[精品]2016-2017学年陕西省西安市交大二附中八年级(下)期末数学试卷(解析版)
陕西省西安2016-2017学年八年级下第一次月考数学试卷有答案AKMUnP

西安2016—2017学年度第二学期初二年级数学试卷一、选择题(每题3分,共30分)1、下列不等式中,是一元一次不等式的是( )A 、123-<-y xB 、21<-C 、012>-xD 、532>+y 2、下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得a >bD 、由a >b ,得a 2>b 23、下列解不等式51232->+x x 的过程,错误的是( ) A 、去分母,得5(2+x )>3(2x-1); B 、去括号,得10+5x>6x-3 C 、移项,合并同类项,得-x>-13; D 、系数化为1,得x>134、不等式组x 352x 1<5+≥⎧⎨-⎩的解集在数轴上表示为( )A 、B 、C 、D 、5、一次函数y=3x+m -2的图象不经过第二象限,则m 的取值范围是( ) A 、m≤2 B 、m≤-2 C 、m>2 D 、m<26、若不等式组⎩⎨⎧>-<+mx x x ,148的解集是3x >,则m 的取值范围是 ( )A 、3m ≤B 、3m <C 、3>mD 、3≥m7、 等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( )A .17cmB .22cmC .17cm 或22cmD .18cm8、到三角形三个顶点的距离相等的点是三角形( )的交点A 、三个内角平分线B 、三边垂直平分线C 、三条中线D 、三条高 9、已知ABC ∆的三边分别是6,8,10,则∆ABC 的面积是( ) A 、 24 B 、 30 C 、40 D 、4810、 如图6 A 、C 、B 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N , 有如下结论:① △ACE ≌△DCB ;② CM =CN ; ③ AC =DN. 其中,正确结论的个数是( ).A 、3个B 、2个C 、 1个D 、0个二、填空题(每题3分,共18分)11、 不等式373≤-x 的正整数解为________________;12、 关于x 的方程3(x+2)=k+2的解是正数,则k 的取值范围 ; 13、 直角三角形两直角边长分别为5和12,则它斜边上的高为 ; 14、 若干学生分住宿舍,每间住4人余20人;每间住8人有一间不空也不满,则学生有 人;15、 已知:如图,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= ;EDCBA( 15题) (16题)16、如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC=3 cm , 那么ED AE += 。
西安交通大学第二附属中学南校区八年级数学下册第十七章《勾股定理》经典测试题

一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 5.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°6.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°7.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组 8.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 9.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 10.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 11.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 12.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 13.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对14.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 15.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题16.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.17.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .18.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.19.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.20.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 21.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.22.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.23.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.24.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.25.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.26.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.三、解答题27.直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. 28.已知ABC 为等腰直角三角形,AB AC =,ADE 为等腰直角三角形,AD AE =,点D 在直线BC 上,连接CE .(1)若点D 在线段BC 上,如图1,求证:CE BC CD =-;(2)若D 在CB 延长线上,如图2,若D 在BC 延长线上,如图3,其他条件不变,又有怎样的结论?请分别写出你发现的结论,不需要证明;(3)若10CE =,4CD =,则BC 的长为________.29.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点.(1)求证:△ABC ≌△ABD .(2)求证:CE =DE .30.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C 走到D 的过程中,通过隔离带的空隙P ,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB//PM //CD ,相邻两平行线间的距离相等AC ,BD 相交于P ,PD CD ⊥垂足为D .已知16CD =米.请根据上述信息求标语AB 的长度.。
