每日一学:浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答
2019-2020学年浙江省湖州市吴兴区八年级(上)期末数学试卷

二、填空题(本题有 6 小题,每小题 4 分,共 24 分)
11.(4 分)已知一个正比例函数的图象经过点(﹣2,4),则这个正比例函数的表达式
是
.
12.
(4 分)命题“全等三角形的对应角相等“的逆命题是一个
命题(填“真“或“假
“)
.
13.
(4 分)
如图,
直角△ABC 中,
∠A=90°,
CD=DE=BE,当∠ACD=21°时,
2
故选:B.
第 10 页(共 28 页)
1
D. x<2
2
)
1
3
2
7.
(3 分)如图,直线 y=kx+b 与直线 y=3x﹣2 相交于点( ,− ),则不等式 3x﹣2<kx+b
2
的解为(
1
A.x> 2
)
1
3
C.x> − 2
B.x< 2
【考点】一次函数与一元一次不等式;两条直线相交或平行问题.
3
D.x< − 2
5
4
(3)若点 E 是直线 y= x 上的一个动点,当△APE 是以 AP 为直角边的等腰直角三角形
时,求点 E 的坐标.
第 7 页(共 28 页)
2019-2020 学年浙江省湖州市吴兴区八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(本题有 10 小题,每小题 3 分,共 30 分.每小题只有一个选项是正确的,不
故选:A.
> − 2
4.
(3 分)不等式组{
的解集在数轴上表示正确的是(
<1
)
A.
B.
C.
D.
【考点】在数轴上表示不等式的解集.
浙教版八年级2018--2019学年度第一学期期末考试数学试卷

绝密★启用前 浙教版八年级2018--2019学年度第一学期期末考试 数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计30分) 1.(本题3分)下列美丽的车标中,轴对称图形的个数是( ) A . 1 B . 2 C . 3 D . 4 2.(本题3分)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( ) A . B . C . D . 3.(本题3分)已知P 1(-3,y 1),P 2(2,y 2)是一次函数y=2x+1的图象上的两个点,则y 1, y 2的大小关系是( ) A . y 1>y 2 B . y 1<y 2 C . y 1= y 2 D . 不能确定 4.(本题3分)(题文)如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A . 2a B . (1+2)a C . 3a D . 5a5.(本题3分)已知如图所示的两个三角形全等,则∠α的度数是( ) A . 72° B . 60° C . 50° D . 58° 6.(本题3分)如图,△ABC 中,AB=AC,∠BAC=120°,DE 垂直平分AC 交BC 于D,垂足为E,若DE=2cm,则BC 的长为( )A . 6cmB . 8cmC . 10cmD . 12cm7.(本题3分)不等式组的最小整数解是( )A . ﹣3B . ﹣2C . 0D . 1 8.(本题3分)如图,Rt △ABC 中,∠B=90〬,AB=9,BC=6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,则线段AN 的长等于( )A . 5B . 6C . 4D . 39.(本题3分)在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是( )A . (3,2)B . (-3,-2)C . (-3,2)D . (3,-2)10.(本题3分)如图,点A 的坐标为(-1,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为( )A . (0,0)B . (-21,-21)C . (22,-22)D . (-22,-22) 二、填空题(计32分)11.(本题4分)(3分)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上 . 12.(本题4分)点()34P -,关于x 轴对称的点的坐标是___________. 13.(本题4分)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A 的面积为 . 14.(本题4分)已知:如图所示,M (3,2),N (1,-1).点P 在y 轴上使PM +PN 最短,则P 点坐标为_________. 15.(本题4分)在平面直角坐标系中,点A 1,A 2,A 3和B 1,B 2,B 3分别在直线y=5451+x.16.(本题4分)如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段________(填一组即可).17.(本题4分)不等式组的整数解是_______;18.(本题4分)在平面直角系中,已知直线l与坐标轴交于A、B (0,-5)两点,且直线l与坐标轴围成的图形面积为 10,则点A的坐标为.三、解答题(计58分)19.(本题8分)解不等式组:,并把它的解集在数轴上表示出来.20.(本题8分)解不等式,并在数轴上表示不等式组的解.21.(本题8分)已知:如图19,AB=AD ,BC=CD ,∠ABC=∠ADC .求证:OB=OD .22.(本题8分)两种移动电话计费方式表如下: (1)一个月内某用户在本地通话时间为x 分钟,请你用含有x 的式子分别写出两种计费方式下该用户应该支付的费用; (2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算? (3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.23.(本题8分)甲、乙两轮船同时从港口A 开出,各自沿固定方向航行,其中甲轮船每小时航行12海里,乙轮船每小时航行16海里,它们离开港口半小时后分别位于B ,C 两处,且相距10海里,如果甲轮船的航行方向为北偏西,请你计算确定乙轮船的航行方向.24.(本题9分)“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶.