最新武汉市新洲区2014届高三期末目标检测数文试题
湖北省武汉市2014届高三2月调研测试数学文试题-含答案

湖北省武汉市2014届高三2月调研测试数学(文科)2014.2.20 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈N|x2-2x≤0},则满足A∪B={0,1,2}的集合B的个数为A.3 B.4 C.7 D.82.设a,b∈R,则“ab≠0”是“a≠0”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.函数f(x)=ln(x2+2)的图象大致是4.某班的全体学生参加消防安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是A.45B.50C.55D.605.执行如图所示的程序框图,若输入n的值为5,则输出s的值是A.4B.7C.11D.166.若关于x的不等式|x-3|+|x-4|<a的解集是空集,则实数a的取值范围是A.(-∞,1] B.(-∞,1)C.[1,+∞) D.(1,+∞)7.已知e1,e2是夹角为60°的两个单位向量,若a=e1+e2,b=-4e1+2e2,则a与b的夹角为A.30°B.60°C.120°D.150°8.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加A .47尺B .1629尺C .815尺D .1631尺9.如图,在长方体ABCD-A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .设AB =2AA 1=2a ,EF =a ,B 1E =B 1F .在长方体ABCD-A 1B 1C 1D 1内随机选取一点,则该点取自于几何体A 1ABFE-D 1DCGH 内的概率为A .1116B .34C .1316D .7810.抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的左焦点的连线交C 1于第二象限内的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p = A .316 B .38 C .233 D .433二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.下图是某公司10个销售店某月销售某品牌 电 脑数量(单位:台)的茎叶图,则数 据落在区间[19,30)内的频率为 .12.若复数z =(m 2-7m +15)+(m 2-5m +3)i (m ∈R ,i 为虚数单位)在复平面内对应的点位于直线y =-x 上,则m = .13.已知某几何体的三视图如图所示,则该 几何体的表面积为 .14.若点(x ,y )位于曲线y =|x -2|与y =1所围成的封闭区域内, 则2x +y 的最小值为 . 15.如下图①②③④所示,它们都是由小圆圈组成的图案.现按同样的排列规则进行排列,记第n 个图形包含的小圆圈个数为f (n ),则 (Ⅰ)f (5)= ;(Ⅱ)f (2014)的个位数字为.16.过点P (-10,0)引直线l 与曲线y =-50-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面D 1C 1 B 1A1 ABCDE GF H正视图 俯视图侧视图积取最大值时,直线l 的斜率等于 .17.已知函数f (x )=3sin2x +2cos 2x +m 在区间[0,π2]上的最大值为3,则(Ⅰ)m = ;(Ⅱ)当f (x )在[a ,b ]上至少含有20个零点时,b -a 的最小值为 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知sin(A -B )=cos C . (Ⅰ)求B ;(Ⅱ)若a =32,b =10,求c .19.(本小题满分12分)已知数列{a n }满足0<a 1<2,a n +1=2-|a n |,n ∈N *. (Ⅰ)若a 1,a 2,a 3成等比数列,求a 1的值;(Ⅱ)是否存在a 1,使数列{a n }为等差数列?若存在,求出所有这样的a 1;若不存在,说明理由. 20.(本小题满分13分)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(Ⅰ)证明:BD ⊥平面P AC ;(Ⅱ)若P A =1,AD =2,求三棱锥E -BCD 的体积.21.(本小题满分14分)已知函数f (x )=e x -1-x . (Ⅰ)求f (x )的最小值; (Ⅱ)设g (x )=ax 2,a ∈R .