陕西省西安市八年级下学期数学期末考试试卷

陕西省西安市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列哪个是分式方程()A . ﹣﹣3x=6B . ﹣1=0C . ﹣3x=5D . 2x2+3x=﹣22. (2分)无论m为何实数,直线y=x+2m与y=-x+3的交点不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)(2018·长宁模拟) 已知是单位向量,且,那么下列说法错误的是()A . ∥B . | |=2C . | |=﹣2| |D . =﹣4. (2分) (2018九上·丽水期中) 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .B .C .D .5. (2分)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是()A . 3B . 4C . 2D . 2+26. (2分) (2019九上·大田期中) 在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A . 测量对角线是否相互平分B . 测量两组对边是否分别相等C . 测量一组对角线是否垂直D . 测量其内角是否有三个直角二、填空题 (共11题;共13分)7. (1分)(2012·南通) 无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于________.8. (1分)在一次函数y=2x+3中,y随x的增大而________.(填“增大”或“减小”)9. (3分)三个连续偶数的和为零,它们是________ ________ ________.10. (1分) (2020九上·息县期末) 已知关于x的一元二次方程(a-1)x2-x + a2-1=0的一个根是0,那么a的值为________.11. (1分) (2017八下·东城期中) 如图直线与轴交于点,则时,的取值范围为________.12. (1分)(2016·甘孜) 在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为________.13. (1分)(2017·绥化) 一个多边形的内角和等于900°,则这个多边形是________边形.14. (1分)(2017·湖州模拟) 如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则 =________.15. (1分)(2018·梧州) 如图,已知在△ABC 中,D、E 分别是 AB、AC 的中点,BC=6cm,则DE 的长度是________ cm.16. (1分) (2019八下·雅安期中) 在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为46°,则底角∠B的大小为________.17. (1分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=________ .三、解答题 (共9题;共68分)18. (2分) (2017八下·东城期中) 若一次函数的图象经过二、三、四象限,则 ________ , ________ .19. (5分)(2019·西安模拟) 解方程:20. (20分)解方程:(1) x2﹣3=0(2) x2+4x﹣12=0(3) x2﹣6x+8=0 (配方法)(4) 4x(2x﹣1)=3(2x﹣1)22. (5分)作出函数的图象,并求它的图象与x轴、y轴所围成的图形的面积.23. (5分)如图,E、F分别是矩形ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且CE=10,AB=8,求线段BE的长.24. (5分) (2018八上·彝良期末) 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每夭生产多少台机器?25. (5分)如图,在△ABC中,AD平分∠BAC,过点D分别作DE∥AC、DF∥AB,分别交AB、AC于点E、F.求证:四边形AEDF是菱形.26. (15分) (2017九上·平房期末) 已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共11题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共68分)18-1、19-1、20-1、20-2、20-3、20-4、22-1、23-1、24-1、25-1、26-1、26-2、26-3、。
【全国百强校】陕西省陕西师范大学附属中学2016-2017学年八年级下学期期末考试数学试题(原卷版)

