最新七年级上册有理数单元检测
七年级上册第一单元有理数测试题(含详解)

单元综合检测(一)第1章(45分钟100分)一、选择题(每小题4分,共28分)1.(2012·济南中考)12的绝对值是( )A.12B.-12C.D.2.(2012·三明中考)在2,,0,2四个数中,最大的数是( )A.2B.C.0D.23.计算1×(+1)的结果是( )A. B.0 C.1 D.4.(2012·莱芜中考)大量事实证明,环境污染治理刻不容缓,全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为( )×105×104C.142×103×1065.在(5),(5)2,|5|,(5)3中负数有( )A.0个B.1个C.2个D.3个6.若a=2×32,b=(2×3)2,c=(2×3)2,则下列大小关系中正确的是( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b7.(2012·鄂尔多斯中考)有一串彩色的珠子,按白黄蓝的顺序重复排列,其中有一部分放在盒子里,如图所示,则这串珠子被放在盒子里的颗数可能是( )A.2010B.2011C.2012D.2013二、填空题(每小题5分,共25分)8.(2012·上海中考)计算|1|= .9.某人的存折上原有5000元,如果存入记为正,支取记为负,上半年此人支存情况为+500元,300元,+1200元,600元,则该人现有存款.10.定义a*b=ab2,则(1*2)*(3)= .11.若|x|+(2y+1)2=0,则x2+y3的值是.12.某电视台开办了《周末合家欢》节目,节目规定:参加节目的家庭必须全家表演一个节目,由观众当评委,支持这个家庭继续参加下一期节目的观众亮出+10分的标牌,不支持这个家庭参加下一期节目的观众则亮出10分的标牌,然后根据得分的高低决定下一期节目参加的家庭.最后参加下期节目的家庭总得分为1260分.已知亮出10分标牌的人数为26人,那么支持这个家庭参加下期节目的观众比不支持的观众人数多人.三、解答题(共47分)13.(12分)计算下列各题:(1)10+8÷(2)2(4)×(3).(2)(241)÷(1).(3)÷(2)×(1)0.5÷2×.14.(10分)“十一”黄金周,某商家店铺大力促销,下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:10月1日2日3日4日5日6日7日4 3 2 0 1 3 5(1)黄金周内营业额最低的是哪一天?该天的营业额是多少?(直接回答,不必写过程)(2)黄金周内平均每天的营业额是多少?15.(12分)有8箱橘子,以每箱15kg为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,0.8,2.3,1.7,1.5,2.7,2,0.2,则这8箱橘子的总重量是多少?16.(13分)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2,但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n1)×n=n(n+1)(n1)时,我们可以这样做:(1)观察猜想:12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)12+22+32=(1+0)×1+(1+1)×2+(1+2)×3=1+0×1+2+1×2+3+2×3=(1+2+3)+(0×1+1×2+2×3)12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+=1+0×1+2+1×2+3+2×3+=(1+2+3+4)+( )……(2)归纳结论:12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+[1+(n1)]n=1+0×1+2+1×2+3+2×3+…+n+(n1)×n=( )+[ ]= +=×(3)实践应用:通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是.答案解析1.【解析】选A.因为12的相反数是12,所以12的绝对值为12.2.【解析】选D.因为2>0>>2,所以最大的数是2.3.【解析】选A.原式=×(+)=×()+()×()×=12+=.4.【解析】选万=14.2×10000=142000=1.42×105.5.【解析】选D.因为(5)=5,(5)2=25,|5|=5,(5)3=125,所以负数有3个.6.【解析】选C.a=2×32=2×9=18,b=(2×3)2=(6)2=36,c=(2×3)2=62=36,所以b>a>c.7.【解析】选B.由题意得这串珠子被放在盒子里的颗数是3的整数倍加1,故选B.8.【解析】|1|=||=.答案:9.【解析】500+(300)+1200+(600)+5000=5800(元),即该人现有存款5800元.答案:5800元10.【解析】根据题意可知,(1*2)*(3)=(122)*(3)=(3)*(3)=(3)(3)2=39=12.答案:1211.【解析】由题意得|x|=0,(2y+1)2=0,所以x=,y=,则x2+y3=()2+()3 ==.答案:12.【解析】[1260(10)×26]÷10=152,15226=126(人).答案:12613.【解析】(1)原式=10+8÷412=10+212=20.(2)原式=()×()=()×()=3.(3)原式=×()×()××=+=.14.【解析】(1)10月7日的营业额最低,营业额是26万元.(2)黄金周内7天的营业额分别是:30,33,35,35,34,31,26所以平均每天的营业额为×(30+33+35+35+34+31+26)=×224=32. 即平均每天的营业额为32万元.15.【解析】1.2+(0.8)+2.3+1.7+(1.5)+(2.7)+2+(0.2)=1.20.8+2.3+1.7 1.52.7+20.2=(2.3+1.7+2)+(0.82.71.5)+(1.20.2)=65+1=2(kg).则15×8+2=122(kg).答:这8箱橘子的总重量是122千克.16.【解析】(1)(1+3)×4 4+3×4 0×1+1×2+2×3+3×4(2)1+2+3+…+n 0×1+1×2+2×3+…+(n1)×n n(n+1) n(n+1)(n1) n(n+1)(2n+1)(3)338 350。
