2.1.1正数和负数教学设计
新华师大版七年级上册初中数学 2-1-1 正数与负数 教案

第二章有理数2.1 有理数2.1.1 正数和负数1.明白生活中存在着无数表示相反意义的量,能举例说明;2.能体会引进负数的必要性和意义,建立正数和负数的数感.理解正数和负数的意义.体会现实生活中具有相反意义的量.一、情境导入,激发兴趣1.回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的.如:0,1,2,3,…,,.2.下面的温度怎样表示?【教学说明】让学生了解数的产生过程,初步认识到以前学过的数不能满足实际的需要.1.在日常生活中,常会遇到这样的一些量:如:汽车向东行驶3千米和向西行驶2千米;温度是零上10℃和零下5℃;收入500元和支出237元;水位升高1.2米和下降0.7米;像这样的日常生活中描述温度的零上多少摄氏度和___________________,水位的升高和_______,现金的收入和_______,商品的买进和_______等类似的数量都具有相反的意义,我们称之为具有相反意义的量.2.问题:你能再举几个其他的具有相反意义的量吗?【教学说明】必须满足两个条件:(1)意义相反;(2)同一种量.3.定义:一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,在过去学过的数(零除外)的前面放上一个“-”号来表示.如:在表示温度时,通常规定零上为“正”,零下为“负”,即零上10℃表示为10℃,零下5℃表示为-5℃.(1)正数小学学过的那些数(零除外),如10,3,500,5.5等,都是_______. 为了加以强调,_______前可加上“+”(读作正)号,但一般省略不写.如5可以写成+5, +5和5是一样的.(2)负数在正数的前面加上“-”(读作负)号的数是_______.“-”号不能省略.如:-5,-0.36.(3)0既不是_______,也不是_______(0不再仅仅表示“没有”,也是正、负数的分界点).【教学说明】通过归纳总结正数和负数的概念,举出实际例子加深对正数和负数的理解,使学生掌握正数和负数的特征及表示方法.例1 填空:(1)出口货物500吨记作-500,进口货物262吨记作_______;(2)如果产量增加20%,记作_______,那么产量减少3%记作_______;(3)向东前进30m记作+30,向西前进10m记作_______.【教学说明】让学生先观察记法,找到具有相反意义的量,再用正负数来表示.例2 把下列叙述改成使用正负数的方法(1)向南走-20 m,即_______;(2)飞机下降-200 m,即_______;(3)飞机上升-3000 m,即_______;(4)商店赢利-1000元,即_______.【教学说明】通过讲解,使学生理解正数和负数是表示相反意义的量,掌握它的表示方法.1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了.2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.【教学说明】教师引导学生总结负数的产生是实际生活的需要,进一步理解用正数和负数表示互为相反意义的量.课本习题1.1。
七年级数学上册第2章有理数2.1有理数2.1.1正数和负数教学设计(新版)华东师大版

1.1正数和负数一、教学目标(一)知识与技能:1.会判断一个数是正数还是负数2.能用正、负数表示生活中具有相反意义的量(二)过程与方法:经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性(三)情感态度价值观:感知到数学知识来源于生活并为生活服务。
二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。
2.学生学法:研究实际问题→认识负数→负数在实际中的应用。
三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。
2.难点:负数的引入。
3.疑点:负数概念的建立。
四、课时安排2课时五、教具学具准备投影仪(电脑)、自制活动胶片、中国地图。
六、教学设计思路教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。
七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问。
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。
(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃。
七年级(人教版)集体备课教学设计:1.1《正数和负数》