陕西省陕西师范大学附属中学2016-2017学年八年级下学期期末考试数学试题一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意的)1. 剪纸是我国最古老的民间艺术之一,被列为第四《人类物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形的是().A. B. C. D.2. 下列各式从左到右的变形为因式分解的是().A. B.C. D.3. 点在第一象限,则的取值范围在数轴上表示为().A. B.C. D.4. 如果把分式中的、都扩大倍,那么分式的值().A. 是原来的B. 扩大倍C. 不变D. 以上都不正确5. 将方程配方变形后所得方程正确的是().A. B. C. D.6. 若关于的分式方程的解是正数,则的取值范围是().7. 如图,,,与交于点,于,于,那么图中全等的三角形有().A. 对B. 对C. 对D. 对8. 顺次连接四边形的各边中点所得的四边形是菱形,原四边形一定是().A. 矩形B. 菱形C. 对角线相等的四边形D. 对角线互相垂直的四边形9. 如图,的周长为,点、都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,若.则的长为().A. B. C. D.10. 如图,在矩形纸片中,,,将矩形纸片折叠,使点落在边上的点处.折痕为,此时,若点,是边上的两个动点,且不与点,重合,,当四边形的周长最小时,最小周长为().A. B. C. D.二、填空题(共8小题,每小题3分,计24分)11. 把因式分解得,则的值为________.12. 正五边形的一个外角的度数是________.13. 如图中,在正方形网格中,图②是由图①经过旋转变换得到的,其旋转中心可能是点________(填“” “”“”或“”)14. 如图,直线与的交点的横坐标为,则关于不等式的整数解为________.15. 已知是不等式的解,且不是这个不等式的解,则实数的取值范围是________.16. 如图,在中,,,,点是上一点,交于点,于点,则线段的最小值为________.17. 如图,菱形和菱形的边长分别为和,,则图中阴影部分的面积是________.18. 如图,,,以为一边作正方形,使、两点落在直线的两侧,当与的距离最大时,正方形的面积为________.三、解答题(7小题,共66分)19. 解决下列各小题(第①题4分,每②题5分,第③题6分,满分15分)①因式分解:.②解不等式组:,并指出它的所有非负整数解.③化简:,再从,,,中选一个合适的数代入求值.20. 如图,点是线段外一点.请用尺规求作点,使得四边形是平行四边形.(保留作图痕迹,不与作法)21. 如图,点为菱形对角线上一点,连接、.点在边上,且.求证:.22. 甲、乙两同学的家与学校的距离均为米.甲同学先步行米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到分钟.根据以上信息回答:()求乙骑自行车的速度.()当甲到达学校时,乙同学离学校还有多远.23. 如图所示,四边形是矩形,点、的坐标分别为,.点是线段上的动点(与端点、不重合).过点作直线交折线于点.当点在线段上时,若矩形关于直线的对称图形为四边形,试探究与矩形的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24. 类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.如图,,,,,将沿的平分线方向平移得到,连结,.若平移后的四边形是“等邻边四边形”,求平移的距离(即线段的长).25. 在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形与边长为的正方形按图位置放置,与在同一直线上,与在同一直线上.()小明发现,请你帮他说明理由.()如图,小明将正方形绕点逆时针旋转,当点恰好落在线段上时,请你帮他求出此时的长.()如图,小明将正方形绕点继续逆时针旋转,线段与线段将相交,交点为,写出与面积之和的最大值,并简要说明理由.。
2024届陕西省西安交通大附中数学八年级第二学期期末质量检测模拟试题含解析

2024届陕西省西安交通大附中数学八年级第二学期期末质量检测模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,▱ABCD 的周长为 16 cm ,AC ,BD 相交于点 O ,OE ⊥AC 交 AD 于点 E ,则△DCE 的周长为( )A .4 cmB .6 cmC .8 cmD .10 cm2.下列多项式中,不是完全平方式的是( )A .214x x -+B .22961a b ab -+C .221394m mn n ++ D .431025x x -- 3.已知一次函数y=kx+b (k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb 图象可能是( ) A . B . C . D .4.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.下列命题是真命题的是( )A .平行四边形的对角线相等B .经过旋转,对应线段平行且相等C .两组对角分别相等的四边形是平行四边形D .两边相等的两个直角三角形全等6.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月7.张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是( )A.B.C.D.8.点P(-2,3)关于y轴的对称点的坐标是( )A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)9.下列多项式中,分解因式不正确的是()A.a2+2ab=a(a+2b)B.a2-b2=(a+b)(a-b)C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)210.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6 D.12二、填空题(每小题3分,共24分)11.已知关于x的不等式组的整数解共有5个,则a的取值范围是_________12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.13368__________.14.请写出8的一个同类二次根式:________.15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.16.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=________.17.