2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。
人教版七年级上册数学《第一章 有理数》单元测试卷及答案(共九套)

人教版七年级上册数学《第一章 有理数》单元检测试卷《第一章 有理数》单元检测(一) 时间:60分钟 总分:100分 得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.下列说法中不正确的是( ). A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数 C .-2 000既是负数,也是整数,但不是有理数 D .0是正数和负数的分界 2.-2的相反数的倒数是( ). A .2B .C .D .-23.比-7.1大,而比1小的整数的个数是( ). A .6B .7C .8D .94.如果一个数的平方与这个数的差等于0,那么这个数只能是( ). A .0B .-1C .1D .0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为( ). A .63×102千米 B .6.3×102千米 C .6.3×104千米D .6.3×103千米6.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b7.下列各组数中,相等的是( ). A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)312128.在-5,,-3.5,-0.01,-2,-212各数中,最大的数是( ). A .-12B .C .-0.01D .-59.如果a +b <0,并且ab >0,那么( ). A .a <0,b <0 B .a >0,b >0 C .a <0,b >0D .a >0,b <010.若a 表示有理数,则|a |-a 的值是( ). A .0B .非负数C .非正数D .正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.的倒数是________,的相反数是______,的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________. 13.计算:-|-5|+3=__________. 所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,,,…,第2 013个数是________.15.比大而比小的所有整数的和为________.16.若|x -2|与(y +3)2互为相反数,则x +y =__________. 17.近似数2.35万精确到__________位. 18.对于任意非零有理数a ,b ,定义运算如下:a b =(a -b )÷(a +b ),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分) 19.计算:(每小题4分,共20分) (1)-20+(-14)-(-18)-13;(2)×÷(-9+19);110-110-123-123-123-12-1314-132-123172314(3)-24×;(4)(-81)÷+÷(-16);(5)(-1)3-÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,,0,,-3.14,2 006,-(+5),+1.88(1)正数集合:{ …}; (2)负数集合:{ …}; (3)整数集合:{ …}; (4)分数集合{ …}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人).(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人? 22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16. (1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远? (2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C 点拨:A 中-3.14不是-π,是负分数,C 选项中-2 000是负整数,更是有理数,所以说法错误.故选C.131243⎛⎫-+- ⎪⎝⎭12449112⎛⎫- ⎪⎝⎭43--2272答案:B3答案:C 点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D 点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D 点拨:A 中科学记数法表示为2位数错,B 、C 中10的指数错,只有D 正确,故选D.6答案:D 点拨:a 在原点左侧为负数,b 在原点右侧为正数,所以A 、B 、C 均错,只有D 正确.7答案:D 点拨:32=9,23=8,故A 错;-22=-4,(-2)2=4,所以B 错,-|-3|=-3,|-3|=3,所以C 错;-23=-8,(-2)3=-8,相等,故选D. 8答案:C 点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A 点拨:a +b <0,所以a ,b 中一定至少有一个负数,且负数的绝对值较大.