七年级(人教版)集体备课教学设计:1.1《正数和负数》一. 教材分析《正数和负数》是七年级数学的第一节内容,主要介绍正数、负数以及它们的性质。
通过本节课的学习,学生能够理解正数和负数的含义,掌握它们的运算规则,并能够运用正数和负数解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数,对数的概念有一定的了解。
但正数和负数是相对抽象的概念,需要通过实际例子让学生感知和理解。
此外,学生可能对负数的实际意义和应用存在困惑,需要通过生活情境进行引导和解释。
三. 教学目标1.了解正数和负数的定义及性质。
2.能够运用正数和负数解决实际问题。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.正数和负数的定义及性质。
2.负数在实际问题中的应用。
五. 教学方法采用情境教学法、互动式教学法和小组合作法。
通过生活情境引入正数和负数的概念,引导学生主动探究和发现规律,通过小组合作解决问题,提高学生的参与度和积极性。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材(如人民币、温度计等)。
七. 教学过程导入(5分钟)利用人民币图片,让学生观察并说出人民币的单位,如“1元”、“2元”等。
引导学生思考:“如果是欠款,应该如何表示?”进而引出正数和负数的概念。
呈现(10分钟)1.讲解正数和负数的定义。
2.展示正数和负数的性质,如正数大于0,负数小于0,正数加负数等于0等。
操练(15分钟)1.让学生进行正数和负数的加减法运算。
2.引导学生发现运算规律,如正数加正数等于正数,负数加负数等于负数等。
巩固(10分钟)1.利用温度计图片,让学生举例说明正数和负数在实际生活中的应用。
2.让学生解决实际问题,如:“小明买了一本书,花费了20元,然后又卖掉了一件玩具,得到了30元,请问小明现在有多少钱?”拓展(10分钟)1.引导学生思考:“正数和负数还有哪些应用场景?”2.让学生举例说明,如股票、海拔等。
小结(5分钟)对本节课的内容进行总结,让学生复述正数和负数的定义及性质,以及它们在实际生活中的应用。
二年级数学上册二年级数学上册2.1(1)正数与负数(第一课时)教案

2.1(1)正数与负数(第一课时)教学目标:1、结合温度、海拔等角度认识具有相反意义的量。
2、知道正负数所表示的实际含义。
3、初步会用正负数表示简单实际问题中具有相反意义的量。
4、感悟正数与负数在生活中的应用。
教学重点及难点:重点:会用正负数表示简单实际问题中具有相反意义的量。
难点:认识具有相反意义的量与正负数之间的关系。
教学用具准备卡片、练习纸、多媒体设备教学过程设计一、情景引入1、在我们的生活中有很多表示相反意义的量,请大家找找这里哪些数量的意义是相反的?用线连一连。
上车5人下降10米运进出200吨下车8人上升9米运进98吨减少54辆增加36辆通过刚才的连线,我们发现“上车5人与下车8人”是一对意义相反的量,我们可以这样说:上车的人数与下车的人数是一对具有相反意义的量。
请学生也说说其它几组数量中意义相反的量2、举例:请同桌两人也举例说一对生活中表示相反意义的量。
[说明]教师要引导学生说出什么与什么是一对具有相反意义的量,鼓励学生思考、交流生活中表示相反意义的量,在小组交流中教师要积极参与学生的讨论,及时纠正错例。
通过教师的引导和学生的举例参与,可以让学生充分体验什么是意义相反的量,由此引发后面的学习。
二、探究新知(一)、认识相反意义的量:1、海拔高度:演示珠穆拉玛峰和马里亚纳海沟图片如果以海平面为分界点,珠穆拉玛峰位于海平面以上,马里亚纳海沟位于海平面以下,我们说海平面以上的高度和海平面以下的深度也是一对具有相反意义的量。
2、温度计:演示海口与哈尔滨的温度我们说零上温度和零下温度也是一对具有相反意义的量。
(二)、认识正数和负数:1、引入“+、-”:为了区别零上温度和零下温度,人们规定在零上温度前面添上这个符号“+”,而在零下温度的前面添上这个符号“-”请学生试读这两个符号这两个符号在这里不是运算符号,我们不能读作加、减。
“+”这是正号,读作“正”,“-”这是负号,读作“负”,海口的最低气温可以表示成正12摄氏度,读作正12摄氏度,哈尔滨的最低气温可以表示成-25摄氏度,读作负25摄氏度。
《正数和负数教案》教学设计

