风机选型方案

合集下载

风机如何选型

风机如何选型

1、风机如何选型:风机的选型一般按下述步骤进行:1、计算确定隧道内所需通风量:2、计算所需总推力ItIt=△P×At(N)其中,At:隧道横截面积(m2)△P:各项阻力之和(Pa);一般应计及下列4项:1)隧道进风口阻力与出风口阻力;2)隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力;3)交通阻力;4)隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力;3、确定风机布置的总体方案根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T。

满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件:1)n台风机并列时,其中心线横向间距应大于2倍风机直径。

2)m组(台)风机串列时,纵向间距应大于10倍隧道直径。

4、单台风机参数的确定射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差(动量等于气流质量流量与流速的乖积),在风机测试条件下,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力:理论推力=ρ×Q×V=ρQ2/A(N)ρ:空气密度(kg/m3)Q:风量(m3/s)A:风机出口面积(m2)试验台架量测推力T1一般为理论推力的0.85-1.05倍。

取决于流场分布与风机内部及消声器的结构。

风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的可用推力T,这是因为风机吊装在隧道中时会受到隧道中时会受到隧道中气流速度产生的卸荷作用的影响(柯达恩效应),可用推力减少。

影响的程度可用系数K1和K2来表示和计算T=T1×K1×K2 或 T1=T(K1×K2)2、风机噪音产生因素噪声包括空气动力性噪声空气动力性噪声、机械噪声、电磁噪声以及结构噪声等。

空气动力性噪声是由于气体非稳定流动,即气流的扰动,气体与气体及气体与物体相互作用产生的噪声。

风机基础选型与桩基础设计优化

风机基础选型与桩基础设计优化

风机基础选型与桩基础设计优化一、风机基础选型1. 针对不同地质条件进行选择风机基础可分为浅基础和深基础两大类。

在选择风机基础时,首先要考虑的是风电场所在地的地质条件。

对于土质较为坚硬的地方,可以选择浅基础,比如钢筋混凝土筒基。

而对于土质较为松软的地方,就需要考虑使用深基础了,如桩基础或复合基础。

对于不同地质条件,需要根据实际情况做出不同的选择。

2. 考虑风机尺寸和高度风机的尺寸和高度也是选型的重要因素。

在选择基础类型时,要考虑风机叶片的长度、塔筒的高度和重量,以及所需的基础尺寸和深度等因素。

因为不同的风机尺寸和高度会对基础的选择产生影响,所以在选型时需要充分考虑这些因素。

3. 考虑经济性和可行性除了考虑地质条件和风机尺寸之外,还需要考虑基础的经济性和可行性。

在选型时,需要综合考虑建设成本、维护成本、使用寿命等因素,选择最经济、最可行的基础类型。

二、桩基础设计优化1. 确定桩基础类型在风机基础选型中,如果选择了桩基础,则需要对桩基础进行设计优化。

桩基础可以分为钻孔灌注桩、摩擦桩、承台桩等不同类型。

在设计优化时,要充分考虑风机基础的受力情况、桩的材料和长度、桩头的设计等因素,以确保桩基础的安全性和稳定性。

2. 选择合适的桩材料桩的材料选择对桩基础的设计非常重要。

一般来说,常见的桩材料有钢筋混凝土、钢桩等。

在选择桩材料时,要考虑地质条件、荷载要求、使用寿命等因素,选择合适的桩材料,以保证桩基础的承载能力和稳定性。

3. 合理设计桩的长度和直径在进行桩基础设计时,需要合理确定桩的长度和直径。

桩的长度和直径直接影响着桩的承载能力和稳定性。

在设计优化中,需要综合考虑风机基础的荷载要求、地质情况、桩材料等因素,合理确定桩的长度和直径,以满足项目的需求。

4. 考虑建设工艺和施工工艺在桩基础设计优化中,还需要考虑建设工艺和施工工艺。

桩基础的施工过程对于桩的质量和工程的安全性是非常重要的。

在设计优化中,需要充分考虑建设工艺和施工工艺,确保桩基础的质量和安全。

高压风机选型的方法

高压风机选型的方法

高压风机选型的方法高压风机是一种特别紧要的工业设备,它能够将气体压缩成高压并输送到工业生产线上进行使用,是大多数工厂和企业必备的设备之一、但是面对市场上不同类型、不同品牌、不同规格的高压风机,如何选择适合本身的高压风机呢?以下是一些选型时需要考虑的因素及方法。