又因为ab >0,所以a ,b 同号,且同为负号.10答案:B 点拨:可以用特殊值法求解,当a =2时,|a |-a =|2|-2=0;当a =0时,|a |-a =|0|-0=0;当a =-2时,|a |-a =|2|-(-2)=4,故选B.11答案: 点拨:根据概念分别写出.12答案:-9或-1 点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1. 13答案:-2 点拨:-|-5|=-5, 14答案:点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是. 15答案:-3 点拨:比大而比小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1 点拨:|x -2|与(y +3)2互为相反数, 所以|x -2|+(y +3)2=0,37-1231231201312013132-123所以x -2=0,y +3=0,所以x =2,y =-3,所以x +y =-1. 17答案:百18答案:-4 点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4. 19解:(1)―20+(―14)―(―18)―13 =-20-14+18-13 =-20-14-13+18 =-47+18=-29;(2)×÷(-9+19)=; (3)-24×=12-18+8=2;(4)(-81)÷+÷(-16)=(-81)×+× =-36-=;(5)(-1)3-÷3×[3―(―3)2]=-1-÷3×(3―9) =-1-××(-6) =-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:;1723141571571211024241016⨯÷=⨯⨯=131243⎛⎫-+- ⎪⎝⎭124494949116⎛⎫- ⎪⎝⎭13613636-112⎛⎫- ⎪⎝⎭12121322,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭(2)负数集合:;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏. 21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a 人,它们相差:(a +1.6+0.8+0.4)-(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a +1.6+0.8+0.4-a -1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人), 所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a 人,所以到3日时的人数是(a +1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16 =+17+7+5+16+11-15-3-6-8-9 =56-41 =+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米. (2)出租司机最远处离出发点有17千米. (3)56+|-41|=97(千米), 0.08×97=7.76(升).44,, 3.14,(5),3⎧⎫-----+⋅⋅⋅⎨⎬⎩⎭422, 3.14,, 1.88,37⎧⎫---+⋅⋅⋅⎨⎬⎩⎭答:这天共耗油7.76升.《第一章 有理数》单元检测(二) 七年级( )班 姓名: 分数:一、选择题(3分×12分=36分)1、下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( ). A 、北京 B 、武汉 C 、广州 D 、哈尔滨2、在有理数-21,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).A 、m 最小B 、n 最小C 、p 最小D 、m, n, p 三个一样大 3、有理数-3的倒数是( ).A 、-31B 、31C 、-3D 、34、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准的一袋是( ). A 、② B 、③ C 、④ D 、⑤5、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ).A 、+B 、-C 、×D 、÷ 6、两个有理数a ,b 式子中运算结果为正数的式子是( ). A 、a+b B 、a -b C 、ab D 、ba7、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ). A 、-1 B 、1 C 、-5 D 、108、下列计算中正确的是( ).A 、-9÷2 ×21 =-9, B 、6÷(31-21)=-1C 、141-141÷65=0,D 、-21÷41÷41=-89、国家游泳中心—“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积为260 000平方米,将260 000用科学记数法表示为( ). A 、0.26×106 B 、26×104 C 、2.6×106 D 、2.6×105 10、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是( ). A 、1022.01(精确到0.01)B 、1.0×103(保留2个有效数字)C 、1020(精确到十位)D 、1022.010(精确到千分位)11、已知|ab |=-ab ≠0 且|a |=|b |,则下列式子中运算结果不正确...