(ⅰ)证明:当a =12时,y =f (x )的图象与y =g (x )的图象有唯一的公共点;(ⅱ)若当x >0时,y =f (x )的图象恒在y =g (x )的图象的上方,求实数a 的取值范围.22.(本小题满分14分)如图,矩形ABCD 中,|AB |=22,|BC |=2.E ,F ,G ,H 分别是矩形四条边的中点,分别以HF ,EG 所在的直线为x 轴,y 轴建立平面直角坐标系,已知→OR =λ→OF ,→CR ′=λ→CF ,其中0<λ<1.(Ⅰ)求证:直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上;(Ⅱ)若点N 是直线l :y =x +2上且不在坐标轴上的任意一点,F 1、F 2分别为椭圆Γ的左、右焦点,直线NF 1和NF 2与椭圆Γ的交点分别为P 、Q 和S 、T .是否存在点N ,使得直线OP 、OQ 、OS 、OT 的斜率k OP 、k OQ 、k OS 、k OT 满足k OP +k OQ +k OS +k OT =0?若存在,求出点N 的坐标;若不存在,请说明理由.武汉市2014届高三2月调研测试 数学(文科)试题参考答案及评分标准一、选择题1.D 2.A 3.D 4.B 5.C 6.A 7.C 8.B 9.D 10.D 二、填空题11.0.6 12.3 13.33π 14.3 15.(Ⅰ)21;(Ⅱ)316.-33 17.(Ⅰ)0;(Ⅱ)28π3三、解答题18.(本小题满分12分)解:(Ⅰ)由sin(A -B )=cos C ,得sin(A -B )=sin(π2-C ).∵△ABC 是锐角三角形,∴A -B =π2-C ,即A -B +C =π2, ①又A +B +C =π, ②由②-①,得B =π4.………………………………………………………………6分(Ⅱ)由余弦定理b 2=c 2+a 2-2ca cos B ,得(10)2=c 2+(32)2-2c ×32cos π4,即c 2-6c +8=0,解得c =2,或c =4.当c =2时,b 2+c 2-a 2=(10)2+22-(32)2=-4<0, ∴b 2+c 2<a 2,此时A 为钝角,与已知矛盾,∴c ≠2.故c =4.…………………………………………………………………………12分19.(本小题满分12分) 解:(Ⅰ)∵0<a 1<2,∴a 2=2-|a 1|=2-a 1,a 3=2-|a 2|=2-|2-a 1|=2-(2-a 1)=a 1. ∵a 1,a 2,a 3成等比数列,∴a 22=a 1a 3,即(2-a 1)2=a 21,解得a 1=1.…………………………………………………………………………6分 (Ⅱ)假设这样的等差数列存在,则由2a 2=a 1+a 3,得2(2-a 1)=2a 1, 解得a 1=1.从而a n =1(n ∈N *),此时{a n }是一个等差数列;因此,当且仅当a 1=1时,数列{a n }为等差数列.……………………………12分20.(本小题满分13分) 解:(Ⅰ)∵P A ⊥平面ABCD ,∴P A ⊥BD .∵PC ⊥平面BDE , ∴PC ⊥BD .又P A ∩PC =P ,∴BD ⊥平面P AC .………………………………………………6分 (Ⅱ)如图,设AC 与BD 的交点为O ,连结OE .∵PC ⊥平面BDE ,∴PC ⊥OE .由(Ⅰ)知,BD ⊥平面P AC ,∴BD ⊥AC , 由题设条件知,四边形ABCD 为正方形.由AD =2,得AC =BD =22,OC =2.在Rt △P AC 中,PC =P A 2+AC 2=12+(22)2=3. 易知Rt △P AC ∽Rt △OEC ,∴OE P A =CE AC =OC PC ,即OE 1=CE 22=23,∴OE =23,CE =43. ∴V E -BCD =13S △CEO ·BD =13·12OE ·CE ·BD =16·23·43·22=827.………13分21.(本小题满分14分)解:(Ⅰ)求导数,得f ′(x )=e x -1.令f ′(x )=0,解得x =0.当x <0时,f ′(x )<0,∴f (x )在(-∞,0)上是减函数; 当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.故f (x )在x =0处取得最小值f (0)=0.……………………………………………4分 (Ⅱ)设h (x )=f (x )-g (x )=e x -1-x -ax 2,则h ′(x )=e x -1-2ax .(ⅰ)当a =12时,y =e x -1-x 的图象与y =ax 2的图象公共点的个数等于h (x )=e x -1-x -12x 2零点的个数.∵h (0)=1-1=0,∴h (x )存在零点x =0. 