如果每盒饼干和每袋牛奶的标价分别设为x 元,y 元,请你根据以上信息:(1)找出x 与y 之间的函数关系式; (2)请利用不等关系,求出每盒饼干和每袋牛奶的标价. 25.(本题9分)如图,在等边△ABC 中,BD =CE ,AD 与BE 相交于点P.求证:∠APE=60°.参考答案1.C【解析】试题分析:根据轴对称图形的概念求解.解:第1,2,3个图形是轴对称图形,共3个.故选C.考点:轴对称图形.2.A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.视频3.B【解析】【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.4.D【解析】分析:把正方体的侧面展开,再根据勾股定理求解即可.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2018-2019学年度第一学期期末测试八年级数学试题

八年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 一、选择题:(每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.下列图标中,是轴对称图形的是A .B .C .D .2. 若x =1时,下列分式的值为0的是 A.11+x B . x x 1- C.1+x x D. 112-x3. 木工师傅准备钉一个三角形木架,已有两根长为2和5的木棒,木工师傅应该选择如下哪根木棒A.2B.3C. 6D. 74. 把分式(00)xx y x y≠≠+,中的分子、分母的x y ,同时扩大倍,那么分式的值 A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变5. 下列等式成立的是A .32396a b a b =() B .0.000028 2.810=⨯﹣4C .22434x x x +=D .22()()=a b a b b a +----6. 一个等腰三角形的两边长分别为2和3,则它的周长为A .7B .8C .7或8D .97. 如果2(1)(2)x x x px q -+=++,那么p ,q 的值为A. 1p =,2q =-B. 1p =-,2q =-C. 1p =,2q =D. 1p =-,2q = 8. 如图,将一张含有30°角的三角形纸片的 两个顶点叠放在矩形的两条对边上,若∠2=46°, 则∠1的大小为A .14°B .16°C .90°﹣αD .α﹣44°9. 如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑧个图形面积为A .42B .56C .72D .9010.如图,在△ABC 中,AB =AC ,△ADE 的顶点D ,E 分别在BC ,AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =155°,则∠EDC 的度数为A .20°B .20.5°C .21°D .22°第10题图第8题图第9题图11. 在4×4的正方形网格中,网格线的交点成为 格点,如图,A 、B 分别在格点处,若C 也是图 中的格点,且使得 为等腰三角形,则符合 条件的点C 有( )个A. 2个B. 3个C.4个D. 5个12. 如果关于x 的不等式2()42a x x x -+≤⎧⎨>-⎩的解集为2x >-,且关于x 的分式方程2333a xx x-+=--有正整数解,则所有符合条件的整数a 的和是 A .0 B .-9 C .-8 D .-7二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测八年级数学参考答案一、选择题 (每小题3分,共36分。
每小题只有一个选项符合题意)二、填空题(每小题3分,共15分。
每小题只填写最后结果)13. 5个14. 112°15. 2 16. 42 17. (﹣2,5)三、解答题(共7小题,共69分。
解答应写出必要的步骤)18.(本题满分8分,每小题4分)解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,……………………3分经检验x=﹣3是原方程的根;…………………………………………………4分(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,………………………………3分经检验x=2是增根,分式方程无解.…………………………………………4分19.(本题满分8分,(1)题3分,(2)题5分)(1)原式= •= ﹣•= ……………………3分(2)原式=﹣=…………………………………………………………3分当m=﹣12时,原式=53………………………………………………………5分20.(本题满分7分)解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:﹣=1,……………………………………………………3分解得x=250.经检验:x=250,是分式方程的解,且符合题意.………………………4分所以,D31的平均速度250千米/时.……………………………………5分(2)G377的性价比==0.75 D31的性价比==0.94,…………7分∵0.94>0.75 ∴为了G377的性价比达到D31的性价比,建议降低G377票价.……………………………………………………………………………8分21.(本题满分8分)(1)如图所示△A′B′C′……………………………………………3分(2)A′(2,3)、B′(3,1)、C′(-1,2) ……………………………………………6分(3)如图所示P点即为所求找到点B关于x轴的对称点B′′,连接AB′′交x轴于点P,此时P A+PB的值最小.………………………………………………………8分22.(本题满分8分)(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;…………………4分(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.……………………8分23.