜单栏中,选择“新建”----“Shapefile”,打开创建新Shapefile对话框。

在“名称”文本框中输入要素名称,在类型的下拉框选择面,单机编辑定义空间参考,选择WGS1984坐标系,点击确定。

图一创建三维空间坐标②三维点、线数据的生成-----转换二维要素类的属性在ArcScene中打开ArcToolbox,双击“3D Analyst工具”----“3D要素”----“依据属性实现要素转3D”,“打开依据属性实现要素转3D”对话框,输入要素设置为“point”,输出要素类设置为“point3d”,高度字段设置为“height”。

确定,得到三维点数据。

图二依据属性实现要素转3D③多面体数据的生成启动ArcScene,在右击文件夹,单机“新建”,选择“文件地理数据库”,创建“文件地理数据库”,命名为“New File Geodatabase”。

ArcGIS地统计分析总结

ArcGIS地统计分析总结

ArcGIS地统计分析总结ArcGIS地统计分析(Geostatistical Analyst) 1 介绍1.1为什么使用ArcGIS Geostatistical Analyst人为判断总是会遗漏某些重要信息,同时也会无中生有。

而ArcGIS GeostatisticalAnalyst提供客观的数据驱动方法,定量预测数据变化趋势和从空间数据中发掘特征模型。

如果数据不够精确或者模型不够准确,这样势必影响输出的地图和从中得到的结论。

而ArcGIS Geostatistical Analyst可以提供一个概率框架,来定量计算生成数据面时的不确定性。

元统计分析方法利用属性数据之间的相关来推断不同变量之间的联系,ArcGIS Geostatistical Analyst可以联合各种数据来做更精确的预测。

ArcGIS GeostatisticalAnalyst可以有效地推测一些空间现象的未知部分,因此,对采样计划的设计和优化非常关键。

1.2使用ArcGIS Geostatistical Analyst的各个领域这个模块的应用对象不计其数,可以使用这个工具包开发任何一种地理数据集(比如坐标和属性),下面列出几个成功应用ArcGIS Geostatistical Analyst的典型领域:气象学家和统计学家应用ArcGIS Geostatistical Analyst来进行气象数据分析。

采矿行业广泛的应用ArcGIS Geostatistical Analyst,涉及从最初的地质特征研究到产量控制的各个阶段。

石油工业成功的应用ArcGIS Geostatistical Analyst,来分析包括地震数据和油井数据集成的空间数据,并且用来研究物理特性和地震属性之间的相关关系。

在环境问题的研究中,ArcGIS Geostatistical Analyst的应用提供了一个分析空气、土壤和地下水污染高效和一致的模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.Crosscovariance Cloud (正交协方差函数云)
正交协方差函数云表示的是两个数据集中所有 样点对的理论正交协方差,用于多数据集协变 分析。 通过分析多因素(数据集)关联特征,在地统 计空间分析中可以有效利用这种相关特征增强 建模效果,如协同克里格插值分析。

二、Geostatistical Wizard 地统计分析向导(插值)

ArcGIS地统计分析功能是借助于ArcGIS地统计分析 模块(ArcGIS Geostatistical Analyst)来实现的。

模块介绍
(1)打开地统计分析扩展模块:单击ArcMAP界面上 “工具” ︱“扩展”命令,弹出“扩展”对话框,选 中Geostatistical Analyst的复选框。 (2)添加Geostatistical Analyst工具条。选择ArcMAP界 面上的“视图”菜单︱ “工具条”命令,确保 Geostatistical Analyst工具条被选中。之后,在ArcMAP 工具栏将出现Geostatistical Analyst工具条。
ArcGIS地统计分析
地统计(Geostatistics)又称地质统计,也可以称为空 间统计分析,其是统计学的一个分支。地统计学是以 区域化变量理论为基础,以变异函数(variogram)为 基本工具来研究分布于空间,并呈现出一定的随机性 和结构性的自然现象的科学。

区域化变量是由某一区域或范围内的不同空间位置所 取的不同数值构成的变量,大部分自然地理要素都属 于区域化变量,如气温、降水等等。
(3)利用Tools中的Add XY Data功能,将气象站 Excel数据表导入ArcGIS,然后Export Data,输出 为点图层。为了提高精度,加入陕西省周边临近站点, 查看陕西省内和周边站点的分布情况,选择60 km作 为缓冲距离,对省界生成缓冲区,保留省内(96个) 和缓冲区范围内(52个)共148个站点

Байду номын сангаас
5.Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对 的半变异值和协方差,并把它们用两点间距离的函数来 表示,用此函数作图来表示。

描述空间自相关及方向变异
大部分的地理现象都具有空间相关特性,即距离越近的 两事物越相似。如果存在空间自相关,那么该变量本身 存在某种数学模型。半变异/协方差函数云图就是这种关 系的定量化表示。 半变异函数有三个表征空间变异特征的参数:基台值 (still)、块金值(nugget)和变程(range)

1.Histogram(直方图)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的比例,并通 过柱状图表现出来。直方图可以直观的反映采样数据 分布特征与规律。

2.QQPlot分布图
QQPlot分布图是可以将现有数据的分布与标准 正态分布对比,从而来分析和评价现有数据。 如果数据图形越接近一条直线,则它越接近于 服从正态分布。 1.Normal QQPlot分布图(正态QQPlot分布图) 2.General QQPlot分布图(普通QQPlot分布图)
插值方法分类
插值方法按其实现的数学原理可以分为两类,一类是确 定性插值方法;另一类是地统计插值,也就是克里格插 值。 确定性插值方法以研究区域内部的相似性(如反距离权 重法)、或者以平滑度为基础(如径向基函数法)由已 知样点来创建表面。