由(Ⅰ),知e x ≥1+x ,∴h ′(x )=e x -1-x ≥0,∴h (x )在R 上是增函数,∴h (x )在R 上有唯一的零点.故当a =12时,y =f (x )的图象与y =g (x )的图象有唯一的公共点.………9分(ⅱ)当x >0时,y =f (x )的图象恒在y =g (x )的图象的上方⇔当x >0时,f (x )>g (x ),即h (x )=e x -1-x -ax 2>0恒成立. 由(Ⅰ),知e x ≥1+x (当且仅当x =0时等号成立), 故当x >0时,e x >1+x .h ′(x )=e x -1-2ax >1+x -1-2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤12时,h ′(x )≥0(x >0),∴h (x )在(0,+∞)上是增函数,又h (0)=0, 于是当x >0时,h (x )>0.由e x >1+x (x ≠0),可得e -x >1-x (x ≠0),从而当a >12时,h ′(x )=e x -1-2ax <e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时,h ′(x )<0,此时h (x )在(0,ln2a )上是减函数,又h (0)=0, 于是当x ∈(0,ln2a )时,h (x )<0.综上可知,实数a 的取值范围为(-∞,12].……………………………14分22.(本小题满分14分)解:(Ⅰ)由已知,得F (2,0),C (2,1).由→OR =λ→OF ,→CR ′=λ→CF ,得R (2λ,0),R ′(2,1-λ). 又E (0,-1),G (0,1),则直线ER 的方程为y =12λx -1, ①直线GR ′的方程为y =-λ2x +1. ② 由①②,得M (22λ1+λ2,1-λ21+λ2).∵(22λ1+λ2)22+(1-λ21+λ2)2=4λ2+(1-λ2)2(1+λ2)2=(1+λ2)2(1+λ2)2=1,∴直线ER 与GR ′的交点M 在椭圆Γ:x 22+y 2=1上.…………………………6分(Ⅱ)假设满足条件的点N (x 0,y 0)存在,则直线NF 1的方程为y =k 1(x +1),其中k 1=y 0x 0+1,直线NF 2的方程为y =k 2(x -1),其中k 2=y 0x 0-1.由⎩⎪⎨⎪⎧y =k 1(x +1),x 22+y 2=1.消去y 并化简,得(2k 21+1)x 2+4k 21x +2k 21-2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 212k 21+1,x 1x 2=2k 21-22k 21+1.∵OP ,OQ 的斜率存在,∴x 1≠0,x 2≠0,∴k 21≠1.∴k OP +k OQ =y 1x 1+y 2x 2=k 1(x 1+1)x 1+k 1(x 2+1)x 2=2k 1+k 1·x 1+x 2x 1x 2=k 1(2-4k 212k 21-2)=-2k 1k 21-1.同理可得k OS +k OT =-2k 2k 22-1.∴k OP +k OQ +k OS +k OT =-2(k 1k 21-1+k 2k 22-1)=-2·k 1k 22-k 1+k 21k 2-k 2(k 21-1)(k 22-1)=-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1). ∵k OP +k OQ +k OS +k OT =0,∴-2(k 1+k 2)(k 1k 2-1)(k 21-1)(k 22-1)=0,即(k 1+k 2)(k 1k 2-1)=0. 由点N 不在坐标轴上,知k 1+k 2≠0, ∴k 1k 2=1,即y 0x 0+1·y 0x 0-1=1. ③又y 0=x 0+2, ④ 解③④,得x 0=-54,y 0=34.故满足条件的点N 存在,其坐标为(-54,34). (14)。
湖北省武汉市新洲区2014届高三上学期期末目标检测理科综合试题.pdf

过程中,下面关于二者速度v随时间t的变化图像,其中可能正确的是
17.竖直面内有两圆形区域内分别存在水平的匀强磁场,
其半径均为R且相切于O点,磁感应强度大小相等、方
向相反,且不随时间变化.一长为2R的导体杆OA绕O
点且垂直于纸面的轴顺时针匀速旋转,角速度为ω.t=
0时,OA恰好位于两圆的公切线上,如图所示,若选取
,乙烯的生理作用是
.
(2)科学家研究发现紫外光可以抑制植物生长,原因是紫外光增加了植物体内吲哚乙酸氧化酶的活性,从而促进
了生长素氧化为3-亚甲基氧代吲哚,而后者没有促进细胞伸长的作用.现在提供生长状况相同的健康的小麦幼苗若干作
为实验材料,请完成下列实验方案,以验证紫外光抑制植物生长与生长素的氧化有关.