据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)18.解分式方程22141x xx x--=-时,设21xyx=-,则原方程化为关于y的整式方程是__________.三、解答题(共66分)19.(10分)在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.20.(6分)如图,在ABC ∆中,点D 、E 分别是AB 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,FG AB 交BC 于点G .(1)求证:四边形BDFG 是菱形;(2)若1EF =,CG 4=,求四边形BDFG 的周长.21.(6分)对于平面直角坐标系x O y 中的点P 和正方形给出如下定义:若正方形的对角线交于点O ,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q ,满足PQ≤1时,称点P 为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P 1(0,0),P 2(-1,1),P 3(3,2)中,原点正方形的友好点是__________;②点P 在直线y =x 的图象上,若点P 为原点正方形的友好点,求点P 横坐标的取值范围;(2)乙次函数y =-x +2的图象分别与x 轴,y 轴交于点A ,B ,若线段AB 上存在原点正方形的友好点,直接写出原点正方形边长a 的取值范围.22.(8分)如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC .(1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.23.(8分)某河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从 B 码头出发,运送一批建材匀速行驶到A 码头.两船距B 码头的距离(y 千米)与行驶时间(x 分)之间的函数关系 如图所示.请根据图象解决下列问题:()1分别求客轮和货轮距B 码头的距离1(y 千米)、2(y 千米)与(x 分)之间的函数关系式;()2求点M 的坐标,并写出该点坐标表示的实际意义.24.(8分)在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.25.(10分)在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =k x(k ≠0,x >0)图象交于点A (1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x (k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C的坐标;(2)求△OCD的面积.26.(10分)因式分解:x2y﹣2xy2+y1.参考答案一、选择题(每小题3分,共30分)1、C【解题分析】根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【题目详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.∵EO⊥AC,∴AE=EC.∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).故选C.【题目点拨】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力.2、D【解题分析】根据完全平方公式即可求出答案.【题目详解】A.原式21()2x =-,故A 错误; B.原式2(31)ab =-,故B 错误;C.原式21(3)2m n =+,故C 错误; 故选D .【题目点拨】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.3、A【解题分析】首先根据一次函数的性质确定k ,b 的符号,再确定一次函数y=﹣bx+kb 系数的符号,判断出函数图象所经过的象限.【题目详解】∵一次函数y=kx+b 经过第二,三,四象限,∴k<0,b<0,∴−b>0,kb>0,所以一次函数y=−bx+kb 的图象经过一、二、三象限,故选:A.【题目点拨】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负.4、D【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【解题分析】命题的真假,用证明的方法去判断,或者找到反例即可,【题目详解】A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行. D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C【题目点拨】本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了6、C【解题分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【题目详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.7、C【解题分析】张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢.【题目详解】根据题意可知,张老师与甲镇的距离越来越大,而且速度先快后慢,所以选项C比较符合题意.故选C【题目点拨】考核知识点:函数图象的判断.理解题意是关键.8、A【解题分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【题目详解】点P(−2,3)关于y轴的对称点的坐标为(2,3).故选:A.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9、C【解题分析】各项分解得到结果,即可作出判断.【题目详解】解:A、原式=a(a+2b),不符合题意;B、原式=(a+b)(a-b),不符合题意;C、原式不能分解,符合题意;D、原式=(2a+b)2,不符合题意,故选:C.