的是( ).A 、a+b=0B 、011=+ba C 、022=+b a D 、033=+b a 12、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙丙之间则x 值可能是下列数中的( ).A 、11B 、14C 、17D 、20 二、填空题(3分×4=12分)13、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式: . 14、一列等式如下排列:-2+52=-4÷221,-3+103=-9÷331,-4+174=-16÷441,……,根据观察得到的规律,写出第五个等式: . 15、已知|x |=3,()412=+y , 且xy <0 则x -y 的值是16、如图是一个正方体的平面展开图,每一个面 上写有一个整数并且每两个对面所写数的和都相等。
第一章 有理数 单元测试(含答案) 人教版数学七年级上册

第一章 有理数 单元测试一、单选题(40分)1.如果温度上升,记作,那么温度下降( )A .B .C .D .2.在下列选项中,具有相反意义的量是( )A .盈利3万元和支出3万元B .增长和亏损C .胜两局和负三局D .前进和后退3.有理数中( )A .有最大的负数B .有最小的整数C .有绝对值最小的数D .不是正有理数就是负有理数4.我国古代数学著作《九章算术》中首次正式引入负数,如果支出元记作元,那么收入元记作( )A .元B .元C .D .5.下列数轴的画法正确的是( )A .B .C .D .6.下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来7.若方程无解,方程有一个解,方程有两个解,则( )A .B .C .D .8.如图所示,把数轴上的点A 先向左移动3个单位,再向右移动7个单位得到点B ,若A 6℃6+℃2℃2-℃2+℃4-℃4+℃100%100%500500-800800-300-300元800元0p x -=0q x -=0r x -=p q r <<<<p r q q p r <<r q p <<与B 表示的数互为相反数,则点A 表示的数是( )A .B .C .D .9.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价,再打六折C .先提价,再降价D .先提价,再降价10.如图,正六边形(每条边都相等)在数轴上的位置如图所示,点、对应的数分别为和,现将正六边形绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点所对应的数为0,连续翻转后数轴上2025这个数所对应的点是( )A .点B .点C .点D .点二、填空题(20分)11.在数轴上与表示的点距离4个单位长度的点表示的数是 .12.如果收入900元记作元,那么支出800元记作 元.13.如图,点和在数轴上表示的数分别是和40,点在线段上移动,图中的三条线段和,当其中有一条线段的长度是另外一条线段长度的2倍时,则点在数轴上表示的数为 .14.按规定,食品包装袋上都应标明袋内装有食品多少克,如表是四种饼干的检验结果,“+、-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是 .(填写饼干型号)A BC D (g )(g )(g )(g )0.51-2-3-50%30%30%25%25%ABCDEF A F 2-1-ABCDEF E A B C F 3-900+A B 20-C AB AB AC 、BC C A B C D 、、、10+8.5+5+3-三、解答题15.(8分)画出数轴,在数轴上表示下列各数,并按从小到大用“”把这些数连接起来.,―2,,,,.16.(8分)下列说法是否正确?正确的在括号内打“√”,不正确的打“×”(1)一个有理数不是正数就是负数.( )(2)符号不同的两个数互为相反数.( )(3)任何一个有理数都有相反数.( )(4)如果一个数的相反数等于它的绝对值,那么这个数一定是负数.( )17.(10分)小虫从某地点0出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的路程依次为(单位:厘米),问:(1)小虫是否回到原点0?(2)爬行过程中,如果每爬行1厘米奖励5粒芝麻,则小虫可得到多少粒芝麻?<3.50 1.6-13-325,3,10,8,6,9,12,10+-+---+-18.(14分)先阅读,并探究相关的问题:【阅读】的几何意义是数轴上,两数所对的点,之间的距离,记作,如的几何意义:表示与两数在数轴上所对应的两点之间的距离;可以看做,几何意义可理解为与两数在数轴上对应的两点之间的距离.(1)数轴上表示和的两点和之间的距离可表示为____________;如果,求出的值;(2)探究:是否存在最小值,若存在,求出最小值;若不存在,请说明理由;a b -a b A B AB a b =-25-2563+()63--63-x 2-A B 5AB =x 43x x ++-参考答案:1.A2.C3.C4.D5.D6.C7.A8.C9.B10.B11.1或12.13.0或10或2014.15.,―216.(1)×(2)×(3)√(4)×17.(1)小虫没有回到原点(2)小虫可得到315粒芝麻18.(1),或(2)存在,最小值是77-800-D< 1.6-<13-<0<32<3.52x +3x =7-。