(本题满分8分)解:(1)服装项目的权是:1﹣20%﹣30%﹣40%=10%;……………………………2分(2)小亮在选拔赛中四个项目所得分数的众数是85,…………………………3分中位数是:(80+85)÷2=82.5;…………………………………………………4分(3)小亮得分为:85×10%+70×20%+80×30%+85×40%=80.5,小颖得分为:90×10%+75×20%+75×30%+80×40%=78.5,……………………6分∵80.5>78.5,∴小亮的演讲成绩好,故选择小亮参加“不忘初心,永远跟党走”主题演讲比赛.……………………8分24.(本题满分10分)(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.………………………………………………………3分在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;……………………………………………………………………………5分(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.……………………………………………………………………8分在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.……………………………………………………………………………10分25.(本题满分12分)解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵BC=7cm,BP=5cm,∴PC=2cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS);………3分(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=90°.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;…………………8分(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=2cm,∴PC=BC﹣BP=5cm,∴CD=CP=5cm. ………………………………12分。
每日一学:浙江省湖州市长兴县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省湖州市长兴县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答答案浙江省湖州市长兴县2018-2019学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019长兴.八上期末) 如图,在平面直角坐标系中,直线AB 分别交x 轴的正半轴,y 轴的正半轴于点A ,点B ,OA=2,A B=2 ,直线OC 经过线段AB 的中点C ,另一动直线L 垂直于x 轴,从原点出发,以每秒1个单位长度的速度沿x 轴向右平移,直线L 分别交线段AB ,直线OC 于点D ,E,以DE 为斜边向左侧作等腰Rt △DEF ,当直线L 经过点A 时,直线L 停止运动,设直线L 的运动时间为t(秒)(1) 直接写出:点B 的坐标是 ,直线OC 的解析式是 :(2) 当0≤t≤1时,请用含t 的代数式表示线段DE 的长度:(3) 直线L 平移过程中,是否存在点F ,使△FOC 为等腰三角形,若存在,请求出符合条件的所有点F 的坐标;若不存在,请说明理由.考点: 与一次函数有关的动态几何问题;等腰三角形的性质;~~ 第2题 ~~(2019长兴.八上期末) 在△ABC 中,∠C=90°,AC=8cm .BC=6 cm,动点P 从点C 开始,按C→A→B→C 的路径绕△AB C 的边运动一周,速度为每秒2cm ,运动的时间为t 秒.则△BCP 为等腰三角形时t 的值是________.~~ 第3题 ~~(2019长兴.八上期末) 如图,直线y=-x+4分别与x 轴,y轴交于A ,B 两点.从点P(2,0)射出的光线经直线AB 反射后又经直线OB 反射回到P 点,则光线第一次的反射点Q 的坐标是( )A . (2,2)B . (2.5,1.5)C . (3,1)D . (1.5,2.5)浙江省湖州市长兴县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:A解析:。
浙江省湖州市吴兴区2019-2020八年级上学期期末数学试卷及答案解析

浙江省湖州市吴兴区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 在平而直角坐标系中,点4(2,—3)位于哪个象限?()A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 下列长度的三条线段能组成三角形的是()A. 1, 2, 3B.4, 5, IOC. 8, 15, 20D. 5, 8, 153. 若三角形三个内角度数比为厶3: 4,则这个三角形一泄是()4. 不等式组{;二畀&的解集在数轴上表示正确的是()5. 如图,△力BC 中,乙C = 90。
,AB 白勺中垂线DE 交AB 于E,交BC 于D, 若AB = 10, AC =6.则△力CD 的周长为()A. 16B. 14C. 20D. 186. 已知关于X 的不等式αxVb 的解为x>-2,则下列关于X 的不等式中,解为X V 2的是().A. ax + 2 < —b + 2 B ・—ax — 1 < b — 1C. ax > b如图,函数y=2%和y =ax+4的图彖相交于点力(m2),则不等式2x < ax+ 4的解集为()A. B. C.A.锐角三角形B.直角三角形C.钝角三角形D.不能确龙A. ―I __________ _____匸二C.0 1 27. B. ⅛>≡¾B.% < 38. 小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转宜走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家...”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方龙才能到我家...” 根据两人的对话记录,从邮局出发疋到小军家应()A. 先向北直走700米,再向四走100米B. 先向北直走100米,再向西走700米C. 先向北直龙300米,再向四走400米D. 先向北直走400米,再向四走300米9. ^RtAABC 乙C = 90。