【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、C【解题分析】首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.【题目详解】310°×2÷180°+2=720°÷180°+2=4+2=1∴该正多边形的边数是1.故选C.【题目点拨】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.二、填空题(每小题3分,共24分)11、-3<a≤-1【解题分析】先表示出不等式组的解集,再由整数解的个数,可得b的取值范围.【题目详解】由,解得:a≤x<3,∵不等式组的整数解共有5个,则其整数解为:-1,-1,0,1,1,∴-3<a≤-1.故答案为-3<a≤-1.【题目点拨】本题考查解一元一次不等式组和一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.12、1.【解题分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.13【解题分析】分析:先根据二次根式的乘法法则进行计算,然后化简后合并即可.=故答案为.点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14【解题分析】=,.(答案不唯一).考点:1.同类二次根式;2.开放型.15、2.40,2.1.【解题分析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.16、1.【解题分析】根据已知易得AB-BC=2,AB+BC=3,解方程组即可.【题目详解】解:∵△AOB 的周长比△BOC 的周长多2,∴AB-BC=2.又平行四边形ABCD 周长为20,∴AB+BC=3.∴AB=1.故答案为1.【题目点拨】本题考查平行四边形的性质,解决平行四边形的周长问题一般转化为两邻边和处理.17、1.888×710【解题分析】先用用科学记数法表示为:10n a ⨯的形式,然后将a 保留4位有效数字可得.【题目详解】18884600=1.88846×710≈1.888×710故答案为:1.888×710【题目点拨】本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:10n a -⨯.18、2410y y --=【解题分析】根据换元法,可得答案.【题目详解】 解:设21x y x =-,则原方程化为140y y --=, 两边都乘以y ,得:2410y y --=,故答案为:2410y y --=.【题目点拨】本题考查了解分式方程,利用换元法是解题关键.三、解答题(共66分)19、(1)①45;②不变化;(2)成立;(3)详见解析.【解题分析】(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【题目详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2) (2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点作于点,于点.∵点在的垂直平分线上,∴.∵四边形为正方形,∴平分.∴.∴.∴.∵,∴.∴.∴.证明二:如图所示.过点作于点,延长交于点,连接.∵点在的垂直平分线上,∴.∵四边形为正方形,∴,∴.∴,.∴.又∵,∴.又∵,∴.∴.本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点20、(1)见解析;(2)8.【解题分析】(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.【题目详解】证明:(1)∵点D、E分别是AB、AC的中点,∴BC=2DE,DE∥BC,且FG∥AB,∴四边形BDFG是平行四边形,∵BF平分∠ABC,∴∠DBF=∠GBF,∵DE∥BC,∴∠GBF=∠DFB,∴∠DFB=∠DBF,∴DF=DB,∴四边形BDFG是菱形;(2)∵四边形BDFG是菱形;∴DF=BG=GF=BD∵BC=2DE∴BG+4=2(BG+1)∴BG=2,∴四边形BDFG的周长=4×2=8【题目点拨】本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的性质是本题的关键.21、(1)①P2,P3,②1≤x≤22+2或222--≤x≤-1;(2)2≤a≤1.(1)由已知结合图象,找到点P所在的区域;(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.【题目详解】解:(1)①∵原点正方形边长为4,当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;当P3(3,2)时,存在Q(2,2),使P3Q≤1;故答案为P₂、P₃;②如图所示:阴影部分就是原点正方形友好点P的范围,由计算可得,点P横坐标的取值范围是:1≤x≤2+22或-2-22≤x≤-1;(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,∴A(0,2),B(2,0),∵线段AB上存在原点正方形的友好点,如图所示:原点正方形边长a的取值范围2≤a≤1.【题目点拨】本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.22、(1)证明见解析;(2)6cm.【解题分析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS 即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD 的周长为2cm ,即可求得AE 的长.详解:(1)证明:∵EF ⊥CE ,∴∠FEC=90°, ∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°, ∴∠AEF=∠ECD .在Rt △AEF 和Rt △DEC 中,∠FAE=∠EDC=90°,∠AEF=∠ECD ,EF=EC . ∴△AEF ≌△DCE .(2)解:∵△AEF ≌△DCE .AE=CD .AD=AE+1.∵矩形ABCD 的周长为2cm ,∴2(AE+AE+1)=2.解得,AE=6(cm ).答:AE 的长为6cm .