反距离权重法
反距离权重法以插值点与样本点间的距离为权 重进行加权平均,离插值点越近的样本点赋予的 权重越大。
误差
未去除趋势
去除趋势
Mean
-1.79
-1.29
Root-Mean-Square
51.48
51.37
Average Standard Error
72.82
53.98
Mean Standardized
-0.00993
-0.00785
RMSSE
0.6816
0.9217
结果:去除了南北方向的一阶线性趋势后,克里 格法和协同克里格法的各项误差明显减小 ,插值精度提高了。

在Geostatistical Analyst中打开Geostatistical Wizard对话框,进行插值方法的选择。在Arc GIS中提供了反距离加权法(IDW)、全局多项 式法(GPI)、局部多项式法(LPI)、径向基函 数法(RBF)、克里格(Kriging)和协同克里格 (Co-Kriging)几种插值方法。
克里格方法与反距离权插值方法类似的是,两 者都通过对已知样本点赋权重来求得未知样点 的值。不同的是,在赋权重时,反距离权插值 方法只考虑已知样本点与未知样点的距离远近, 而克里格方法不仅考虑距离,而且通过变异函 数和结构分析,考虑了已知样本点的空间分布 及与未知样点的空间方位关系。

普通克里格(Ordinary Kriging)是区域化变量 的线性估计,它假设数据变化成正态分布,认 为区域化变量Z的期望值是未知的。插值过程类 似于加权滑动平均,权重值的确定来自于空间 数据分析。 简单克里格是区域化变量的线性估计,它假设 数据变化成正态分布,认为区域化变量Z的期望 值为已知的某一常数。

3.Trend Analysis(趋势分析)
全局趋势分析可以通过Trend Analysis(趋势分析)工 具来实现。地物的空间趋势反映了空间物体在空间区域 上变化的主体特征。

形成以数据某一属性值为高度的三维透视图,从而帮 助用户从不同视角分析采样数据集的全局趋势。 样点的位置由X、Y和Z三个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视 图中的每个黑线就代表了样点的位置和高度,位置就是 样点X、Y平面坐标,高度即样点数据的某一属性值的 大小。
地统计插值
地统计插值,也就是克里格插值。克里格方法 (Kriging)是以变异函数理论为基础,在有限 区域内对区域化变量进行无偏最优估计的一种 方法,是地统计学的主要内容之一。 ,包含普通克里格、简单克里格、泛克里格、 指示克里格、概率克里格、析取克里格等方法。

1、创建预测图(Prediction Map) 2、创建分位数图(Quantile Map) 3、创建概率图(Probability Map) 4、创建标准误差预测图(Prediction Standard Error Map)
一、Explore Data(探索性数据分析)
探索性数据分析是为了让用户更深入地认识研究对象, 从而对与其数据相关的问题做出更好的分析与决策。

探索性数据分析可以确定数据属性,探测数据分布、 查找异常值、分析全局变化趋势、研究空间自相关和理 解多种数据集之间相关性。

在地统计分析中,克里格插值方法建立在一定的 假设基础上。普通克里格法、简单克里格法和泛克 里格法等都假设数据服从正态分布。如果数据不服 从正态分布,需要进行一定的数据变换,使其服从 正态分布。正态分布的检验可以通过直方图和正态 QQPlot分布图完成。

插值精度评价方法
交叉验证: 假设其中一个站点的要素值未知,通过周围n-1个站点的值来估算,然后轮 流改变未知站点,最后计算所有站点实际观测值与估计值的各项误差。 ArcGIS地统计模块中的各种插值方法,采用交叉验证的方式计算出各种误差, 符合以下标准的模型最优: 误差平均值(Mean)、误差标准平均值(Mean Standardized)最接近于 0 ; 均方根预测误差( Root-Mean-Square)最小 ; 平均标准误差( Average Mean Error)最接近于均方根预测误差(RootMean-Square); 标准均方根预测误差(Root-Mean-Square Standardized)最接近于1。

通常一个表面主要由两部分组成: 确定的全局趋势和随机的短程变异。 在创建表面时剔除全局趋势的影响,可以更准确地模拟短程随机变异, 对短程变异成分进行统计分析。全局趋势剔除后所进行的分析将不再受 其影响,半变异函数就可以更好地模拟数据点间的空间自相关和随机性, 而不用考虑数据中存在的趋势(空间异相关)。在创建最终表面之前, 该趋势还将自动添加回来,因此能够生成一个更加精确的表面。
选择半变异函数模型及参数设置
交叉验证结果
协同克里格插值
当同一空间位置样点的多个属性之间存在某个 属性的空间分布与其它属性密切相关,可以考 虑选用协同克里格法。协同克里格法把区域化 变量的最佳估值方法,从单一属性发展到两个 以上的协同区域化属性。

陕西省降水插值结果预测图(Prediction Map)


在东西方向,数据点分布较为分散,拟合曲线(绿线)接 近水平,没有明显的趋势;而在南北方向,数据点相对集 中,拟合曲线(蓝线)倾斜,显示出很强的线性趋势,这 个趋势是降水量变化的全局趋势,即纬度增加,降雨量减 少。
4.Voronoi Map
Voronoi地图(泰森多边形)是由样点以及样点周围的 一系列多边形所组成。多边形生成的要求就是多边形内 任何位置距这一样点的距离都比到其他样点的距离要近。
克里格法
协同克里格法
结果比较
三、Create Subsets生成数据子集
相关文档
最新文档