一、参数选型选型的第一步是理解所需的气体参数,依据气体的种类、流量、压力等参数选取适合的高压风机。

常见的气体种类有空气、氮气、氧气、液氧、蒸汽等等,需要依据实际生产用途选择。

流量和压力则是特别紧要的参数,它们通常可以通过生产需要的工艺参数及设备参数来确定。

选型时需要依据实际使用情况选择参数,同时还需要考虑到泵的使用寿命和牢靠性等因素。

二、使用环境选型高压风机在不同使用环境下效果和性能都有所不同,因此选型时需要考虑到使用环境。

比如,假如使用在高温环境中,需要选择能够适应高温的高压风机;假如使用在潮湿环境中,需要选择防潮的高压风机;假如使用在爆炸不安全区域,需要选择防爆的高压风机。

因此,选型时需要了解使用场景的环境情况,选择适合的高压风机。

三、质量与品牌选型高压风机是一个特别紧要的工业设备,因此选购时需要考虑到质量与品牌。

质量是保证使用寿命和安全性的关键,需要选择信誉良好的厂家和优质的产品。

同时,品牌的影响力和口碑也是选型时需要考虑到的因素之一、在选型时需要选择口碑良好的品牌,这样能够保证设备的质量和稳定性。

四、高压风机类型选择高压风机的类型也是选型时需要考虑到的一个因素。

不同类型的高压风机有不同的特点和适用场景。

比如,离心风机适合输送大气量、低压力、中温度的气体;轴流风机适合输送顺流气流,而且处理过程中没有旋涡或波动,对气体流量掌控精度要求较高的应用场景;柜式风机则适用于空气净化、高压输送和工厂现场的气体蓄压等多种场景。

五、能源效率选型高压风机的使用会产生很高的成本,尤其是能源成本,因此在选型时需要考虑能源效率。

一些高效省电的高压风机在使用中可以节省能源成本,同时由于使用寿命更长,也可以削减设备更换和维护和修理的成本。

风机选型需要注意事项

风机选型需要注意事项

风机选型需要注意事项影响风机选型的五要素:1.风量、风压2.使用工况3.排送气体成分4.安装位置、安装形式5.配件、噪音等其他要求。

一.风机风量的定义为:风速V与风道截面积F的乘积。

大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量。

风机数量的确定需要根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。

计算公式:N=V×n/Q 其中:N——风机数量(台);V——场地体积(m3);n——换气次数(次/时);Q——所选风机型号的单台风量(m3/h)。

风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。

排风侧尽量不靠近附近建筑物,以防影响附近住户。

风机风压:是指这么多风量输送过程中要克服的阻力,指压升。

不过国内风机选型一般按全压,国外一般按压升。

机外余压=风机全压-风柜各处理段阻力,送回风管一般按7~8Pa/m,90度弯头按10Pa/个来计算阻力。

经验公式:机外余压=风机全压-各处理段阻力风机功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)全压=静压+动压。

风机马达功率(W)=风机功率(W)*130%=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)*130%二.不同场合下,风机的选型有怎样的差异?1.需要排热或排热蒸汽,应尽量优先设置屋顶排风机。