点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.23、 (1)14403y x =-+ ,21 3y x = ;(2) 两船同时出发经24分钟相遇,此时距B 码头8千米. 【解题分析】 (1)设y 1=k 1x+b ,把(0,40),(30,0)代入得到方程组即可;设y 2=k 2x ,把(120,40)代入即可解答;(2)联立y 1,y 2得到方程组,求出方程组的解,即可求出M 点的坐标.【题目详解】解:()1设11y k x b =+,把()0,40,()30,0代入得:{401300b k b =+=,解得:14340k b ⎧=-⎪⎨⎪=⎩,14403y x ∴=-+, 设22y k x =,把()120,40代入得:240120k =, 解得:213k =, 213y x ∴=; ()2联立14403y x =-+与213y x =得:440313y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得:{248x y ==, ∴点M 的坐标为()24,8,它的实际意义是:两船同时出发经24分钟相遇,此时距B 码头8千米.【题目点拨】本题考查了一次函数的应用,解决本题的关键是用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.24、(1)见解析;(2)AE=(3)(3)12AG AF =,理由见解析. 【解题分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G ,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM F G =,可得GMB ∆≌11GF C ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【题目详解】(1)证明:∵四边形AMFN是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND是Rt△∵△ABC是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt△AMC≌Rt△AND(HL)(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=x则AE=2x3x易得△GBE是等腰直角三角形∴BG=EG3x∴AB=BC=31)x易得∠DHF=30°∴HD=2DF=23,HF=3∴BF=BH+HF=33∵Rt△AMC≌Rt△AND(HL)∴易得3=+∴BC=BF-CF=233333∴(31)33x +=+∴3x =∴AE =223x =(3)122AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM F G =,则GMB ∆≌11GF C ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF =∴12AF AG =∴12AG AF = 【题目点拨】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.25、(1)y =6x ,点C (6,1);(2)1434. 【解题分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【题目详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得, k =6,∴反比例函数y =6x , 当x =12时,y =12, ∴点D (12,12)代入直线l 2:y =﹣2x +b 得, b =13,∴直线l 2:y =﹣2x +13, 由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩, ∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1). (2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13) ∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143 13131 2222224 =⨯⨯-⨯⨯-⨯⨯=答:△OCD的面积为1434.【题目点拨】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26、y(x﹣y)2【解题分析】先提取公因式y,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【题目详解】解:x2y﹣2xy2+y1=y(x2﹣2xy+y2)=y(x﹣y)2.【题目点拨】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。
2016-2017学年八年级下学期期末考试数学试题

E
三、解答题:(本大题包括 7 小题,共 52 分)
5 x 6 ≤ 2( x + 3) 17.( 5 分)解不等式组 x ,并求出它的整数解. x3 1 3 4
18.( 5 )先化简,再求值:
a + 2b 2b 2 1 + 2 2 ,其中 a 2 , b . a +b a b 3
C. D.
2 10 1 2 3 4
4.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20 千米,求两 车的速度各为多少?设货车的速度为 x 千米/小时,使题意列方程正确的是( A.
25 35 x x 20
).
B.
25 35 x 20 x
C.
25 35 x x + 20
19.( 8 分)解方程: (1 )
x 2 x +1 ;( 2 ) x 2 2 x 4 . +1 x +1 x
20.( 6 分)如图,在 ∥ ABC 中, AB CB , ABC 90 , D 为 AB 延长线上一点,点 E 在 BC 边 上,且 BE BD ,连结 AE 、 DE 、 DC .
). D. 4
B. 2
C. 3
2.若分式 A. 2
x2 4 的值为零,则 x 等于( 2x 4
B. 2
). C. 2 D. 0
x 3 0 3.已知不等式组 ,其解集在数轴上表示正确的是( x + 1≥ 0
).