浙教版-学年度上学期八年级期末数学试卷(含解析)

浙教版2018-2019学年八年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.32.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>5.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为()A.6cm2B.5cm2C.4cm2D.3cm26.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°7.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个8.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2B.k>2C.0<k<2D.0≤k≤29.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.如图,过点A0(2,0)作直线l:y=x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A.()2015B.()2016C.()2017D.()2018二.填空题(共6小题,满分18分,每小题3分)11.命题“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是,它是命题.12.直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为.13.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为14.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=°.15.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.16.在Rt△ABC中,∠C=90°,AC=4,BC=3.以AC为边在Rt△ABC的外部拼接一个合适的直角△ACD,使得拼成的图形是一个以AB为腰的等腰△ABD,则AD=.三.解答题(共7小题,满分52分)17.(6分)对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?18.(6分)如图,已知AB=CD,AC=DB.求证:∠A=∠D.19.(6分)图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.20.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?21.(8分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=;方案二:y2=.(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到个文具盒(直接回答即可).22.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.(1)当t为多少时,△ABD的面积为6cm2?(2)当t为多少时,△ABD≌△ACE,并说明理由(可在备用图中画出具体图形).23.(10分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B 重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析1.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC故选:B.2.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.3.解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.4.解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.5.解:延长AP 交BC 于E , ∵AP 垂直∠B 的平分线BP 于P , ∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°, 在△ABP 与△BEP 中,∴△ABP ≌△BEP (ASA ), ∴S △ABP =S △BEP ,AP=PE , ∴△APC 和△CPE 等底同高, ∴S △APC =S △PCE , 设△ACE 的面积为m , ∴S △ABE =S △ABC +S △ACE =10+m ∴S △PBC=S △ABE ﹣S △ACE =﹣=5故选:B .6.解:∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB )=70°. ∵CE 是△ABC 的角平分线, ∴∠ACE=∠ACB=35°. 故选:B .7.解:①对顶角相等,相等的角不一定是对顶角,①假命题; ②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题; ④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题; 真命题的个数为0,8.解:由一次函数y=(k﹣2)x+k的图象不经过第三象限,则经过第二、四象限或第一、二、四象限,只经过第二、四象限,则k=0.又由k<0时,直线必经过二、四象限,故知k﹣2<0,即k<2.再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.当k﹣2=0,即k=2时,y=2,这时直线也不过第三象限,故0≤k≤2.故选:D.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:由y=x,得l的倾斜角为30°,点A0坐标为(2,0),∴OA0=2,∴OA1=OA0=,OA2=OA1═,OA3=OA2═,OA4=OA3═,…,∴OA n=()n OA n﹣1=2()n.∴OA2016=2×()2016,A2016A2107的长×2×()2016=()2016,故选:B.11.解:“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,是真命题.