常用化疗药的分类及作用机制
化疗药药理知识点总结

化疗药药理知识点总结一、化疗药物的作用机制1. 细胞周期和化疗药物细胞周期是指细胞从一个分裂开始,直到下一个细胞分裂结束的整个时间段。
细胞周期可分为G1期、S期、G2期和M期四个阶段。
化疗药物对各期细胞都有不同的作用。
1.1 G1期:G1期是指细胞在分裂前的生长期。
化疗药物对G1期细胞的作用较小,因为这个时期的细胞核较小,DNA含量少,对化疗药物的敏感性较低。
1.2 S期:S期是指细胞合成DNA和增加细胞器官的生长期。
化疗药物对S期细胞有较大的作用,一些化疗药物可以阻止DNA的合成,导致细胞死亡。
1.3 G2期:G2期是指细胞在DNA合成结束后,进入细胞分裂前的生长期。
化疗药物对G2期细胞有一定的作用,可以引起细胞分裂的停滞和DNA的损伤。
1.4 M期:M期是指细胞的有丝分裂期,化疗药物对M期细胞的作用最明显,可以导致细胞分裂失败和染色体的异常结构。
2. RNA和蛋白质的合成化疗药物不仅可以影响DNA的合成和复制,也可以影响RNA和蛋白质的合成。
一些化疗药物可以抑制RNA的合成,影响细胞的蛋白质合成,从而导致细胞死亡。
3. 抗氧化作用细胞在生长和分裂的过程中,需要大量的氧气参与代谢。
在此过程中,细胞会产生大量的氧自由基,这些自由基会对细胞造成损害。
化疗药物中的一些药物具有抗氧化作用,可以清除自由基,减少对细胞的损害。
4. 细胞凋亡细胞凋亡是一种程序性细胞死亡的过程,是细胞对内外环境刺激做出的一种自我调控的反应。
化疗药物可以通过激活细胞凋亡通路来诱导癌细胞凋亡,从而达到治疗的目的。
5. 免疫调节作用一些化疗药物可以改变机体的免疫功能,增强机体对肿瘤的免疫反应,从而协同其他治疗方式,提高治疗效果。
二、化疗药物的分类根据化疗药物的作用机理和化学结构的不同,可以将化疗药物分为多个类别:1. DNA碱基化剂DNA碱基化剂是一类通过与DNA相互作用,阻断DNA链的合成和修复,从而诱导细胞凋亡的化疗药物。
常用的DNA碱基化剂有阿霉素、环磷酰胺、氮芥等。
化疗药物的分类

• 非刺激性化疗药物:对局部组织没有溃疡 、坏死等不良 反应。
谢谢聆听
化疗药物的分类
肿瘤科 黄聪聪 2014-1-22
化疗药物的特点:
• 选择性不高,在杀伤肿瘤细胞的同时对正常细
• 对机体重要脏器有一定毒性,使器官功能受损。
一、根据药物对细胞增殖周期作用特点分类:
• ①周期非特异性药物:即对增殖或非增殖细胞都有作用的 药物,其特点为作用快而强;如氮芥类、环磷酰胺、抗生 素类等。它们对小鼠骨髓干细胞和淋巴肿瘤细胞的量效曲 线都呈指数性,其中氮芥和丝裂霉素选择性低,而大多数 其他烷化剂选择性较高。
• 紫杉类,依托泊苷,甲氨蝶呤等及单克隆抗体类药物发生 致吐频次在10%~30%为低致吐化疗药物。
• 长春新碱、百消安等致吐频次在10%为极低致吐化疗药物。
• 腐蚀性化疗药物: 外渗后可引起局部组织发疱、溃疡、 坏死。如多柔比星、表柔比星、柔红霉素以及长春新碱, 长春瑞滨。
• 刺激性化疗药物:能引起注射部位疼痛,可有局部炎症反 应,静脉炎以及局部过敏反应。如依托泊苷、紫杉醇、博 来霉素、顺铂和氟尿嘧啶等。