A.①④ B.②③
C.①② D.③④
11.在常温下,下列有关溶液中微粒的物质的量浓度关系正确的是
A.1L0.1mol·L-1(NH4)2Fe(SO4)2·6H2O的溶
液中:c(NH4+)+c(Fe2+)+c(H+)=c(OH—)
+c (SO42—)
B.0.1 mol·L-1 NH4HS溶液中:c(NH4+)<c(HS-)+c(H2S)+c(S2-)
(2)在充满N2与CO2的密闭容器中,用水培法栽培几株该某植物,CO2充足.得到系统的呼吸速率和光合速率变化
曲线如图2.
①第5~7h呼吸作用加快的主要原因是
,第9-10h光合速率迅速下降,推测最可能发生变化的环境因素
是
.
②第10h后
成为ATP合成的唯一场所.
③该植物积累有机物速率最快的时刻是第
度为g).
A.只有a > gsinθ,A才受沿传送带向上的静摩擦力作用
高三历史上期末试题-武汉市新洲区2014届高三上学期期末考试历史试卷及答案目标检测

武汉市新洲区2014届高三期末目标检测历史试题24.秦朝的“三公九卿”中,奉常掌宗庙礼仪,郎中令掌宫殿警卫,少府管皇帝的生活供应,宗正管皇帝家族和亲戚等。
这突出反映了秦朝官制设置A.职分细化,各负其责B.化国为家,君权至上C.选贤举能,唯才是用D.官员众多,政务繁杂25.据文献记载:“往者豪强大家,得管山海之利,采铁石鼓铸,煮盐。
一家聚众或至千余人,大抵尽收放流人民也。
远去乡里,弃坟墓,依倚大家,聚深山穷泽之中,成奸伪之业。
”因此,西汉统治者采取的主要措施是A.盐铁官营,政府直接控制重要手工业的生产B.设置官员,强化私营产业的管理,规范市场C.颁布法令,禁止人民离开土地,从事工商业D.征收重税,从私营工商业活动中掠夺利润26.宰相张九龄向唐玄宗上书后,“不历州县不拟台省(中央)”成为唐中期后官员选拔的重要原则,其本质说明A.郡县制的开始 B.刺史制的完善 C.中书门下制的实行 D.科举制的缺陷27.按照明朝的法律,屠宰耕牛是犯罪行为:“故意杀死他人马牛的,杖七十,徙一年半;私宰自己马牛的,杖一百。
耕牛伤病死亡的,不报官府,私自开剥,笞四十。
”上述法律规定反映了明朝A.政府严格规范经济活动 B.保护农业生产力不受破坏C.屠宰耕牛成为普遍现象 D.农耕经济出现衰退情况28.康熙年间的《归安县志》(归安县,今浙江湖州市)记载:“归安诸乡统力农,修蚕绩,极东乡业织,南乡业桑菱,西乡业薪竹,北乡……业蔬、靛,荻港业藕,埭溪业苎,善琏业笔,菱湖业蚕,捻丝为绸尤工。
”这表明当时的归安县A.较早出现了资本主义萌芽 B.农业和手工业已经分离C.农业生产的区域分工比较明显 D.不再坚持“重农抑商”政策29.(晚清)欧阳昱的《见闻琐录》记载:“当茶出时,众夷来买,商定而后答价,丝毫不能增……而夷人阴谋幻诈之心,尤为甚焉者。
茶有二三春,近日茶商多逡巡不前,夷见头春茶至者少,由故倍其值以买之……”此段材料说明A.中国茶叶以质优价廉占领市场 B.外商操纵中国茶叶市场C.民族资产阶级向外商妥协 D.茶商与外商进行价格战30.风云激荡的百年中国,康有为曾被指“其貌则孔也,其心则夷也”,陈独秀则宣称“愚之信仰共和,必排孔教”。
2014年高考文科数学湖北卷及答案解析

绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共6页,22题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7} 2.i 为虚数单位,21i ()1i-=+( )A .1B .1-C .iD .i - 3.命题“x ∀∈R ,2x x ≠”的否定是( )A .x ∀∉R ,2x x ≠B .x ∀∈R ,2x x =C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件420,0x y x y x y +⎧⎪-⎨⎪⎩≤,≤,≥≥,则2x y +的最大值是( )A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2p ,点数之和为偶数的概率记为3p ,则( )A .123p p p <<B .213p p p <<C .132p p p <<D .312p p p <<6.得到的回归方程为y bx a =+,则( )A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系-O xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C .④和③D .④和②8.设a ,b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x yθθ-=的公共点的个数为 ( )A .0B.1C .2D .39.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()3f x x x =-.则函数()()3g x f x x =-+的零点的集合为 ( )A .{1,3}B .{3,1,1,3}--C .{2D .{2-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.12.