第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。
七年级数学上册《第一章 有理数》单元检测题含答案(人教版)

七年级数学上册《第一章有理数》单元检测题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.﹣2的相反数是()A.2 B.﹣2 C.- 12D.122.计算22×(−2)3+|−3|的结果是()A.-21 B.35 C.-35 D.-29 3.下列计算错误的是()A.3−(−2)=5B.−3÷(−12)=6C.(−3)+(+2)=−5D.−1×(−13)=134.某种鲸的体重约为1.36×105千克. 关于这个近似数,下列说法正确的是().A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字5.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算6.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C.D.7.如图所示的是手机天气APP所示的长春11月份某4天的天气情况,其中温差最大的是()A.11月26日B.11月27日C.11月28日D.11月29日8.甲、乙、丙三地海拔高度分别为30米,−25米,−5米,那么最高的地方比最低的地方高()A.20米B.25米C.35米D.55米二、填空题9.近似数0.034,精确到位.10.比较大小:-45-911.11.在数轴上表示数a的点到表示-1的点的距离为3,则a-3= . 12.化成最简整数比:25g∶0.5kg=.13.实数x,y,z 在数轴上的位置如图所示,则 |y| - |x| +| z|= .三、解答题14.计算:(1)(−3)+1−5−(−8)(2)−11−(−7)+|−9|−(−12)(3)(−8)×(16−512+310)×15(4)(−5)×3−60÷(−15)+12×(−72)15.在数轴上分别画出表示下列各数的点:−(−3) , 0 , ﹣|﹣1.5|,12和-2 .并将这些数从小到大用“<”号连接起来.16.小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?17.把下列各数序号..分别填在表示它所在的集合的大括号里①(−1)4;②−35;③+3.2;④0;⑤13;⑥−(+6.5);⑦−(−108);⑧−22;⑨-6(1)整数集合{ }(2)正分数集合{ }(3)负分数集合{ }(4)负数集合{ }18.科技改变生活,当前网络销售日益盛行,许多果商采用网上销售的方式进行营销,实现脱贫致富.小宇把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增有减,超过计划量记为正,不足计划量记为负.下表是小宇第一周苹果的销售情况:星期一二三四五六日苹果销售超过或不足计划量情况(单位:千克)+4 ﹣3 ﹣2 +9 ﹣7 +13 +5 (1)小宇第一周销售苹果最多的一天比最少的一天多销售多少千克?(2)小宇第一周实际销售苹果的总量是多少千克?(3)若小宇按6元/千克进行苹果销售,平均运费为4元/千克,则小宇第一周销售苹果一共收入多少元?19.周至猕猴桃是西安的特产,质地柔软,口感香甜,当前网络销售日益盛行,陕西某主播为了助农增收,在其直播间直播销售周至猕猴桃,计划每天销售10000千克,但实际每天的销售量与计划量相比有增减,超过计划量记为正,不足计划量记为负.如表是该主播在直播带货期间第一周销售猕猴桃的情况:星期一二三四五六日猕猴桃销售情况(单位:千克)+400 -300 -200 +100 -600 +1100 +500 (1)该主播在直播带货期间第一周销售猕猴桃最多的一天比最少的一天多销售多少千克?(2)与该主播在直播带货期间第一周计划总量相比,猕猴桃总销量超过或不足多少千克?(3)若该主播在直播期间按5元/千克进行猕猴桃销售,平均快递运费及其它费用为1元/千克,则该主播第一周直播带货销售猕猴桃为当地农民一共创收多少元?参考答案1.A2.D3.C4.D5.C6.B7.D8.D9.千分10.>.11.-1或-712.1:2013.x+y+z14.(1)解:原式=−2−5+8=−7+8=1 .(2)解:原式=−11+7+9+12 =−4+21=17 .(3)解:原式=−120×(16−512+310)=−120×16−120×(−512)−120×310=−20+50−36=−6 .(4)解:原式=−15+4−42 =−11−42=−53 .15.解:16.解:∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A∴他又东走了5m,记为点B,点B表示的数是3+5=8数轴如图所示:∴接着他又向西走了10m到点C,点C表示表示的数是:8+(﹣10)=﹣2∴当小明到点C时,要回家,小明应向东走2米即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2米17.(1)解:整数集合{ ①④⑦⑧⑨}(2)解:正分数集合{ ③⑤}(3)解:负分数集合{ ②⑥}(4)解:负数集合{ ②⑥⑧⑨}18.(1)解:由题意得:小宇第一周销售苹果最多的一天比最少的一天多销售13−(−7)=13+7=20kg 答:小宇第一周销售柚子最多的一天比最少的一天多销售20千克;(2)解:4+(−3)+(−2)+9+(−7)+13+5+100×7=4−3−2+9−7+13+5+700=719kg答:小宇第一周实际销售柚子的总量是719千克;(3)解:719×(6−4)=719×2=1438(元).答:小宇第一周销售柚子一共收入1438元.19.(1)解:1100−(−600)=1700(千克)答:该主播在直播带货期间第一周销售猕猴桃最多的一天比最少的一天多销售1700千克.(2)解:400−300−200+100−600+1100+500=1000(千克)答:与该主播在直播带货期间第一周计划总量相比,猕猴桃总销量超过1000千克.(3)解:(5−1)×(10000×7+1000)=284000(元)答:该主播第一周直播带货销售猕猴桃为当地农民一共创收284000元。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