2.需要取暖、降温或送新风时,应尽量让暖气流或冷气流流经工作人员所在位置,所以多选用管道风机或边墙风机。

3.消防排烟,应优先采取屋顶风机或吊装的风管,故多选用管道风机。

注意:尽量利用自然风气流(应合理设置风机位置和形式)特定场合风机选型1.仓库通风(1)看仓储货品是否是易燃易爆货品,如:油漆仓库等,必须选择防爆系列风机。

(2)看噪声要求高低,可以选择屋顶风机或环保式离心风机。

风机选型与技术应用

风机选型与技术应用

风机选型与技术应用常用的风机参数(性能指标):风量:风机每分钟输送的空气立方数,SI:m³/h。

全压:气体所具有的全部能量,等于动压+静压,SI:Pa。

动压:将气体从零速度加速至某一速度所需要的压力,SI:Pa 。

静压:流体某点的绝对压力与大气压力的差值,SI:Pa 。

风机转速:风机叶轮每分钟转过的转数,SI:RPM;轴功率:电动机除去外部损耗因素,传递到风机轴上的实际功率,通常认为是风机实际所需功率,SI:KW 。

噪音:风机在正常运转过程中气动噪音和机械噪音叠加所形成的噪音;大多数厂家公布A记权噪音(dBA),1.5m处。

SI:dBA。

全压效率:风量×全压/轴功率/1000/3600×100%电源:380/50/3,220/50/1,220/50/3,690/50/3等等。

出口风速:风机出口截面积的风速,控制出口风速可间接控制噪音。

SI:m/s如何看懂风机曲线:根据样本选型:风机种类和型号甚多,应该如何选取?风机按照叶轮形式分类,可分为离心风机,轴流风机、混流风机、贯流风机等等;风机按照安装位置或按照安装形式可分为:屋顶风机、边墙风机、管道风机、风机箱等等;风机按照用途可分为:排风机、送风机、过滤风机、除尘风机、排烟风机等等这些分类还可组合,如屋顶离心排风机,边墙轴流排风机、排烟混流风机等。

最主要原则:合理组织气流,完成所需功能。

1:尽量利用自然形成的气流举例1:某热处理车间,面积4000㎡,厂房高约6m,无空调,夏季车间内最高平均温度可达50℃,为降低车间内温度,使工作人员感觉舒适,采用机械送排风方式引入外界冷风。

第一次,采用10台边墙排风机,百叶送风形式,但百叶安装位置较高(4m左右)。

使用后,车间地表温度降低5℃,5.5米行车处,温度降低10℃,工作人员对其效果不太满意。

后改造,原风机位置及台数均不变,加大送风百叶面积,将百叶高度降低至距地面0.5m处。

改造后,车间内送排风总量基本不变,但车间内地表温度降低9℃,工作人员认为效果有明显改善。

风力发电机组选型方案选择

风力发电机组选型方案选择
速,平均风功率密度如下表
机型选择方法
不同高度的年平均风速、平均风功率密度表 轮毂高度 年平均风速 平均风功率密度 50年一遇极大风速
60m 7.27m/s 372W/m2 47.4m/s
61.5m 7.31m/s 377W/m2 47.4m/s
65m 7.32m/s 380W/m2 47.4m/s
理论产量的修正
理论产量是理想条件下的产量,计算实际产量时需对理论产
量进行修正
修正时考虑的因素: 1.风机排布的尾流影响;
2.空气湍流强的影响
3.空气密度对产量的影响; 4.风电机组可利用率的影响;
5.风电机组叶片污染对气动性能的影响场内输变电线路的线
损及场用电
实际上网电量计算
综合折减系数=空气密度折减系数×(1-尾流折减
系数)×(1-湍流折减系数) ×(1-叶片污染折
减系数)× (1-场用电及线损率)×风电机组可利 用率 实际产量=理论产量×综合折减系数
机型选择方法
5.根据市场成熟的商品化风电机组技术规格,结合风电 机组本地化率的要求进行选择。
对单机容量为850KW以上的风电机组进行初选。初选
的机型有Vestas公司的V52/850KW、华锐风电科技公 司的SL1500KW、东方电汽的FD77A /1500KW、湘潭 电机的Z72/2000KW风机。机型特征参数如下:
机型选择方法
该风场风功率等级为3级,风能资源丰富,年有效风
速(3.0m/s-20.0m/s)时数为7893h,占全年的90.1%,
11m/s-20m/s时数为1663h,占全年的18.65%,<3m/s的 时段占全年的8.80%,>20m/s的时段占全年的0.086%,有 效风速时段长,无效风速时段较短,全年均可发电,无破坏性 风速。