• ③抗生素类:有抗肿瘤作用的如放线菌素D(更生霉素)、 丝裂霉素、博莱霉素、阿毒素、平阳霉素、柔红霉素、光 辉霉素等。(蒽环类具有心脏毒性,BLM可致肺纤维化、 骨髓抑制)
•
④生物碱类:主要为干扰细胞内妨锤体的形成,使细胞 停留在朋丝分裂中期。如长春新碱(周围神经毒性)、鬼 臼毒素类依托泊苷(VP-16)、替尼泊苷(VM-26),喜 树碱类:如羟喜树碱、伊立替康、为拓扑异构酶抑制剂, 具有周期特异性(剂量限制毒性为严重腹泻)。
四、根据药物副作用的分类:
• 化疗药物按使用后发生呕吐的频次分成高中低和极低致吐 风险四类:其中单次静脉给药,如顺铂,氮芥和环磷酰胺, (1500mg/m2)等,发生呕吐频次大于90%,为高致处化 疗药物。 • 奥沙利铂,阿糖胞苷(>1mg/m2),卡铂,异环磷酰胺和蒽 环类药物发生呕吐频次在30%~90%,为中致吐化疗药物。
常见化疗药物的使用顺序及机理

化疗药物的类别
• 按药物的化学结构和来源 • 按作用机制
按药物的化学结构和来源
• 烷化剂 • 抗代谢药 • 抗生素 • 植物药 • 杂类 • 激素及内分泌药物
按作用机制
• 干扰核酸生物合成 • 直接影响DNA结构与功能 • 干扰转录过程和阻止RNA合成 • 干扰蛋白质合成与功能 • 影响激素平衡
• 先顺铂,后氟尿嘧啶:顺铂作用于细胞膜, 阻碍细胞内外因性蛋氨酸的进入,促进细 胞内蛋氨酸生成,使细胞内活性叶酸生成 增加, 从而增加5-FU的抗肿瘤作用。
• 先异环磷酰胺,后顺铂:先用顺铂会加重 异环磷酰胺的骨髓抑制、神经毒性、肾毒 性。
• 先亚叶酸钙,后氟尿嘧啶:5-氟脲嘧啶抗肿 瘤的机制之一是阻碍胸腺嘧啶核苷酸合成 酶,使之不能生成胸腺嘧啶核苷酸,阻碍 了DNA的合成。这个过程需要细胞内活性 型叶酸的参加,而体内活性叶酸的浓度较 低,如果从外部投予甲酰四氢叶酸,则可 以增加细胞内活性叶酸的浓度,从而增加5FU对DNA合成的障碍作用。用药时应该先 用亚叶酸钙,后用5-FU。静脉用亚叶酸钙2 小时达峰浓度,维持2小时,目前临床常用
肿瘤细胞DNA的顺伤固定,增强乏氧 细胞敏感性 联用顺序:希美纳 800mg/m2溶于生理盐 水100ml,30min内滴完,qod(隔日一 次),每周三次
给药后1h内行放疗
放疗与紫杉醇
紫杉醇:特异性作用于M期细胞,细胞 周期停滞于G2/M期
放 疗:G2/M期细胞最敏感 联用顺序:先用紫杉醇
48h后行放疗
• 先长春新碱,后门冬酰胺酶:
• 门冬酰胺酶會減少长春新碱在肝的清除率, 並且會提高长春新碱的肝与神经毒性。长 春新碱应在门冬酰胺酶之前12-24小时给药
化疗药物常见分类

化疗药物常见分类化疗药物是在恶性肿瘤治疗中广泛应用的一类药物。
根据它们的作用机制和化学结构特点不同,化疗药物可以分成很多种类。
下面将介绍几种化疗药物的常见分类。
鸟苷类似物鸟苷类似物是一类仿制核苷酸结构并能够抑制肿瘤细胞的 DNA、RNA 合成进而导致细胞死亡的化疗药物。
常见的鸟苷类似物有:1.氟尿嘧啶(5-FU)2.卡铂(Cisplatin)3.去甲氧化泼尼松(Dexamethasone, Decadron)烷基化剂烷基化剂是一类醇胺和醚胺分子中含有碳原子及其链结构,通过与 DNA 发生交联、损伤或者剪断等机制来达到抑制肿瘤细胞的生长和分裂的化疗药物。