故答案为在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°,真12.解:根据题意知xy=3,则xy=6,故答案为:y=.13.解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣114.解:∵∠ACB=90°,∠B=55°,∴∠A=35°,∵∠ACB=90°,D是AB的中点,∴DA=DC,∴∠ACD=∠A=35°,故答案为:35.15.解:如图所示:∵正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴=,∴=,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣AP﹣DE=15,∴EG==5,∴小正方形的边长为.故答案为:.16.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.当如图1所示时,AD==2;当如图2所示时,AD=AB=5.故答案为:5或2.17.解:(1)①,解得,;②,解得≤m<,因为原不等式组有2个整数解,所以2<≤3,解得,﹣4≤p<﹣;(2)T(x,y)=ax+2by﹣1,T(y,x)=ay+2bx﹣1,所以ax+2by﹣1=ay+2bx﹣1,所以(a﹣2b)(x﹣y)=0所以a=2b.18.证明:在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D.19.解:(1)以AB为对角线的正方形AEBF如图所示,正方形的周长为4 .=×4 ×=4.(2)等腰△EFG如图所示,S△EFG20.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当s1=s2时,﹣1.5t+330=t,解得t=132.即行驶132分钟,A、B两车相遇.21.解:(1)由题意,可得y1=40×5+10(x﹣5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为40.22.解:(1)作AH⊥BC于H,∵AB=AC,∴BH=CH.∵∠BAC=90°,∴AH=BC.∵BC=6cm,∴AH=3cm.当点D在线段BC上时,BD=6﹣2t,∴,解得:t=1.点D在CB的延长线上时,BD=2t﹣6,∴解得:t=5.∴综上所知:当t=1或5时,△ABD的面积为6;(2)∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图2,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图3,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,∴当t=2或6时,△ABD≌△ACE.23.解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).。
2018-2019学年最新浙教版八年级数学上学期期末考试模拟测试及答案解析-精品试题

八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形是轴对称图形的是()A.B.C.D.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣410.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为.12.用不等式表示:a与b的和不大于1.13.命题“对顶角相等”的逆命题为.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为.15.等腰三角形的两边长分别为2和4,则其周长为.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:,使△ABD≌△ACE.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.八年级上学期期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确的选项的代入填入相应空格,每小题3分,共30分)1.若点P的坐标是(1,﹣2),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答即可.解答:解:点P(1,﹣2)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若a<b,则下列各式中一定成立的是()A.a+2>b+2 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.>考点:不等式的性质.分析:根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.解答:解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.4.若点A(x1,y1)和点B(x2,y2)在正比例函数y=﹣3x的图象上,当x1<x2时,y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不一定考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据x1<x2即可得出结论.解答:解:∵正比例函数y=﹣3x中,k=﹣3<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选A.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.5.如图所示,A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.A B中点B.B C中点C.A C中点D.∠C的平分线与AB的交点考点:三角形的外接圆与外心;勾股定理的逆定理.专题:应用题.分析:了解直角三角形的判定及三角形的外心的知识,是解答的关键.解答:解:因为AB=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因为要求这三个村庄到活动中心的距离相等,所以活动中心P的位置应在△ABC三边垂直平分线的交点处,也就是△ABC外心处,又因为△ABC是直角三角形,所以它的外心在斜边AB的中点处,故选A.