风机选型说明

风机选型说明

风机选型设计计算一、好氧池风量计算:1、需氧量计算O2=a’QS r+ b’VX v式中:O2为好氧池内生物总需氧量,kg/d;a’,b’为制药废水取值经验系数;a’取0.52,b’取0.1(参照金达威制药污水工程);Q为日处理污水总量,m3/d;S r为去除BOD的浓度,mg/l;V为好氧池总容积,m3;X v为好氧池MLVSS,mg/l;根据设计方案Q取500m3/d,由于原水BOD数据未知,保险考虑带入COD的去除浓度,即Sr=3000-300=2700mg/l;V=((3+3+3)*9*2)*5=810m3,,X v取值3000mg/l;带入数据计算:O2=0.52*500*2700+0.1*810*3000=945000g2、风机供风量计算Q f= O2/(0.28*ε)式中:Q f为好氧池风机的供风量,kg/d;ε为好氧池氧的实际利用率;ε=12%~20%,本次设计ε取值12%0.28为标准状态下每立方米空气中的含氧量,kg/m3带入数据计算:O f=945000/(280*0.12)=28125m3/d=19.53 m3/min二、调节池曝气搅拌风量计算:根据经验一般调节池曝气风量根据调节池曝气面积计算,设计参数为 1.5~3m3/m2.h,具体取值参数根据废水粘度决定,本次设计取值为1.5m3/m2.h;调节池曝气面积为5*20=100m2,因此调节池曝气风量Q=1.5*100/60=2.5m3/min三、MBR膜池曝气风量计算:1、微生物作用需要风量O2=a’QS r+ b’VX v式中:O2为好氧池内生物总需氧量,kg/d;a’,b’为制药废水取值经验系数;a’取0.52,b’取0.1Q为日处理污水总量,m3/d;S r为去除BOD的浓度,mg/l;V为好氧池总容积,m3;X v为好氧池MLVSS,mg/l;带入数据计算:O2=0.52*500*(300-150)+0.1*(6*9*5)*4000=147000gO f=147000/(280*0.12)=4735m3/d=3.0m3/min2、MBR膜冲洗振动风量计算平板膜厂家提供的MBR抖动风量设计量Q=膜片数量×12×1.2L/min;本次方案设计采用SINAP-150型号膜组件,总膜片数量为960片,Q=960×12×1.2=13.8m3/min由于MBR膜池抖动风量大于微生物生化需氧量故MBR膜池曝气风机选型时以MBR膜池抖动风量计算。

除尘风机选型计算

除尘风机选型计算

除尘风机选型计算一、风机需求烟梗风送除尘点除尘风量为11500m³/h,风送管道设计风速25m/s左右,除尘管道设计风速20m/s左右;烟梗除轻杂除尘风量为5000m³/h,除尘管道设计风速18m/s左右;四个烟梗转接除尘点除尘风量为8000m³/h,每个点除尘为风量为2000m³/h,除尘管道设计风速18m/s左右。

整个烟梗投料总除尘风量为24500m³/h。

二、风机选型计算1、方案一风机选型计算1.1设备选型目前方案设计为烟梗风送除尘采用一台除尘器,设备选型为JH2-12C,处理风量为8000-12000m³/h。

烟梗除轻杂除尘及四个烟梗转接除尘点共用一台除尘器,设备选型为JH2-18C,处理风量为13500-16500m³/h。

1.2风机选型计算1.2.1烟梗风送除尘风机选型计算1.2.1.1参数计算由除尘方案布局图可知:烟梗风送除尘压损包括:除尘器、落料器箱、风送管道、除尘管道及吸口及其他压损及组成。