若向量(1,3)OA =-,||||OA OB =,||||0OA OB =, 则||AB = .13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知π6A =,1a =,b =,则B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()(1)f x f x ->,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =,则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时.17.已知圆O :221x y +=和点(2,0)A -,若定点(,0)(2)B b b ≠-和常数λ满足:对圆O 上任意一点,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ= .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin ,[0,24).1212f t t t t =-∈(Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n +>?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD ,1BB ,11A B ,11A D 的中点.求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN . ss21.(本小题满分14分)π为圆周率,e 2.71828=…为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -.求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.M2z xy =+,所以00z =,4A z =,7B z =,4C z =,故2x y +的最大值是7,故选C .)5.57.95=图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .5(,O B x=(1,OA =-||||OA OB =,0OA OB =,1y =⎩ ,所以(3,1)OB =故(2,4)AB OB OA =-=2||2AB =【答案】π212kk ++++++的值,(9212212912-++++++=-【考点】循环结构的程序框图101)442n =-.显然2n <故直线1BC EFPQ ∥平面.1ACCC C =,所以ACC ⊂平面M ,N 分别是PNMN N =【考点】空间中的线面平行与垂直的判定11)(,)2+∞10){1,}2-时,直线0,0,由②③解得11)(0,)2时,直线恰好有三个公共点1(,1)(,){0}2∈-∞-+∞时,直线10){1,}2-时,直线l 与轨迹C 恰好有两个公共点;1)(0,)2与轨迹C 恰好有三个公共点【考点】轨迹方程,直线与圆锥曲线的关系。
湖北省武汉市2014届高三五月供题训练(二)数学文试题 W

武汉市2014届高三5月供题(二)数 学(文科)2014.5一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = A .{1,4} B .{2,3} C .{9,16} D .{1,2}2.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=A .-4B .-3C .-2D .-13.设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=A .15B .20C .25D .305.执行右边的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a 的值为1.2,则第一次、第二次输出的a 的值分别为 A .0.2,0.2 B .0.2,0.8 C .0.8,0.2 D .0.8,0.86.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如右图所示,则该四棱锥侧面积和体积分别是A .B .83C .81),3D .8,87.设z 是复数, 则下列命题中的假命题是A .若20z ≥,则z 是实数B .若20z <,则z 是虚数C .若z 是虚数,则20z ≥D .若z 是纯虚数,则20z <8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .39.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b '<'<ˆ,ˆ 10.设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最小值时,2x y z +-的最大值为 A .0 B .98C .2D .94二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
湖北省武汉市新洲区2014届高三上学期期末目标检测文科综合试题

湖北省武汉市新洲区2014届高三上学期期末目标检测文科综合试题考试时间:150分钟满分:300分 2014.1本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,请把答案填涂在机读答题卡中对应位置。
第Ⅱ卷为非选择题,答案书写在答题卷相应的位置。
第Ⅰ卷(选择题 140分)本卷共35小题,每小题4分,共计140分。
在每小题列出的四个选项中,只有一项是最符合题目要求的,请把正确答案的字母代号填写在机读答题卡中对应的答题栏内。
