同相比例运算放大器剖析

合集下载

剖析集成运放反相、同相公式推导

剖析集成运放反相、同相公式推导

剖析集成运放反相、同相放大器公式推导北京交通运输学院丁亮一、前提1、首先为了便于分析对集成运放组成电路通常看做一个理想运放器件;它具备以下理想特性。

开环电压放大倍数 Av=∞输入电阻 ri=∞输出电阻 r=0共模抑制比KCMR=∞频带宽度 BW= ∞2,集成运放电路的放大不同一般是外接电阻的不同,所以我们只分析电阻二,反相放大器说明:If 电流方向:当输入信号Ui为正值时电流Ii流入反相输入端,由于反相输入端与输出端反相,故Uo 为负值,反馈电流If从反相输入端流至输出端(一)推导公式前的准备1,输入电压=U- U_因为:输出电压=输入电压x 电压放大倍数(AV)所以U + - U _=V O A U 注:U +=同相输入端电压,U _=反相输入端电压 U o =输出端电压, A v =电压放大倍数又因为理想放大倍数为无穷大所以U +- U -=Vo A U =0 分母A V 为无穷大推出:U +- U -=0,U +=U - 这种结果就是所说的“虚短”。

关于—U U =+ 运算放大电路工作在线性区,其输出电压是有限值,而开环电压放大倍数为无穷大,则:0==uo i A U U 此式从另外角度还可说明v A 无穷大就说明输入电压i U 逼进为零;因0=i U 的前提条件是同相输入电压等于反相输入电压i U 才能为零,即-+=i i U Ui i i U U U ==--+0由此v A (-+-i i U U )=o U 。

即Vi i A Uo U U =--+ 2、要明确反馈电压U f 就等于输出电压U o 即U f =U o因为反馈电压取自U o所以U f =I f x R f =U o (欧母定律)3、输入电阻无穷大(理想)所以输入电流 I _=I += 0 即“虚断”4、在上图电路中,2R I U ++=而A I 0=+,所以V U 0=+,又因为 U U -+=故V U 0=-。

从电位来看,运算放大器“—”端相当于地;但是实际又未接地,故该端称“虚地”5、要用基尔霍夫定律,即“流入电流等于流出电流”(第一定律)看图, I i = I f + I _ 因为虚断 I _=0 所以I i = I f(二)、推导方法有两种1、用放大倍数公式可求即 A V =iU U 0= - 11i i R R f f因为 i 1= i f 所以A V = - 1R R f 2、依据I i = I f 看图列公式找出部分电流和电压关系式:即i i I R U U =--1 f fI R U U =--0所以fi R U U R U U 01-=--- 因为虚短 U -= U +=0即 1R U i= — f R U 0 可以推出 A V= 10U U = —1R R f三:同相比例运算放大器一、推导公式前的准备:1要导出 U i = U += u -(1)因为虚短可知 U +=U _ (2)又因为虚断 I += 0即流过R 2的电流为0,说明R 2上不消耗电压;所以U i = U += U _ 。

同相比例和反相比例放大器

同相比例和反相比例放大器

同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻Rf 反馈到运放的反相输入端,构成电压并联负反馈放大电路。

R ¢为平衡电阻应满足R ¢= R 1//R f 。

利用虚短和虚断的概念进行分析,v I=0,v N=0,i I =0,则即∴该电路实现反相比例运算。

反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。

2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。

3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。

二、同相比例运算电路图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。

根据虚短、虚断的概念有v N= v P= v S ,i 1= if于是求得所以该电路实现同相比例运算。

同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。

2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。

三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。

由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。

利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出图 1 同相比例运算电路图 1 加法运算电路若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。