《正数和负数教案》教学设计第一章:教学目标1.1 知识与技能目标:学生能够理解正数和负数的含义,区分它们。
学生能够使用数轴表示正数和负数。
学生能够解决实际问题,涉及到正数和负数的运算。
1.2 过程与方法目标:学生通过观察、思考、操作、交流等活动,培养抽象思维能力。
学生能够运用正数和负数解决实际问题,提高解决问题的能力。
1.3 情感态度与价值观目标:学生对数学产生兴趣,培养积极的情感态度。
学生能够认识到正数和负数在实际生活中的应用,培养应用意识。
第二章:教学内容2.1 正数和负数的定义:学生通过观察实例,理解正数和负数的含义。
学生能够区分正数和负数,掌握它们的符号表示。
2.2 数轴表示正数和负数:学生学习数轴的基本概念,理解数轴上的正数和负数。
学生能够将正数和负数在数轴上表示出来,掌握数轴的运用方法。
第三章:教学重点与难点3.1 教学重点:学生能够理解正数和负数的含义,区分它们。
学生能够使用数轴表示正数和负数。
学生能够解决实际问题,涉及到正数和负数的运算。
3.2 教学难点:学生对正数和负数的理解,特别是负数的含义。
学生在数轴上表示正数和负数的方法。
学生解决实际问题时,涉及到正数和负数运算的准确性。
第四章:教学方法与手段4.1 教学方法:采用问题驱动法,引导学生思考正数和负数的含义。
采用实例教学法,通过实际例子让学生理解正数和负数。
采用小组合作法,培养学生的团队协作能力。
4.2 教学手段:使用多媒体课件,展示正数和负数的实例。
使用数轴模型,帮助学生理解正数和负数的表示。
使用实际问题,让学生进行计算和解决。
第五章:教学过程设计5.1 导入:通过引入实际问题,引发学生对正数和负数的思考。
引导学生观察正数和负数的符号表示。
5.2 讲解与演示:讲解正数和负数的含义,通过实例进行演示。
讲解数轴的基本概念,演示如何在数轴上表示正数和负数。
5.3 练习与讨论:提供一些练习题,让学生进行计算和解决实际问题。
组织学生进行小组讨论,分享解题方法和思路。
七年级数学上册第二章有理数2.1正数和负数2.1.1正数和负数教案2新版华东师大版

负数:-5 读作“负五”.
练习:
1.快速抢答题:判断下列各数哪些是正数,哪些是负数.
-1,2.5,+30, -3.14,120,-1.732
2.你能写出几个正数和负数吗?
【探究2】零
我们在小学的时候知道:0表示没有,0不能作除数,0乘以任何数都等于0.
3.正常水位为0m,水位高于正常水位0.2m记作______,低于正常水位0.3m记作________.
4.乒乓球比标准质量重0.039g记作________;比标准质量轻0.019g记作________;标准质量记作________.
5.下列数中哪些是正数,哪些是负数?
-0.3 ,52 ,+3 ,-1 , 0 ,-4 ,2015
课题
正数和负数
授课人
教
学
目
标
知识技能
1.在了解相反意义的量的基础上,使学生认识正负数和学习正负数的意义.
2.使学生能正确判断一个数是正数还是负数,掌握正、负数的表示方法,明确0既不是正数也不是负数.
3.会用正、负数表示实际问题中具有相反意义的量.
数学思考
体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.
从本节课的学习中我们知道,0不仅仅表示没有,0 ℃不是没有温度,而是规定冰水混合物的温度为0℃.在实际意义中,0往往表示基准,比如海平面、警戒水位等,有着丰富的内涵.
总结:零既不是正数,也不是负数.
【探究3】用正负数表示相反意义的量
“人有悲欢离合,月有阴晴圆缺”,这是宋代词人苏东坡写下的被人们广为传诵的佳句.其中,悲与欢、离与合、阴与晴,都是自然世界、人类生活中截然相反的状态的真实描绘,这些矛盾的东西融为一体,营造出了和谐而真实的氛围.在大千世界中,有上就有下,有赢就有亏.
七年级数学第二章有理数2.1正数和负数2.1.1正数和负数教案3华东师大版

整数和负数4一、教学目标:1。
使学生体会具有相反意义的量,并能用有理数表示.2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义.3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4。
会比较有理数的大小。
5。
了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6。
会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算.8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断.二、教材的特点:1。
本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算.教学中要注意正确地把握.3。
数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2。
1正数和负数———-—-—-—--——--2课时§2。
2数轴--—————-——--—-———----——--2课时§2。
3相反数—-——---—-——--——-—-——————1课时§2.4绝对值-------————---—-———-——1课时§2.5有理数的大小比较—-—-——---—1课时§2。
6有理数的加法——--——---—--——2课时§2。
7有理数的减法--—-——————--—-—-1课时§2.8 有理数的加减法混合运算----——-—2课时§2.9 有理数的乘法————-—-----———--2课时§2。
正数和负数教学设计(共13篇)