图示地区是俄罗斯的一个重要开发区,这里针叶林广布……读图回答1-3题1.该地区的区域地理特征包括①气候宜人②交通便捷③地广人稀④矿产丰富A. ①②B. ②③ C.①④ D. ③④2. 该地区南部人口密度相对较高,下列原因不正确的是A.气温较适宜B.位于平原地带C.开发历史较长D.经济相对发达3.20世纪后期以来,该地区内部呈现人口由南向北的迁移趋势,这主要是由于北部A. 人口密度低B. 市场扩大C. 开发了新资源D. 交通条件改善下图为世界及四个大洲城市化发展统计图,回答4-5题。
4.该图反映A.亚、非洲城市化速度较快 B.城市化水平与城市化速度成负相关C.亚、非洲总体处于城市化初级阶段 D.欧洲、北美呈现逆城市化5.新兴国家快速城镇化过程中,在城市中出现一些问题,下面描述与实际最不相符的是A.无序扩张,环境质量下降 B.交通拥堵,住房紧张C.教育配套滞后,车位不足D.劳力紧缺,退休年龄推迟图为世界某区域海洋与陆地自然带分布图。
读图完成6-8题。
6.图中洋流的名称是A.加那利寒流 B.西澳大利亚寒流C.本格拉寒流 D.秘鲁寒流7.X地降水主要集中在A.12月至次年2月B.3~5月C.6~8月D.9~11月8.沿X→Y→Z自然景观的变化是A.阔叶林→森林草原→荒漠B.落叶林→草原→荒漠C.硬叶林→草原→荒漠D.雨林→草原→荒漠读我国某地区等高线地形图,回答9-11题。
9.若图中乙地外围闭合等高线的高度为500米,下列说法正确的是A.乙地海拔比500米低B.乙地是凸地C.乙地海拔在400--500米D.乙地是洼地10.图中陡崖顶部的海拔可能是A.1099米 B.999米C. 899米 D.799米11.通过调查发现,甲地可以种植甘蔗,而丙却不可以,原因是A.甲地纬度低,热量充足B.甲地靠近海洋,降水丰富C.甲地土壤肥沃D.甲地位于盆地内部,热量充足12.党的十八届三中全会提出“市场在资源配置中起决定性作用”。
湖北省部分重点中学2014届高三第二次联考文数

参考答案及评分标准一、选择题:1.C 2.B 3.A 4.A 5.C 6.A 7.D 8.B 9.A 10.A二、填空题:11.725 12.(]1,0- 13.1 14.0 15.31 16.20 17.∈;12,23⎛⎤ ⎥⎝⎦三、解答题:18、(1)2()sin (2cos 1)cos sin sin cos cos sin 2f x x x x x ϕϕϕϕ=-+=+sin()x ϕ=+Q x π=处取得最小值,322x k πϕπ∴+=+,22k πϕπ∴=+ 又()0,ϕπ∈Q ,2πϕ∴= ..........................................(6分)(2)Q 33()cos ,(),cos 22f x x f A A ===,由于()0,A π∈,所以6A π= 在ABC ∆中由正弦定理得sin sin a b A B =,即120.5sin B =,2sin 2B ∴=,.......(9分) ()0,B π∈Q ,4B π∴= 或34B π=,当4B π=时,712C π=;当34B π=时,12C π=∴7,12C π=或12C π= ...........................................(12分)19、(1)1B O ⊥Q 平面ABCD ,CD ⊂平面ABCD ,∴1B O CD ⊥,又CD ⊥AD ,AD I 1B O =O∴CD ⊥平面1AB D ,又1AB ⊂平面1AB D∴1A B C D ⊥,又11AB B C ⊥,且1B C CD C =I1AB ∴⊥平面1B CD ,又1AB ⊂平面1ABC∴ 平面1ABC ⊥平面1B CD ................................(7分)(2)由于1AB ⊥平面1B CD ,1B D ⊂平面ABCD ,所以11AB B D ⊥在1Rt AB D ∆中,22112B D AD AB =-=,又由111B O AD AB B D⋅=⋅得111AB B D B O AD ⋅=63=,所以11111621333236B ABC ABC V S B O -∆=⋅=⨯⨯⨯⨯=....................................................(13分)20、(1)由1123n n n a a -+⋅=⋅ (1) 对一切正整数n 都成立,得212,23n n n n a a --≥⋅=⋅ (2)(1)除以(2)得2n ≥,13n na a += .............................(6分) (2)由(1)中的结论知{}n a 的奇数项和偶数项分别从小到大构成公比为3的等比数列,其中1121213,23n n n n a a ---=⋅=⋅由已知有,21121322log 1,23n a n n n n b n b a ---==-==⋅∴{}n b 的前2n 项和21321242()()n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+ =01132213n n n +--⨯+⋅-(1)312n n n -=+- ...............................(13分) 21、(1)2()22f x x x a '=++,由题意知方程2220x x a ++=在()1,0-上有两不等实根,设2()22g x x x a =++,其图象的对称轴为直线12x =-,故有(1)0(0)011()(1)022g a g a g a ⎧⎪-=>⎪=>⎨⎪⎪-=+-+<⎩,解得102a <<...............................