该加法电路可以推广到对多个信号求和。

从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。

第七章运算放大器7.1运算放大器特性同相比例放大电路反相比例放大

第七章运算放大器7.1运算放大器特性同相比例放大电路反相比例放大
第七章 运算放大器
7.1 运算放大器特性 同相比例放大电路 反相比例放大电路
7.2 基本运算电路应用 加法电路 减法电路
7.1 集成运放的特性---两种工作状态
1. 理想运放主要具有如下特性: ① 差模开环电压增益无穷大:A od→∞; ② 差模输入电阻无穷大:rid→∞; ③ 输出电阻为零:ro→0。
• 是信并 号联 的负 负反 载馈 能,力有Ri一f→定0,的R要i≈求R1。,所以对输入
二. 同相比例运算电路
i1
i f Rf
R1
u- _
ui u+ + A +
uo
反馈方式:
电压串联负反馈 因为有负反馈, 利用虚短和虚断
u-= u+= ui
i1=if (虚断)
电压放大倍数:
A
v
uo ui
1 Rf R1
【例7.2】分析图7-2-9所示的电路功能
vo1

Rf

v3 R3

v4 R4

vo

Rf

v1 R1

v2 R2

vo1 Rf


Rf

v3 R3

v4 R4

v1 R1

v2 R2

例如
设:电源电压±VCC=±10V。 运放的Aod=104
V
ui
+∞
A -
+
uo
V
uuo o
++1100VV
++UUoomm
-1mV 00 +1mV
uui i
│Ui│≤1mV时,运放处于线性区。

同相比例运算放大器输入电阻的分析讲解

同相比例运算放大器输入电阻的分析讲解
(四)对同相运算放大器的反馈类型的分析…………………………8
(五)电压串联负反馈电路的方块图…………………………………9
(六)电压串联负反馈放大电路的基本放大电路……………………10
(七)串联负反馈对输入电阻的影响…………………………………11
三、分析同相比例运算放大器的输入电阻……………………………12
一、长尾式差分放大电路
为了计算同相比例运算放大器的输入电阻,我们首先要了解一下集成运放电路的内部结构。
集成运放的内部实质上是差分放大电路,我们以长尾式差分放大电路为例进行分析。
图(2)所示为典型的长尾式差分放大电路。
由于 接负电源 ,拖一个尾巴,故称长尾式电路,电路参数理想对称, , ; 管与 管的特性相同,即 , ; 为公共的发射极电阻。
关键词:运算放大器;同相比例;输入电阻;差分放大电路;反馈
Analysis of Input Resistor of Non-inverting Operational Amplifier
Wang lei Department of Physics,BoHaiUniversity
Abstract:Non-inverting operational amplifier, has introduced the negativefeedback of the voltage series.when operational amplifier has an ideal characteristic, input resistor should be an infinity, but whenthe characteristic is not ideal enough, input resistor should be a finite value. In order to calculate the input resistor of non-inverting operational, firstly I have studied the inner structure of theoperational amplifier’s circuit and takena long-tailed pair differential amplifier as an example to analyze. Because non-inverting operational amplifer has introduced the negative feedback of the voltage series, therefore I have studied some relevent knowledge about feedback. In the end the accurate expression of input resistor of non-inverting operational amplifier is deduced in the paper. It is pointed out that some expressions of input resistor in the relative references are all approximate to the accurate expression under different proximal conditions.

运算放大器原理、设计解读

运算放大器原理、设计解读

运算放大器发明至今已有数十年的历史,从最早的真空管演变为如今的集成电路,它在不同的电子产品中一直发挥着举足轻重的作用。

而现如今信息家电、手机、PDA 、网络等新兴应用的兴起更是将本次专题的主角-运算放大器推向了一个新的高度。

本次专题就来带你了解一下它吧!运放是运算放大器的简称。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。

运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,如今绝大部分运放是以单片的形式存在。

现今运放的种类繁多,广泛应用于几乎所有的行业当中。

- 运算放大器的发展史 -- 运算放大器的分类 -1941年:贝尔实验室的Ka rl D.Swartzel Jr.发明了真空管组成的第一个运算放大器,并取得美国专利2,401,779,命名为“Su mmin gA m p ifier ”;11952年:首次作为商业产品贩售的运算放大器是Geo r g e A. Philbrick Researches (G AP/R )公司的真空管运算放大器,型号K 2-W ;21963年:第一个以集成电路单一芯片形式制成的运算放大器是Fairchild Senmiconductors的Bob Widlar所设计的μA702,1965年经改后推出μA709;31968年:Fairchild半导体公的μA741。

迄今为止仍然在用,他是有史以来最成功的器,也是极少数最长寿的IC 一。

4通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A ,L M358(双运放),L M324及场效应管为输入级的L F356.高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。