点评:本题比较容易主要考查直角三角形的判定及三角形的外心的知识.6.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处考点:方向角.分析:根据方向角的定义进行判断,即可解答.解答:解:A.因为C在A的北偏东60°方向的15米处,故本选项错误;B.因为A在C的南偏西60°方向的15米处,故本选项错误;C.C在B的北偏东60°方向的10米处,正确;D.因为B在A的北偏东60°方向的5米处,故本选项错误;故选C.点评:本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.7.下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等考点:全等三角形的判定.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、斜边相等的两个等腰直角三角形,根据ASA或者HL均能判定它们全等,故此选项正确;D、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;故选:C.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.8.如图,CE是△ABC的角平分线,EF∥BC,交AC于点F.已知∠AFE=64°,则∠FEC的度数为()A.64°B.32°C.36°D.26°考点:平行线的性质.分析:先根据平行线的性质求出∠ACB的度数,再由CE是△ABC的角平分线得出∠ECF的度数,根据三角形外角的性质即可得出结论.解答:解:∵EF∥BC,∠AFE=64°,∴∠ABC=∠AFE=64°.∵CE是△ABC的角平分线,∴∠ECF=∠ACB=×64°=32°,∴∠FEC=∠AFE﹣∠ECF=64°﹣32°=32°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.9.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4考点:解二元一次方程组;解一元一次不等式组.分析:理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.解答:解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.点评:当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.10.已知A、B两地相距40千米,中午12:00时,甲从A地出发开车到B地,12:10时乙从B地出发骑自行车到A地,设甲行驶的时间为t(分),甲、乙两人离A地的距离S(千米)与时间t(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.14:00 B.14:20 C.14:30 D.14:40考点:一次函数的应用.分析:根据甲60分走完全程40千米,求出甲的速度,再由图中两图象的交点可知,两人在走了30千米时相遇,从而可求出甲此时用了45分,则乙用了(45﹣10)分,所以乙的速度为:10÷35,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的10分,即可求出答案.解答:解:因为甲60分走完全程0千米,所以甲的速度是千米/分,由图中看出两人在走了30千米时相遇,那么甲此时用了30=45分,则乙用了(45﹣10)=35分,所以乙的速度为:(40﹣30)÷35=千米/分,所以乙走完全程需要时间为:40÷=140分,此时的时间应加上乙先前迟出发的10分,现在的时间为14:点30分;故选C点评:本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.二、填空题(本题有10小题,每小题3分,共30分)11.在Rt△ABC中,∠C=90°,∠A=25°,则∠B的度数为65°.考点:直角三角形的性质.分析:根据直角三角形两锐角互余可得∠A+∠B=90°,再代入∠A的度数可得答案.解答:解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=25°,∴∠B=90°﹣25°=65°,故答案为:65°.点评:此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,两个锐角互余.12.用不等式表示:a与b的和不大于1a+b≤1.考点:由实际问题抽象出一元一次不等式.分析: a与b的和为a+b,不大于即≤,据此列不等式.解答:解:由题意得,a+b≤1.故答案为:a+b≤1.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.已知点A(2,﹣3)与点B(a,﹣3)关于y轴对称,则a的值为﹣2.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.解答:解:由点A(2,﹣3)与点B(a,﹣3)关于y轴对称,得a+2=0.解得a=﹣2,故答案为:﹣2.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.等腰三角形的两边长分别为2和4,则其周长为10.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:根据等腰三角形的性质,本题要分情况讨论:当腰长为2或是腰长为4两种情况.解答:解:等腰三角形的两边长分别为2和4,当腰长是2时,三角形的三边是2,2,4,由于2+2=4,所以不满足三角形的三边关系;当腰长是4时,三角形的三边是4,4,2,满足三角形的三边关系,则三角形的周长是10cm.故答案为:10.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.已知y=2x+7,当﹣2<x<1时,y的取值范围为3<y<9.考点:一次函数的性质.专题:计算题.分析:先分别计算自变量为﹣2和1时的函数值,然后根据一次函数的性质确定函数值的取值范围.解答:解:当x=﹣2时,y=2x+7=﹣4+7=3;当x=1时,y=2x+7=2+7=9,所以当﹣2<x<1时,y的取值范围为3<y<9.