(6分) (222a x x =-- 构造2()22g x x x =--利用图象解照样给分) (2)由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈- ⎪⎝⎭且有222220x x a ++=,即22222a x x =--,这样3222222()13f x x x ax =+++32232222222224(22)1133x x x x x x x =++--+=--+ 设324()13x x x ϕ=--+,2()42x x x ϕ'=--=0,解得121,02x x =-=,由1,2x ⎛⎫∈-∞- ⎪⎝⎭,()0x ϕ'<;1,02x ⎛⎫∈- ⎪⎝⎭,()0x ϕ'>;()0,x ∈+∞,()0x ϕ'<知,324()13x x x ϕ=--+在1(,0)2-单调递增,又Q 2102x -<<,从而2111()()212x ϕϕ>-=, 即211()12f x >成立。
湖北省武汉市部分学校2014届高三数学9月起点调研考试文新人教A版

故 f(x) 的最小值 φ (a) 的解析式为 φ (a) = a- alna ( a> 0).……………………… 6 分
(Ⅱ)由(Ⅰ) ,知 φ (a) = a- alna ( a> 0),
求导数,得 φ ′(a) =- lna .
(ⅰ)令 φ ′ (a) = 0,解得 a= 1.
当 0< a< 1 时, φ ′ (a) >0,∴ φ (a) 在 (0 ,1) 上是增函数;
11. {3} 12 . 15 13
4 .C 5 .A 9 . D 10 .B
5 .- 3 14 .6 15
1 . [ 2, 4]
10
16.- 5
17
.(Ⅰ) 98;(Ⅱ) 5
三、解答题
18.(本小题满分 12 分)
解:(Ⅰ)由 2cos(B - C)+1= 4cosBcosC,得 2(cosBcosC + sinBsinC) +1= 4cosBcosC,
A. x+y- 2= 0 B . x+ y+ 1= 0 C . x+ y- 1= 0 D . x+y+ 2= 0
3.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成
6 组: [40 , 50) ,
[50 , 60) ,[60 , 70) ,[70 ,80) ,[80 , 90) ,[90 , 100] 加以统计,得
武汉市部分学校 2014 届高三起点调研考试
数 学(文科)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.如图,在复平面内,点 M表示复数 z,则 z 的共轭复数对应的点是
A. M
B. N
C. P
D. Q
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文 科 数 学
满分:15 0分 考试时间:1 2 0分钟 2014.1
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.
1.右图的矩形,长为5,宽为2.在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗.则可以估计出阴影部分的面积约为( )
解得 ,………………………10分
∴ .…………………………12分
20.解:(1)甲班的大众评审的支持票数的中位数是:
众数是72,极差是90-62=28
乙班的大众评审的支持票数的中位数是
众数是86,95,极差是98-65=33………………………………………6分
(2)进入决赛的选手共6名,其中拥有“优先挑战权”的选手共3名,记为1、2、3;其余3人记为A、B、C,则被选中3人的编号所有可能的情况共20种,列举如下:
5.在 中, ,且 ,点 满足 等于( )
A. B. C. D.
6.已知等差数列{ }的前 项和为 ,且 , ,
则 为( )
A. B.
C. D.
7.一个几何体的三视图如图所示,其中俯视图与侧视图都是半径为2的圆,则这个几何体的体积是( )
A. B. C. D.
8.已知双曲线 的右焦点是F, 过点F且倾角为600的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的范围是( )
加复赛时获得的100名大众
评审的支持票数制成的茎叶
图:赛制规定:参加复赛的
40名选手中,获得的支持票
数排在前5名的选手可进入
决赛,若第5名出现并列,
则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;
(Ⅱ)从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率
A. B. C. D.
2.“ ”是“直线 与圆 相切”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.若全集 R,集合 { }, { },则 ( )
A.{ | 或 } B.{ | 或 }
C.{ | 或 } D.{ | 或 }
4.已知 , ,则 ( )
A. B. C. D.
(Ⅱ)设 ,数列 的前 项和为 ,若 ,求 的值。
19.(本小题满分12分)已知函数 .