常见的烷基化剂有:1.氮芥(Mechlorethamine)2.顺-二氯乙烯-1,2-二氮芥(Cyclophosphamide)3.广谱烷基化剂(Busulfan)紫杉醇类紫杉醇类是从南美的巴西葡萄树提取得到的一类抗微管聚合和稳定的化疗药物。
它们能够阻止分裂中的肿瘤细胞在有丝分裂漏相或者有期停滞,从而引发肿瘤细胞死亡。
常见的紫杉醇类有:1.紫杉醇(Paclitaxel)2.多西他赛(Docetaxel)生物制剂生物制剂是一类由生物体提取或基因重组合成的分子、化合物或者细胞等物质,具有特定的生物学活性来直接或者间接地干预肿瘤细胞的生长和分裂。
常见的生物制剂有:1.人重组生长因子(Recombinant Human Growth Factors,rHGFs)2.巨噬细胞激活因子(Macrophage Activating Factors,MAFs)3.内皮生长因子(Endothelial Growth Factors,EGFs)以上是几种化疗药物的常见分类。
当然,这些分类并不是固定的,一些药物也可能涉及到多种分类。
不同化疗药物之间也会出现一些副作用和并发症,使用化疗药物时需要谨慎并注意医生的建议。
化疗药物常见分类

1.烷化剂:烷化剂直接作用于DNA上,防止癌细胞再生。
此类药物对慢性白血病、恶性淋巴瘤、何杰金氏病、多发性骨髓瘤、肺癌、乳腺癌和卵巢癌具有疗效。
2.抗代谢药:抗代谢药干扰DNA和RNA的合成,用于治疗慢性白血病、乳腺癌、卵巢癌、胃癌和结直肠癌。
3.抗肿瘤抗生素:抗肿瘤抗生素通过抑制酶的作用和有丝分裂或改变细胞膜来干扰DNA。
抗肿瘤抗生素为细胞周期非特异性药物,广泛用于对癌症的治疗。
4.植物类抗癌药:植物类抗癌药都是植物碱和天然产品,它们可以抑制有丝分裂或酶的作用,从而防止细胞再生必需的蛋白质合成。
植物类抗癌药常与其它抗癌药合用于多种癌瘤的治疗。
5.激素:皮质类固醇激素用于治疗淋巴瘤、白血病和多发性骨髓瘤等癌症。
当激素用于杀死癌细胞或减缓癌细胞生长时,可以把它们看成化疗药物。
性激素用于减缓乳腺癌、前列腺癌和子宫内膜癌的生长。
它包括雌激素、抗雌激素、黄体酮和男性激素。
性激素的作用方式不同于细胞毒素药物,属于特殊的化疗范畴。
6.免疫制剂:免疫制剂可以刺激癌症病人的免疫系统更有效地识别和攻击癌细胞。
它们属于特殊的化疗范畴[1]。
化疗药物选择原则首先,要根据病人的病理诊断和分期。
不同病理细胞类型对化疗药的敏感性不同,不同的病理分期决定了不同的治疗目的,显然应选择不同的药物和剂量;第二,根据肿瘤细胞的分裂周期,因为化疗药主要分成二类,一类叫细胞周期性特异性药物,一类叫细胞周期非特异性药物。
这两类药具有各自不同的特点,把这两类药进行有机的组合,则作用的效果增强,能对不同周期时段的细胞起最大的杀伤效果;第三,根据患者的身体情况选择化疗药物;第四,在化疗药物中加入适当的化疗增敏药物和预防化疗副作用的药物,如止吐药、抗过敏药;第五,化疗方案的选择同时需考虑病人的经济情况。
化疗药物的毒副作用目前临床使用的抗肿瘤化学治疗药物均有不同程度的毒副作用,有些严重的毒副反应是限制药物剂量或使用的直接原因。