华师版七年级数学上册 第1章 有理数 单元测试卷(2024年秋)

华师版七年级数学上册第1章有理数单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列各数中,负数是()A.-1 B.0 C.2 D.32.[母题教材P14例1]3的相反数是()A.13B.-13C.3 D.-33.[2024·天津和平区期中]有理数3,1,-2,4中,小于0的数是() A.3 B.1 C.-2 D.44.如图,小丽从原点O出发,第一次向东(右)走30米,第二次向西(左)走50米到达数轴上表示数a的点上,则a的值为()(第4题)A.50 B.30 C.20 D.-205.下列计算中,正确的是()A.-2-1=-1 B.3÷(-13)×3=-3C.(-3)2÷(-2)2=32D.0-7-2×5=-176.[情境题航空航天]2024年4月25日20时59分,神舟十八号载人飞船在酒泉卫星发射中心发射升空,约23 400秒后,神舟十八号载人飞船与空间站组合体完成自主快速交会对接.将23 400用科学记数法表示为() A.0.234×105 B.2.34×104 C.23.4×103 D.2.34×105 7.[2023·山东实验中学模拟]有理数a,b,c在数轴上对应点的位置如图所示.如果a+b=0,那么下列结论正确的是()(第7题)A.|a|>|c|B.a+c<0 C.abc<0 D.ab=18.下列说法中,正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数9.已知|a+3|=5,b=-3,则a+b的值为()A.1或11 B.-1或-11 C.-1或11 D.1或-11 10.[新考向数学文化]小时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二、填空题(每题3分,共24分)11.[新趋势跨学科]等高线指的是地形图上高度相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.吐鲁番盆地的等高线标注为-155 m,表示此处的高度海平面155 m(填“高于”或“低于”).12.[2024·杭州公益中学月考]如果|x-3|+(2+y)2=0,那么2x+y的值等于.13.[母题教材P65例1]近似数2.30精确到位.14.绝对值不大于3.14的所有有理数之和等于;不小于-4而不大于3的所有整数之和等于.15.在数轴上与表示-1的点相距2个单位长度的点表示的数是.16.[母题教材P28例3]有5袋苹果,每袋以50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是.17.[2024·清华附中月考]一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹遮盖住的整数个数是.18.[2023·随州]某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次……第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几名同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律;乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的讨论过程,可以得出最终状态为“亮”的灯共有盏.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.[2024·河南周口阶段练习]给出下面六个数:2.5,1,-2,-2.5,0,-32.(1)先画出数轴,再把表示上面各数的点在数轴上表示出来;(2)用“<”号将上面的各数连接起来.20.[母题教材P78复习题T16]计算:(1)-(-1)+32÷(1-4)×2;(2)(-1)1 000-2.45×8+2.55×(-8).21.已知m,n互为相反数,且m≠n,p,q互为倒数.(1)求m+nm +2pq-mn的值.(2)爱思考的璐璐发现其中的条件m≠n是多余的,你认为璐璐的想法对吗?为什么?22.[新视角新定义题]若“ⓧ”表示一种新运算,规定aⓧb=a×b+a+b,请计算下列各式的值..(1)-6ⓧ2;(2)[(-4)ⓧ(-2)]ⓧ1223.在数轴上表示a,0,1,b四个数的点如图所示,已知OA=OB,求|a+|+|a+1|的值.b|+|ab24.[情境题生活应用]体育课上全班女生进行了一分钟仰卧起坐测验,达标成绩为35个.下面是第一组8名女生的成绩记录,其中“+”号表示超过达标成绩的个数,“-”号表示不足达标成绩的个数.-5,0,+7,+12,-9,-1,+6,+14.(1)第一组8名女生中最好成绩与最差成绩相差个.(2)求第一组8名女生的平均成绩为多少?(3)规定:一分钟仰卧起坐次数为达标成绩,不得分;超过达标成绩,每多做1个得2分;未达到达标成绩,每少做1个扣1分.