(Ⅰ)求函数 在 上的值域;
(Ⅱ)若对于任意的 ,不等式 恒成立,求 .
20.(本小题满分13分)某电视台2013年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参
16. 若锐角A,B,C满足A+B+C= ,以角A,B,C分别为内角构造一个三角形,设角A,B,C所对的边分别是a,b,c,依据正弦定理和余弦定理,得到等式:
,现已知锐角A,B,C满足A+B+C= ,则 = ,类比上述方法,可以得到的等式是.
17.下列5个判断:
①若 在[1,+∞)上增函数,则a=1;
切且方
程,若不存在,说明理由.
武汉市新洲区2014届高三期末目标检测
数学(文科)参考答案
一、选择题
BADBB AACAB
二、填空题
11.2- 12.- 13. 14. 15.
16. 17.
三.解答题
18.解: (Ⅰ) 由题 ……①
……②
由① ②得: ,即
当 时, , , ,
所以,数列 是首项为,公比为 的等比数列故 ( )
(Ⅱ)由(Ⅰ) ( )
所以
所以
19.解:(Ⅰ) ,……………………………3分
∵ ,∴ ,∴ ,
∴ ,即函数 在 上的值域是[-3,3].………………6分
(Ⅱ)∵对于任意的 ,不等式 恒成立,
∴ 是 的最大值,∴由 ,
21.(Ⅰ)略(证明完成给6分)
(Ⅱ)过M作MH⊥QC垂足是H,链接MD,则MH= = ,…………10分
四棱锥 --- 的体积为:
而四棱锥 --- 的体积为
则三棱锥 --- 的体积 …………14分
22.解(Ⅰ)设抛物线方程为 ,
由已知得: 所以
所以抛物线的标准方程为
(Ⅱ)不存在
因为直线与圆相切,所以
21.(本小题满分14分)如图,在四棱锥 中,底面 为菱形, , 为 的中点.
(Ⅰ)若 ,求证:平面 平面 ;
(Ⅱ)点 在线段 上, ,若平面 平面ABCD,且 ,求三棱锥 - 的体积.
22.(本小题满分14分)已知抛物线的顶点在坐标原点,焦点在 轴上,且过点 .
(Ⅰ)求抛物线的标准方程;
(Ⅱ)是否存在直线 ,与圆 相
A. B. (1,2) C. D.
9.已知函数f(x)对于任意的x∈R,导函数f'(x)都存在,且满足 ≤0,则必有()
A. B.
C. D.
10.如图,从点 发出的光线,沿平行于抛物线 的对称轴方向射向此抛物线上的点P,反射后,穿过焦点射向抛物线上的点Q,再经抛物线反射后射向直线 上的点N,经直线反射后又回到点M,则 等于( )
把直线方程代入抛物线方程并整理得:
由 得 或
123,12A,12B,12C,13A,13B,13C,1AB,1AC,1BC,23A,23B,23C,2AB,2AC,2BC,3AB,3AC,3BC,ABC
其中拥有“优先挑战权”的选手恰有1名的情况共9种,如下:
1AB,1AC,1BC,2AB,2AC,2BC,3AB,3AC,3BC
所以所求的概率为
②函数 只有两个零点;
③函数y=In( )的值域是 ;
④函数 的最小值是1;
⑤在同一坐标系中函数 与 的图像关于y轴对称。
其中正确命题的序号是。
三、解答题:本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.
18.(本小题满分12分)已知数列 满足 , ( 且 ).
(Ⅰ)求数列 的通项公式 ;
A.5B.6C.7D.8
二、填空题:本大题共7小题,每小题5分,共35分.将答案填在答题卡的相应位置
11. =.
12.记等差数列 的前 项和为 ,若 ,则直线 的斜率为=.
13.若双曲线 的离心率是 ,则实数 的值是.
14.已知实数 满足 若目标函数 取得最小值时最优解有无数个,则实数 的值为.
15.函数 的值域是_ _______