它们在杀伤肿瘤细胞的同时,又杀伤正常组织的细胞,尤其是杀伤人体中生长发育旺盛的血液、淋巴组织细胞等。
肿瘤内科常用化疗药物简介PPT

免疫治疗
近年来,免疫治疗成为肿瘤治 疗的新方向,与化疗药物联合 应用,取得了一定的疗效。
02
常用化疗药物介绍
烷化剂
烷化剂定义
烷化剂分类
烷化剂是一类能将带负电的细胞表面分子 烷化,从而抑制细胞增殖的化疗药物。
根据其化学结构和性质,烷化剂可分为氮 芥类、乙烯亚胺类、亚硝基脲类和甲基磺 酸酯类等。
烷化剂作用机制
方和分期对化疗 药物的敏感性不同,选 择方案时应考虑这一因
素。
患者身体状况
患者的年龄、性别、身 体状况和基础疾病等会 影响对化疗药物的耐受
性和效果。
药物副作用
不同化疗药物具有不同 的副作用,选择时应权 衡疗效与不良反应之间
的平衡。
医疗资源与费用
医疗资源、药物供应和 患者经济状况也是方案 选择的重要考虑因素。
抗代谢药通过模拟正常代谢 物质,占据细胞内代谢酶的 位置,干扰肿瘤细胞DNA和 RNA的合成。
抗代谢药代表药物
氟尿嘧啶、甲氨蝶呤、阿糖 胞苷等。
抗肿瘤抗生素
抗肿瘤抗生素定义
抗肿瘤抗生素是一类能抑制肿瘤细胞 生长的药物,通常是从微生物培养液 中提取或半合成的。
抗肿瘤抗生素分类
根据其作用机制,可分为破坏DNA 结构和影响DNA功能的抗生素。
04
化疗药物的疗效与不良反应监 测
疗效评估指标与方法
肿瘤大小变化
通过影像学检查,比较治疗前后肿瘤的 大小变化,是评估化疗疗效的主要指标
。
症状改善
评估患者接受化疗后的症状是否得到 改善,如疼痛减轻、呼吸困难缓解等
。
生存期延长
观察患者接受化疗后的生存期是否延 长,是评估化疗疗效的重要指标。
实验室指标
常见化疗药物的机理及使用顺序(ppt)

DHFR
TS
MTX
5-Fu
MTX与5-Fu(二)
联用顺序:序贯抑制
先用MTX, 6h后再用5-Fu
临床应用:CMF方案
VCR与MTX(一)
VCR:1.抑制微管蛋白聚合,影响纺锤体形成 2.分布半衰期<5min,消除半衰期50~ 155min,末梢消除半衰期85h 3.随胆汁排泻
VCR与MTX(二)
先用VCR,再用MTX
先用阿米福汀,再放疗
先用VCR,6~8h后再用CTX
先用紫杉醇,再用顺铂
先用ADM,再用紫杉醇 先用CF,再用5-Fu
临床应用:PF方案
MMC与5-Fu(一)
MMC:1. 直接破坏DNA结构和功能,类似烷 化剂
2. 血浆半衰期17min 3. 经肝脏代谢
MMC与5-Fu(二)
联用顺序:先用MMC(周期非特异性) 再用5-Fu (周期特异性)
临床应用:FAM方案
CTX与MTX(一)
CTX:1. 烷化剂,直接破坏DNA结构和功能 2. 血浆半衰期4~6.5h 3. 经肾脏排泄
放疗与阿米福汀(二)
联用顺序:200~300mg/m2溶于生理盐水50ml 放疗开始前30min滴注,15min滴完
小结
先用顺铂,再用5-Fu 先用MMC,再用5-Fu 先用CTX,9天后再用MTX 先用MTX,6h后再用5-Fu
先用紫杉醇,48h后行放 疗
先放疗,再用5-Fu 先用顺铂,再放疗
常见化疗药物的机 理及使用顺序(ppt)
按药物的化学结构和来源分类
烷化剂 抗代谢药 抗生素 植物药 杂类 激素及内分泌药物