正数和负数教学设计〔共13篇〕第1篇:正数和负数教学设计一、课题引入为了让学生更好地理解正数与负数的概念,作为老师有必要理解数系的开展.从数系的开展历程来看,微积分的根底是实数理论,实数的根底是有理数,而有理数的根底那么是自然数.自然数为数学构造提供了坚实的根底.对于数的开展(也即数的扩大),有着两种不同的认知体系.一是数的自然扩大过程,如图1所示,即数系开展的自然的、历史的体系,它反映了人类对数的认识的历史开展进程;另一是数的逻辑扩大过程,如图2所示,即数系开展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.二、课题研究在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种详细的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.假如把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比方在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.在正数的前面添加一个-号,比方在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;假如另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,假如甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.借助实际例子可以让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.三、稳固练习例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?思路分析^p :收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、缺乏等意义的数量那么用负数来表示.再如,假设游泳池的水位比正常水位高5cm,那么可以将这时游泳池的水位记作+5cm;假设游泳池的水位比正常的水位低3cm,那么可以将这时游泳池的水位记作-3cm;假设游泳池的水位正好处于正常水位的位置,那么将其水位记作0cm.例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘+0.16 +0.25 +0.78 +2.12收盘-0.23 -1.32 -0.67-0.65当日收盘价试在表中填写周二到周五该股票的收盘价.思路分析^p :以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23那么表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进展计算:周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.例3 甲、乙、丙三支球队以主客场的形式进展双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.甲乙丙甲3∶2 2∶2乙2∶33∶1丙3∶10∶1试计算甲、乙、丙三个队各自的总净胜球数.思路分析^p :由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零.相信同学们根据上面的分析^p ,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或理解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一局部,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用适宜的方法来表示这条河流河水的变化情况.思路分析^p :从上面的表达可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置,水位的总变化量是零,即这个变化量为(+15cm)+(-15cm)= 0cm.特别提醒:在表示具有相反意义的量时,假如某个量经两次或屡次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.四、考虑问题培养良好的阅读习惯和进步阅读才能,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要老师认真考虑的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于课程标准、中招视野、两类结构
教案设计
教学内容:正数和负数(第一课时)课型:新授课
一、学习目标确定的依据
1、课程标准
结合具体情境能列举出具有相反意义的量,体会正数和负数的意义,能用正数和负数来表示具有相反意义的量。
2、教材分析
本节课是初中数学华师大版七年级上册第2章有理数的第一课时,是学生进一步学习有理数及其相关运算的基础,教材通过实例引入具有相反意义的量,让学生体会正数和负数的意义,熟练掌握用正数和负数表示具有相反意义的量的方法,为学生学习有理数及其相关运算奠定基础。
3、中招考点
正数和负数是学习中学数学的基础,近5年均有考查。
考查题型一般为填空题、选择题或解答题。
4、学情分析
学生初次接触负数,对负数没印象,存在畏惧心理,不能正确用正数和负数表示具有相反意义的量。
二、学习目标
1、能列举出具有相反意义的量,并用正数和负数来表示。
2、会判别一个数是正数、负数还是零。
理解零既不是正数,也不是负数。
三、评价任务
1、向同桌说出具有相反意义的量,能用正数、负数或零表示出来。
2、给出一列数,知道哪个是正数、哪个是负数。
3、知道零既不是正数,也不是负数。
四、教学过程
答案:
自学指导一: (1)①×,②×,③×,④√,⑤×; (2)相反意义的量包括两个方面:
①相反意义,②相反意义的基础上有量. 自学检测一: 1、C 和D ,
2、 (1)节约20度电,(2)亏损1万元, (3)增产100斤, (4)收入500元.
自学指导二:(1)-8米, (2)-9点, (3)向西20米,
(4)10.05毫米、9.95毫米.
自学检测二: 1、-20分,
2、低于标准质量0.03克,
3、正数:4,8.6, ;
负数:-6, ,-0.2, ,-7.
当堂检测 1、+126,-150
2、+7分和-3分
3、正数集合:{ +9,+3, 2.3% ,1.7 …},
负数集合:{-1,- , -15 …}.
314
12-43
-3
1。