主机设备除尘器(除尘器)压损P1=1500Pa根据我们公司落料器参数,落料器设备阻力P2=1200Pa吸口及其他压损P3=500Pa除尘管道压力损失△P:气体在圆管内流动时,在直线管段产生摩擦阻力;在阀门、三通、弯头、变径等出产生局部阻力,这两种阻力导致气体压力损耗。

因此管道的压力损失为管道的直线管段摩擦阻力和局部阻力之和。

即:式中:△P---管道压力损失,Pa;△P1---直线管段摩擦阻力,Pa;△P2---管道局部,Pa。

a直线管段摩擦阻力计算公式:式中:△P1---直线管段摩擦阻力,Pa;λ---管道摩擦阻力系数,参考常用管道摩擦阻力系数表可查;--直线管段长度,m;d---管道内径,m;ρ---空气密度,Kg/m³;v---管道内流速,m/s;g---重力加速度,m/s²;b局部阻力计算公式:式中:△P2---局部阻力,Pa;ζ---局部阻力系数,参考管道附件局部阻力系数表可查;管道压损需要根据压损最大的一路直管进行计算,根据方案图:根据上述公式计算各段管道压损经过计算管道系统压损合计△P=2670Pa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主扇风机选型方案
**煤矿为低瓦斯矿井,采用中央并列式通风,矿井需风量Q=8226m 3/min,通风容易时期负压h min =2000Pa,通风困难时期负压h min = 4000Pa,,矿井自然负压h z =±50Pa 。

试选择对旋轴流通风机。

1、计算风机必需产生的风量和静压
(1)通风机必需产生的风量为
Q f =K L Q=1.05×8226=6825m 3/min=108.33m 3/s
Q f ――通风机必需风量(m 3/s );
Q ――矿井通风计算风量(m 3/s );
K ――外部漏风系数,专用风井取1.05。

(2) 若取风硐等附加阻力损失为150Pa 则通风机的静风压应满足以下两个数值:
通风容易时期 z min min h h h H zh s -+=
a P 2900501502800h smin =-+=
通风困难时期z max ax h h h H zh sm ++=
a P h 4200501504000smin =++=
式中 m h ――通风机通风容易时期必需风压(Pa ); min s h ――矿井通风容易时期计算风压(Pa ); zh h ――通风装置及风道阻力损失,取100~200Pa ,当工况流量接近风机工业利用最大风量时取较大值;反之取较小值。

若设备中有消音器,另加50~80Pa ,取150Pa ;
z h ――矿井自然风压(Pa )。

max h ――通风机通风困难时期必需风压(Pa );
max s h ――矿井通风困难时期计算风压(Pa);
2、选择通风机型号和台数
根据计算得到的通风机必需产生的风量,以及通风容易时期和通风困难时期的风压,在通风机产品中选择合适的通风机。

可选择FBCDZ-6-№22B/2×355Kw,防爆对旋轴流式通风机2台,1台工作,
一台备用。

风机转速980r/min.
3、确定通风机工况点
(1)管网阻力系数 通风容易时期:1278.096
.143210022j min 1===Q H R s 通风容易时期等效网路特性方程式h=0.1278Q 2
通风困难时期: 2386.033
.108280022j ax 2===Q H R sm 通风困难时期等效网路特性方程式h=0.1875Q 2
(2)作工况图。

将h=R 1Q 2和h=R 2Q 2曲线绘于FBCDZ-6-№22B/2
×355Kw 风机特性曲线图,M1和M2分别为通风容易时期和通风困难时期的工况点。

其工况参数如下
风机运行工况点参数表。

相关文档
最新文档