按化疗药作用机制分类
干扰核酸生物合成 直接影响DNA结构与功能 干扰转录过程和阻止RNA合成 干扰蛋白质合成与功能 影响激素平衡
化疗的原理与作用机制

化疗的原理与作用机制化疗(Chemotherapy)是一种通过使用化学药物来治疗癌症的方法。
与手术和放射疗法不同,化疗可以通过全身治疗的方式杀死癌细胞或抑制它们的生长和扩散。
本文将介绍化疗的原理与作用机制,以及在临床实践中的应用。
一、化疗的原理化疗的原理基于药物对癌细胞的选择性损伤。
不同种类的化疗药物通过不同的途径作用于癌细胞,实现治疗的效果。
常见的化疗药物有细胞周期非特异性药物和细胞周期特异性药物。
1. 细胞周期非特异性药物细胞周期非特异性药物主要作用于癌细胞DNA,如芥子气、丝裂霉素等。
这类药物能够在细胞的任何生长周期中起到杀伤癌细胞的作用。
它们通过与DNA分子结合,干扰DNA的复制和修复,阻断癌细胞的增殖过程。
细胞周期非特异性药物作用范围广,但同时也对正常细胞造成了一定的损伤。
2. 细胞周期特异性药物细胞周期特异性药物主要作用于癌细胞特定的细胞周期阶段,如鲜碱类、白三烯类等。
这类药物对于静止期的癌细胞效果不显著,但对于处于分裂期的癌细胞起到了非常强的杀伤作用。
细胞周期特异性药物通常选择在特定的治疗时机进行给药,以增强治疗效果并减少对正常细胞的损伤。
二、化疗的作用机制化疗通过直接杀伤癌细胞或抑制其生长和扩散来达到治疗的目的。
化疗的主要作用机制如下:1. 杀伤癌细胞化疗药物作用于癌细胞,通过干扰DNA合成、阻断细胞分裂和破坏细胞膜等方式,导致癌细胞死亡。
一些化疗药物还可以诱导癌细胞凋亡,使其自我消亡。
杀伤癌细胞是化疗最直接且重要的作用机制。
2. 抑制癌细胞生长和扩散化疗药物可以通过抑制癌细胞的分裂和增殖来控制癌症的发展。
某些化疗药物还能阻断肿瘤血供或降低肿瘤血管形成,从而减少营养供应和氧气输送,使癌细胞的生长环境受到限制。
3. 消灭残余的癌细胞化疗可以消灭术前或术后残留的癌细胞,减少肿瘤复发和转移的可能性。
由于手术和放疗难以全面清除癌细胞,在手术之前或之后进行化疗可以起到补充治疗的作用,提高治愈率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.常用化疗药的分类及作用机制
(一)传统分类
⒈烷化剂主要有环磷酰胺(CTX)、异环磷酰胺、氮芥(HN2)、马利兰(BUS)、环已亚硝脲(CCNU)、卡氮芥(BCNU)等。
⒉抗代谢药主要有甲氨蝶呤(MTX)、6-巯基嘌呤(6-MP)、氟脲嘧啶(5-FU)、阿糖胞苷(Ara-C)等。
⒊植物类主要有长春新碱(VLB)、喜树碱(VCR)、三尖杉(HRT)鬼臼乙叉甙(VP-16)、紫杉醇(TAXOL)等。
⒋抗癌抗生素主要有放线菌素D(ACTD)、丝裂霉素(MMC)、博莱霉素(BLM)、阿霉素(ADM)、表阿霉素等。
⒌杂类主要有甲基芐肼(PC2)、六甲密胺(HMM)、顺氯氨铂(DDP)等。
⒍激素类黄体酮、甲地孕酮、丙酸睾丸酮、肾上腺皮质激素类、三苯氧胺、甲状腺素等。
(二)按化疗药物对各期肿瘤细胞的敏感性不同分类