实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。

同相比例运算电路实验报告

同相比例运算电路实验报告

同相比例运算电路实验报告引言:本实验旨在探究同相比例运算电路的工作原理和性能特点。

同相比例运算电路是一种常用的电路,它可以将输入信号与参考信号进行比较,并输出相应的电压差。

本实验通过搭建同相比例运算电路并进行实验验证,以加深对该电路的理解和应用。

一、实验原理同相比例运算电路是一种基于运算放大器的电路,它由运算放大器、负反馈电阻和输入电阻组成。

运算放大器是一种特殊的放大器,具有高增益、高输入阻抗和低输出阻抗等特点。

负反馈电阻用于调节输出电压,实现输入信号与参考信号的比较。

输入电阻用于将输入信号引入运算放大器。

二、实验步骤1. 按照电路图搭建同相比例运算电路,确保连接正确可靠。

2. 将输入信号和参考信号分别输入到运算放大器的非反相输入端和反相输入端。

3. 调节负反馈电阻,以调节输出电压的增益和偏置。

4. 测量输出电压,并记录实验数据。

5. 分析实验数据,总结同相比例运算电路的特性和应用。

三、实验结果与分析通过实验测量,我们得到了一系列输入信号和相应的输出电压数据。

根据数据分析,我们发现同相比例运算电路具有以下特点:1. 输出电压与输入信号成正比,即同相比例。

2. 输出电压与参考信号成反比,即反相比例。

3. 输出电压与负反馈电阻的阻值有关,可以通过调节负反馈电阻来改变输出电压的增益和偏置。

四、实验总结本实验通过搭建同相比例运算电路并进行实验验证,我们深入了解了该电路的工作原理和性能特点。

同相比例运算电路在实际应用中具有广泛的用途,例如在传感器信号处理、电压比较和电路调节等领域都有重要的应用。

掌握了同相比例运算电路的原理和使用方法,可以为我们解决实际问题提供有效的工具和方法。

结语:通过本次实验,我们对同相比例运算电路有了更深入的了解。

同相比例运算电路具有简单、稳定和可靠的特点,是一种常用的电路。

在今后的学习和实践中,我们将进一步探索运算放大器的应用,并不断完善和提高自己的电路设计和调试能力。

运算放大器

运算放大器

对a点: G4ub G5u2 0 : “虚断” G ub 5 u2 G4 对b点:G1 G2 G3 G4 )ub G1u1 G3u2 0 (
即: 1u1 G3u2 (G1 G2 G3 G4 )G5 u2 G G4 u2 G1G4 u1 G3G4 (G1 G2 G3 G4 )G5
.
.
ia=0
.
+ _
-Aua
.
+ uo _
.
.
用途
运算放大器可以与电阻或电阻、电容组成各种网络; 实现各种网络函数。
在运算放大器的应用中,比例器是一种最常见的用途。 图示电路即是基本的反相比例器和同相比例器电路 Rf
+
ui
.
Rs
.a
b
_ +
.
+
uo
. .
_
.
.
反相比例器
_
+
ui
.
a
.
+
Rf
b
.
.
.
.
将正向输入端接地,此时ub=0,则uo= -Aua
在理想情况下, , uo为有限值,则
ua 0 ,此即“虚短”的概念,即在电路方程中
可以将ua=0代入,但在电路图中,不能将a点直接接地
a.
ia b
_
+
+ ua _
.
.
o . + uo _
.
此时运算放大器即可等效为如下的电路模型:
+ ua _
Rf
.
+
ui
Rs
.a
b
_ +

(整理)同相比例和反相比例放大器.

(整理)同相比例和反相比例放大器.

同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。

R ¢为平衡电阻应满足R ¢= R 1//R f 。

利用虚短和虚断的概念进行分析,v I=0,v N=0,i I=0,则即∴该电路实现反相比例运算。

反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。

2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。

3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。

二、同相比例运算电路图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。

根据虚短、虚断的概念有v N= v P= v S ,i 1= if于是求得所以该电路实现同相比例运算。

同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。

2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。

三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。

由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。

利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出图 1 同相比例运算电路图 1 加法运算电路若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。

该加法电路可以推广到对多个信号求和。

从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档