若一分钟仰卧起坐总积分超过60分,便可得到优秀体育小组称号,请通过计算说明第一组8名女生能否获得该称号.25.如图,将一根木棒放在数轴(单位长度为1 cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.(3)一天,妙妙问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?参考答案一、1. A2. D3. C4. D)×3=3×(-3)×3=-27,5. D 【点拨】-2-1=-3,A错误;3÷(-13,C错误;0-7-2×5=0-7-10=B错误;(-3)2÷(-2)2=9÷4=94-17,D正确.故选D.6. B7. C8. C 【点拨】0是有理数,但0既不是正数也不是负数,故A错误;|a|不一定是正数,也可能为0,故B错误;若a+b>0,a≤b,则a≤0,b>0或a>0,b>0,故C正确;2-(-1)=3>2,故D错误.故选C.9. B 【点拨】|a+3|=5,则a+3=±5,解得a=-8或a=2,则a+b=-8+(-3)=-11或a+b=2+(-3)=-1,故选B.10. A 【点拨】如图,设内圈上的数为c,外圈上的数为d.因为(-1)+2+(-3)+4+(-5)+6+(-7)+8=4,横、竖以及内外两圈上的4个数字之和都相等,所以内外两圈的和都是2,横、竖的和也都是2.由-7+6+b+8=2,得b=-5;由6+4+b+c=2,得c=-3;由a+c+4+d=2,得a+d=1.由题意可知,a和d代表的数字为-1和2.当a=-1时,d=2,则a+b=-1+(-5)=-6;当a=2时,d=-1,则a+b=2+(-5)=-3.故选A.二、11.低于12.4 【点拨】根据绝对值以及偶次幂非负得出x-3=0,2+y=0,进而求出x=3,y=-2,问题随之得解.13.百分14.0;-4 【点拨】设|a|≤3.14,其中正有理数有a1,a2,a3…则负有理数有-a1,-a2,-a3...还有0,则a1+a2+a3+...+0+(-a1)+(-a2)+(-a3)+ 0不小于-4而不大于3的整数有-4,-3,-2,-1,0,1,2,3,则所有整数加起来为-4.15.-3或1 【点拨】设这个数为a,当a<-1时,-1-a=2,解得a=-3;当a>-1时,a-(-1)=2,解得a=1.16.244千克【点拨】+4+(-5)+(+3)+(-2)+(-6)=-6(千克),所以这5袋苹果的总质量为50×5-6=244(千克).17.120 【点拨】因为墨迹最左端的数是-109.2,最右端的数是10.5.根据数在数轴上的排列特点,可得墨迹遮盖部分最左侧的整数是-109,最右侧的整数是10.所以遮盖住的整数共有120个.18.10 【点拨】因为1号开关被按了1次,2号开关被按了2次,3号开关被按了2次,4号开关被按了3次,5号开关被按了2次,6号开关被按了4次,7号开关被按了2次,8号开关被按了4次,9号开关被按了3次…所以n号开关被按的次数等于n的约数的个数.因为约数个数是奇数,所以n 一定是平方数.因为100=102,所以100以内共有10个平方数,所以最终状态为“亮”的灯共有10盏.三、19.【解】(1)数轴表示如图所示.(2)由(1)得-2.5<-2<-32<0<1<2.5.20.【解】(1)原式=1+9÷(-3)×2=1+(-3)×2=1-6=-5.(2)原式=1+(-2.45-2.55)×8=-39.21.【解】(1)由m,n互为相反数且m≠n,得m+n=0,mn=-1,由p,q互为倒数得pq=1,所以原式=0m+2×1-(-1)=3.(2)璐璐的想法不对,因为当m=n时,定有m=n=0,则式子m+nm 与mn都没有意义,所以m≠n这个条件不是多余的.22.【解】(1)-6ⓧ2=-6×2+(-6)+2=-16.(2)[(-4)ⓧ(-2)]ⓧ12=[-4×(-2)+(-4)+(-2)]ⓧ12=2ⓧ12=2×12+2+12=312.23.【解】因为OA =OB ,a <0<b ,所以a +b =0,a =-b .由数轴知b >1,所以a <-1,所以a +1<0.所以原式=0+1-a -1=-a .24.【解】(1)23(2)(-5)+0+7+12+(-9)+(-1)+6+14=-15+39=24(个),24÷8=3(个),35+3=38(个).答:第一组8名女生的平均成绩为38个.(3)(-5)×1+7×2+12×2+(-9)×1+(-1)×1+6×2+14×2=-5+14+24-9-1+12+28=63(分),因为63>60,所以第一组能得到优秀体育小组称号.25.【解】(1)8(2)14;22(3)由题意知奶奶与妙妙的年龄差为[119-(-37)]÷3=52(岁),所以奶奶现在的年龄为119-52=67(岁).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数》单元检测题
一、选择题:
1.用a -表示的数一定是 ( )
A.负数
B.正数或负数
C.负整数
D.以上全不对 2.下列说法中:
①.0是最小的整数;②.有理数不是正数就是负数;③.正整数、负整数、正分数、负分数统称为有理数;④.非负数就是正数;④.-
2π 不仅是有理数,而且是分数;⑤.23
7
是无限不循环小数 ,所以不是有理数;⑥.无限小数不都是有理数;⑦.正数中没有最小的数,负数中没有最大的数. 其中错误的说法的个数为( )
A.7个
B.6个
C.5个
D.4个
3.若a 为有理数,且满足+=a a 0,则
( )
A.>a 0
B.≥a 0
C.<a 0
D.≤a 0 4.下列说法中,正确的是 ( )
A.若两个有理数的差是正数,则这两个数都是正数
B.两数相乘,积一定大于每一个乘数
C.0减去任何有理数,都等于此数的相反数
D.倒数等于本身的为,,-101.