按化疗药物对各期肿瘤细胞的敏感性不同可将其分为两大类,即细胞周期非特异性药物(CCNSA)和细胞周期特异性药物(CCSA)。
CCNSA能杀死各时相的肿瘤细胞,包括G0期细胞,这类药物包括烷化剂、抗癌抗生素和激素类,其作用特点是呈剂量依赖性,即其杀伤肿瘤的疗效和剂量成正比,大剂量间歇给药是发挥疗效的最佳选择。
CCSA主要杀伤增殖期的细胞,G0期细胞对其不敏感。
在增殖期细胞中,S期和M期对其最敏感。
这类药物包括抗代谢物和植物类,其作用特点是呈给药时机依赖性,小剂量持续给药为最好的给药方式。
(三)从分子水平及作用机制方面分类
从分子水平及作用机制方面可将化疗药物分为四类:
⒈直接破坏DNA的药物
⑴铂类配合物:如顺铂、卡铂。
此类药物利用铂部分与DNA同一条链的碱基或两条链的碱基形成交叉联结。
⑵烷化剂:如环磷酰胺、马利兰等。
这类药物可引起DNA分子内鸟嘌呤碱基
N7或腺嘌呤N3分子的交联。
其反应过程为:烷化剂中一个基团形成亚胺离子,进而形成正碳离子,并与DNA中GN7反应;同时烷化剂分子中另一个基团也以同样的方式作用于DNA分子中另一个GN7,引起DNA双链间或在同一条链的G·G 间发生交联反应,亦即这类药物利用烷基中的碳与DNA的亲核碱基之间形成单功能或双功能共价键,双功能烷化剂可引起链内或链间的交叉联结。
⑶DNA嵌合类抗癌药:如放线菌素D、柔红霉素、阿霉素等。
此类药物能插入DNA的双螺旋链,改变DNA的模板性质,抑制DNA聚合酶从而抑制DNA、RNA的合成。
⒉间接破坏DNA药物
⑴影响核酸合成的药物:如氟尿嘧啶、甲氨蝶呤;6-巯基嘌呤等。
氟脲嘧啶在体内先转变为5-氟-2-脱氧尿嘧啶核苷酸,后者抑制胸腺嘧啶合成酶,阻断脱氧尿嘧啶核苷酸转变为脱氧胸腺嘧啶核苷酸,从而抑制DNA的生物合成。
甲氨蝶呤可抑制二氢叶酸还原酶,阻断二氢叶酸还原成四氢叶酸,后者传递一碳基因,为合成嘧啶核苷酸和嘌呤苷酸所必需,所以甲氨蝶呤可抑制嘌呤和嘧啶的合成,导致DNA的合成明显受到抑制,此外,甲氨蝶呤对胸腺核苷酸合成酶也有抑制作用。
6-巯基嘌呤进入体内,在细胞内必须由磷酸核糖转移酶转为6-巯基嘌呤核糖核苷酸后,方具有活性,抑制次黄嘌呤核嘌呤核苷酸转为腺嘌呤核苷酸及鸟嘌呤核苷酸,因而抑制DNA的形成。
⑵博莱霉素、丝裂霉素等通过产生自由基引起碱基损伤和DNA链断裂。
⑶鬼臼乙叉苷等可抑制DNA拓扑异构酶,使DNA与酶蛋白结合形成的易解离复合物趋于稳定和僵化,从而使DNA链断裂。
⒊有丝分裂抑制剂纺缍丝由若干微管集聚而成,纺缍丝连着染色体,由于纺缍丝微管蛋白的收缩,使染色体向两极移动。
植物类药物如长春新碱、秋水仙碱等可与微管蛋白结合,阻止微小管的装配。
也有人认为,长春新碱主要影响tRNA,从而选择性抑制微管蛋白的合成,其结果导致纺缍丝形成障碍,染色体不能向两极移动,而停留在中期赤道板上,终因细胞核结构异常而导致细胞死亡。
秋水仙碱的C环可与纺缍丝微管蛋白结合,阻止其聚合反应,阻止纺缍丝形成,使其不能发生主动收缩运动,从而使染色体不能向两极运动而致细胞死亡。
⒋蛋白质合成的抑制剂某些肿瘤细胞缺乏门冬酰胺聚合酶,不能自身合成门冬酰胺,其合成蛋白质所需的门冬酰胺要从细胞外摄取,使肿瘤细胞缺乏合成蛋白质所需的L-门冬酰胺,就可导致其蛋白质合成发生障碍。