故答案为3<y<9.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k <0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.17.已知Rt△ABC中,AB=3,AC=4,则BC的长为或5.考点:勾股定理.专题:分类讨论.分析:分两种情况解答:①AC为斜边,BC,AB为直角边;②BC为斜边,AC,AB为直角边;根据勾股定理计算即可.解答:解::①AC为斜边,BC,AB为直角边,由勾股定理得BC===;②BC为斜边,AC,AB为直角边,由勾股定理得BC===5;所以BC的长为或5.故答案为:或5.点评:本题考查了勾股定理在直角三角形中的正确运用,注意分类讨论解决问题.18.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为y=1(1≤x ≤4).考点:坐标与图形性质.分析:由两点的坐标可知两点在直线y=1上,然后再写出满足题目的条件的x的取值范围即可.解答:解:∵以(1,1),(4,1)为端点的线段在直线y=1上,∴在两点为端点的线段上任意一点可表示为:y=1(1≤x≤4).故答案为:y=1(1≤x≤4).点评:本题主要考查坐标与图形性质,此题涉及到函数思想,注意线段上的点包括两端点是解题的关键.19.如图,已知D,E是△ABC中BC边上的两点,且AD=AE,请你再添加一个条件:BD=EC,使△ABD≌△ACE.考点:全等三角形的判定.专题:开放型.分析:根据等腰三角形性质求出∠ADE=∠AED,推出∠ADB=∠AEC,根据全等三角形的判定推出即可.解答:解:BD=EC,理由是:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=180°,∠AED+∠AEC=180°,∴∠ADB=∠AEC,在△ABD和△ACE中∴△ABD≌△ACE故答案为:BD=EC.点评:本题考查了等腰三角形的性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,此题是一道开放型的题目,答案不唯一.20.在平面直角坐标系xOy中,有一个边长为2个单位长度的等边△ABC,满足AC∥y轴.平移△ABC得到△A′B′C′,使点A′、B′分别在x轴、y轴上(不包括原点),则此时点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).考点:坐标与图形变化-平移.分析:分两种情况:①B在AC左边;②B在AC右边;进行讨论,根据等边三角形的性质即可得到点C′的坐标.解答:解:①如图1,B在AC左边;C′在第一象限,点C′的坐标是(,2);C′在第四象限,点C′的坐标是(,﹣2);②B在AC右边;C′在第二象限,点C′的坐标是(﹣,2);C′在第三象限,点C′的坐标是(﹣,﹣2).故点C′的坐标是(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).故答案为:(,2)或(,﹣2)或(﹣,2)或(﹣,﹣2).点评:考查了坐标与图形变化﹣平移,解题关键是熟练掌握等边三角形的性质,以及分类思想的运用.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.解不等式7x﹣2≤9x+2,把解集表示在数轴上,并求出不等式的负整数解.考点:解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.分析:先解不等式然后把解集在数轴上表示出来,求出负整数解.解答:解:解不等式得:x≥﹣2,在数轴上表示为:,负整数解为:﹣1,﹣2.点评:本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,已知AB=CD,DE⊥AC,BF⊥AC,垂足分别是点E,F,AE=CF.求证:AB∥CD.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:由全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证,所以通过证∠A=∠C,那么就需证明这两个角所在的三角形全等.解答:解:如图,∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.又∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△AFB与△CED中,∴△AFB≌△CED(SAS).∴∠A=∠C.∴AB∥CD.点评:本题考查了三角形全等的判定及性质;题目采用从结论开始推理容易突破.有平行推出需要找到有关角相等,进而分析需证三角形全等.23.如图,已知∠BAC,用直尺和圆规作图:(1)作∠BAC的平分线;(2)在∠BAC的平分线上作点M,使点M到P、Q两点的距离相等.(不写作法,保留作图痕迹)考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.分析:(1)根据角平分线的基本作图作法作图即可;(2)连接PQ,作PQ的垂直平分线交∠BAC的平分线于点M即可.解答:解:(1)(2)如图所示:点评:此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等是解题关键.24.某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x (人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?考点:一次函数的应用.分析:(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去3人后的学生票金额;优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论解答:解:(1)按优惠方案一可得y1=25×3+(x﹣3)×15=15x+30(x≥3),按优惠方案二可得y2=(15x+25×3)×80%=12x+60(x≥3);(2)∵y1﹣y2=3x﹣30(x≥3),①当y1﹣y2=0时,得3x﹣30=0,解得x=10,∴当购买10张票时,两种优惠方案付款一样多;②当y1﹣y2<0时,得3x﹣30<0,解得x<10,∴3≤x<10时,y1<y2,选方案一较划算;③当y1﹣y2>0时,得3x﹣30>0,解得x>10,当x>10时,y1>y2,选方案二较划算.