5. 下列运算正确的是 ( )
A. -22
=4 B. 3
1128327⎛⎫-=- ⎪⎝⎭
C. 81)21(3-=-
D. 6)2(3
-=-
6.绝对值大于115而不大于11
2
的所有整数的积以及和分别等于
( ) A.60和12 B.60-和0 C.3600和12 D.3600-和0 7.若a b 0+=,则下列各组中不互为相反数的数是
( )
A.3a 和3b
B.2a 和2b
C.a -和b -
D.a 2和b
2
8.若(—mn )3
>0,则
( )
A.mn 0>
B.mn 0<
C.m 0n 0><
D.m 0n 0<> 9.若mn 0≠,则
+
m n
m n
的取值不可能是 ( )
A.0
B.1
C.2
D.2-
10. 有理数a 、b 、c 在数轴上对应的位置如图所示.下列式子中,正确的有(
)
①0b c +>;②a b a c +>+;③bc ac >;④ab ac > A .1个
B .2个
C .3个
D .4个
二、填空题:
11.相反数等于本身的数有 ,倒数等于本身的数有 ,绝对值等于本身的数有 . 12.用“>”、“<”、“=”号填空:(1)1___02.0-; (2)][)75.0(___)43(-+---;(3)14.3___7
22
--。
13.若-6x 与+y 9互为相反数,则=x ,=y ,()()+÷-=x y x y . 14.若3,2a b ==且
a a
b b
=,则32a b -= 15.如果|x +8|=5,那么x = 16.计算|3.14 - π|- π的结果是 . 17.若x 是不等于1的实数,我们把
11x -称为x 的差倒数,如2的差倒数是1
112
=--,1-的差倒数为
()11112=--,18.现已知11
x 3
=-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,
…,依次类推,则 2017x = . 19.已知:⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯2
34356325436543C ,C ,C ,
121231234
,观察上面的计算过程,寻找规律并计算
=610C .
20. 10
11)2()2(-+-= 三、解答题: 21.计算
⑴.312 +(-12 )-(- 13 )+223 (2).(23 -14 -38 +5
24 )×48
(3)72
1×14
3÷(-9+19) (4)25×4
3―(―25)×2
1+25×(-4
1)
(5)32
2)43(6)12(7311-⨯⎥⎦
⎤⎢⎣⎡÷-+-- (6)22
2183(2)(6)()3-+⨯-+-÷-
22.已知a b c d 、、、是四个互不相同的整数,且abcd=77,求a b c d +++的值.
23.(1)当b 为何值时,531b --有最大值,最大值是多少?
(2) 设有理数a ,b ,c 在数轴上的对应点如图所示,化简b a a c c b -+++-.
24.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
试探索: (1)求|5-(-2)|=______。
(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是 。
(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值如果没有说明理由。
25.已知数轴上两点A
B 、对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x
(1) 若点P 到点A ,点B 的距离相等,求点P 对应的数;
(2) 数轴上是否存在点P ,使点P 到点A B 、的距离之和为6?若存在请求出x 的值;若不存在,请说明理由; (3) 点A B 、分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时P 点以6个单位长度/分的速度
从O 点向左运动. 当遇到A 时,点P 立刻以同样的速度向右运动,并不停地往返于点A 与点B 之间,求当点A 与点B 重合时,点P 所经过的总路程是多少?
26.观察下列解题过程:
计算:1+5+52
+53
+…+524
+525
的值.
解:设S =1+5+52
+53
+…+524
+525
, (1) 则5S =5+52
+53
+…+525
+526
(2)
(2)-(1),得4S =526
-1
S =4
1
526-
通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算: (1)1+3+32
+33
+…+39
+310
(2)1+x +x 2
+x 3
+…+x 99
+x 100。