嘌呤霉素可在核糖体水平干扰遗传信息的翻译,影响蛋白质的合成。
嘌呤霉素含有一个连接于氨基酸的氨基核苷,这一结构与连有末端氨基酸的转移RNA
(tRNA)(苯丙氨酰-tRNA)非常相似,因而可被转移RNA误作为正常氨基酸摄取而成了核糖体-mRNA-tRNA复合物,从而抑制正常蛋白质的合成。
二、化疗新的使用方法
(一)手术或放疗的辅助化疗
目前辅助化疗受到重视,因为近年对肿瘤开始转移时间的看法与过去有明显不同。
过去认为肿瘤开始时仅是局部疾病,以后才向周围侵犯,先由淋巴道转移,最后经血路全身转移,因此治疗肿瘤的关键是早期将肿瘤彻底切除,手术范围力求广泛。
但近年已认识到肿瘤发生后,肿瘤细胞即不断自瘤体脱落并进入血循环,其中的大部分虽能被身体的免疫防御机制所消灭,但有少数未被消灭的肿瘤细胞确会成为复发和转移的根源,因此当临床发现肿瘤并进行手术时,事实上大部分患者已有远处转移。
因此手术后应当早期配合全身化疗,抓住大部分肿瘤已被切除的机会,及时消灭已转移的微小病灶。
(二)新辅助化疗
新辅助化疗是在手术前给予辅助化疗。
手术前给予辅助化疗的时间不可能太长,一般给予3个疗程左右。
它的作用机制可能不同于手术后6~12个疗程的辅助化疗,因此不称为术前辅助化疗,而称为新辅助化疗或诱导化疗。
化疗开始越早,产生抗药性的机会就越少,因此近年不少肿瘤如乳腺癌采用新辅助化疗。
新辅助化疗的优点有:①可避免体内潜伏的继发灶,在原发灶切除后1~7天内由于体内肿瘤总量减少而加速生长;②可避免体内残留的肿瘤在手术后因凝血机制加强及免疫抑制而容易转移;③使手术时肿瘤细胞活力低,不易播散等。
但目前尚不能肯定其是否能提高肿瘤患者长期生存率。
(三)腹腔内化疗
目前胃肠道肿瘤虽然根治术后生存率有一定的提高,但是由于大多数病例就诊时较晚,术后复发的机会较多,因此采用腹腔内化疗以期减少腹腔内复发。
癌肿发展到一定阶段,病变累及浆膜,就可能出现浆膜面癌细胞的脱落,成为腹腔内游离癌细胞,引起腹腔种植。
药代动力学显示腹腔内给药的药物浓度明显高于全身给药。
腹腔内化疗应在术中或术后早期开始,此时体内肿瘤负荷最小,肿瘤细胞增殖速度相应加快,对化疗敏感;若延缓治疗,肿瘤负荷大,化疗效果差,另外手术时腹腔内粘连松解,而新的粘连尚未形成,药物易达到腹腔内所有的部位。
腹腔内化疗主要使用于卵巢癌切除术后有微小的残留病灶、胃肠道癌术后有残留,或有高度复发及转移危险、腹膜间皮瘤等。
腹腔化疗给药方法有单点穿刺给药法、留置导管法等。
腹腔内化疗的并发症有切口感染,腹膜炎、切口出血、化疗药外漏等。
(四)动脉灌注化疗
动脉灌注化疗与全身静脉化疗相比有以下特点:①局部肿瘤组织药物浓度明
显提高,全身体循环药物浓度明显降低。
②全身副作用明显降低,而局部脏器药物反应相对较重。
③局部灌注所用化疗药的剂量可以大大提高。
④疗效明显提高。
动脉灌注化疗使用方法主要是将导管插入动脉内并经该导管灌注化疗药物。
目前动脉灌注化疗主要用于肝癌的治疗,动脉插管的方法有开腹插管(经胃、十二指肠动脉或经胃网膜右动脉插管)及经股动脉插管。
近年来皮下灌注泵的应用大大的简化了动脉灌注的操作。
动脉灌注化疗的并发症主要有导管感染、导管堵塞、导管脱落以及化疗本身的并发症如肝功能损害、骨髓抑制等。