点评:本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.25.如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点.延长BC至点F,使CF=CE.(1)求∠ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.考点:等边三角形的判定与性质;等边三角形的性质.专题:计算题.分析:(1)根据等边三角形的判定得出△ABC是等边三角形,即可得出∠ABC的度数;(2)根据BE=FE得出∠F=∠CEF=30°,再等边三角形的性质得出∠EBC=30°,即可证明;(3)过E点作EG⊥BC,根据三角形面积解答即可.解答:解:(1)∵BE⊥AC于E,E是AC的中点,∴△ABC是等腰三角形,即AB=BC,∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°;(2)∵BE=FE,∴∠F=∠CEF,∵∠ACB=60°=∠F+∠CEF,∴∠F=30°,∵△ABC是等边三角形,BE⊥AC,∴∠EBC=30°,∴∠F=∠EBC,∴BE=EF;(3)过E点作EG⊥BC,如图:∵BE⊥AC,∠EBC=30°,AB=BC=2,∴BE=,CE=1=CF,在△BEC中,EG=,∴.点评:此题考查了等边三角形的判定与性质,等腰直角三角形的性质,以及含30度直角三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.26.如图,一次函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,线段AB的中点为D (3,2).将△AOB沿直线CD折叠,使点A与点B重合,直线CD与x轴交于点C.(1)求此一次函数的解析式;(2)求点C的坐标;(3)在坐标平面内存在点P(除点C外),使得以A、D、P为顶点的三角形与△ACD全等,请直接写出点P的坐标.考点:一次函数综合题.分析:(1)根据线段中点的性质,可得B点,A点坐标,根据待定系数法,可得函数解析式;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)当△ACD≌△AP1D时,根据C、P点关于D点对称,可得P点坐标,当△ACD≌△DP2A时,根据全等三角形的判定与性质,可得答案;当△ACD≌△DP3A时,根据线段中点的性质,可得答案.解答:解:(1)设A点坐标为(a,0),B点坐标为(0,b),由线段AB的中点为D(3,2),得=3,=2,解得a=6,b=4.即A(6,0),B(0,4)(2)如图1:连接BC,设OC=x,则AC=CB=6﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,42+x2=(6﹣x)2,解得x=,即C(,0);(3)①当△ACD≌△APD时,设P1(c,d),由D是PC的中点,得=3,=2,解得c=,d=4,即P1(,4);如图2:,②当△ACD≌△DP2A时,做DE⊥AC与E,P2F⊥AC与F点,DE=2,CE=3﹣=,由△CDE≌△AP2F,AF=CE=,P2F=DE=2,OF=6﹣=,∴P2(,﹣2);③当△ACD≌△DP3A时,设P3(e,f)A是线段P2P3的中点,得=6,=0,解得e=,f=2,即P3(,2),综上所述:P1(,4);P2(,﹣2);P3(,2).点评:本题考查了一次函数综合题,利用了轴对称的性质,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每日一学:浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答
答案浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题
~~
第1题 ~~
(2019吴兴.八上期末) 如图1,在平面直角坐标系中,直线 :
与
轴交于点A ,且经过点B (2,m ),点C
(3,0).(1) 求直线BC 的函数解析式;
(2) 在线段BC 上找一点D ,使得△ABO 与△ABD 的面积相等,求出点D 的坐标;
(3) y 轴上有一动点P ,直线BC 上有一动点M ,若△APM 是以线段AM 为斜边的等腰直角三角形,求出点M 的坐标;(4) 如图2,E 为线段AC 上一点,连结BE ,一动点F
从点B 出发,沿线段BE 以每秒1个单位运动到点E,再沿线段EA 以每秒 个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,求t 的最小值.
考点: 与一次函数有关的动态几何问题;
~~ 第2题 ~~
(2019吴兴.八上期末) 如图1,△ABC 中,沿∠BAC 的平分线AB 折叠,剪掉重叠部分;将余下部分沿∠B A C 的平分线A B 折叠,剪掉重叠部分;…;将余下部分沿∠B A C
的平分线A B 折叠,点
B 与点
C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.
(1) 如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是;(2) 如果一个三角形的最小角是20°,则此三角形的最大角为时,该三角形的三个角均是此三角形的好角。
~~ 第3题 ~~
(2019吴兴.八上期末) 已知等边△ABC 中,在射线BA 上有一点D ,连接CD ,并以CD 为边向上作等边△CDE ,连接BE 和AE.试判断下列结论:①AE=BD ; ②AE 与AB 所夹锐夹角为60°;③当D 在线段AB 或BA 延长线上时,总有∠BDE-∠AE D=2
∠BDC ;④∠BCD=90°时,CE +AD =AC +DE .正确的序号有( )
A . ①②
B . ①②③
C . ①②④
D . ①②③④
浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答11112n n n n+1n 2222
~~ 第1题 ~~答案:
解析:
答案:
解析:
~~ 第3题 ~~
答案:C
解析:。