2 10 1 2 3 4
A. B.
2 10 1 2 3 4
2 10 1 2 3 4
A B C
G F E D
陕西初二初中数学期末考试带答案解析

陕西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标()A.(3,-4)B.(-4,3)C.(-3,4)D.(4,-3)2.在下列四组线段中,能组成直角三角形的是()A.4,5,6B.5,6,10C.,,D.5,8,123.下列各式计算正确的是()A.B.=±5C.2+=2D.4.下列四个命题中,真命题是()A.两条直线被第三条直线所截,内错角相等B.如果x2>0,那么x>0C.如果∠1和∠2是对顶角,那么∠1="∠2"D.三角形的一个外角大于任何一个内角5.为了推选一名同学参加学校举办的“中国汉字听写大赛”,九(3)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是95分,甲的成绩的方差是0.3,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定6.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A.与原图形关于x轴对称B.与原图形关于y轴对称C.与原图形关于原点对称D.向y轴的负方向平移了一个单位7.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)9.有一个数值转换器,原理如图,则当输入的x为144时,输出的y是()A.12B.C.D.10.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是()A.26千米,2千米B.27千米,1千米C.25千米,3千米D.24千米,4千米二、填空题1.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.2.如果二元一次方程组的解是二元一次方程3x-5y-7=0的一个解,那么a的值是.3.已知一次函数y=-x+3,当0≤x≤2时,y的最大值是.4.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 cm.三、计算题1.计算:(1)(2).2.如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.四、解答题1.如图,直线CD 、EF 被直线OA 、OB 所截,∠1+∠2=180°.求证:∠3=∠4.2.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.3.某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?4.某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ,图①中m 的值是 ;(2)求本次你调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.5.阅读所给的材料,然后解答问题:如图①,在“格点”直角坐标系上我们可以发现:求线段DE 的长度,可以转化为求Rt △DEF 的斜边长,例如:在坐标系中我们发现:D (-7,5),E (4,-3),所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以据勾股定理可得:DE=.(1)在图①中用上面的方法可求出线段AB 的长为 ;(2)在图②中:设A (x 1.y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示:AC= ,BC= ,AB= ;(3)已知A (2,1),B (4,3),试用(2)中得出的结论求线段AB 的长;(4)已知A (2,1),B (4,3),若点C 为y 轴上的点且使得△ABC 是以AB 为底边的等腰三角形,试求出点C的坐标.6.如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.陕西初二初中数学期末考试答案及解析一、选择题1.点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标()A.(3,-4)B.(-4,3)C.(-3,4)D.(4,-3)【答案】A.【解析】∵点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为3,纵坐标为-4,∴点P的坐标为(3,-4).故选A.【考点】点的坐标.2.在下列四组线段中,能组成直角三角形的是()A.4,5,6B.5,6,10C.,,D.5,8,12【答案】C.【解析】A、∵42+52≠62,∴不能构成直角三角形,故本选项错误;B、∵52+62≠102,∴不能构成直角三角形,故本选项错误;C、∵()2+()2=6=()2,∴能构成直角三角形,故本选项正确;D、∵52+82≠122,∴不能构成直角三角形,故本选项错误.故选C.【考点】勾股定理的逆定理.3.下列各式计算正确的是()A.B.=±5C.2+=2D.【答案】D.【解析】A、原式=|-9|=9,错误;B、原式=5,错误;C、原式为最简结果,错误;D、原式=2-=,正确.故选D.【考点】实数的运算.4.下列四个命题中,真命题是()A.两条直线被第三条直线所截,内错角相等B.如果x2>0,那么x>0C.如果∠1和∠2是对顶角,那么∠1="∠2"D.三角形的一个外角大于任何一个内角【答案】C.【解析】A、两条平行直线被第三条直线所截,内错角相等,所以A选项错误;B、如果x2>0,那么x≠0,所以B选项错误;C、如果∠1和∠2是对顶角,那么∠1=∠2,所以C选项正确;D、三角形的一个外角大于任意与之不相邻的一个内角,所以D选项错误.故选C.【考点】命题与定理.5.为了推选一名同学参加学校举办的“中国汉字听写大赛”,九(3)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是95分,甲的成绩的方差是0.3,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】A.【解析】∵甲的成绩的方差是0.3,乙的成绩的方差是0.8,0.3<0.8,∴甲的成绩比乙的成绩稳定,故选A.【考点】方差.6.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形()A.与原图形关于x轴对称B.与原图形关于y轴对称C.与原图形关于原点对称D.向y轴的负方向平移了一个单位【答案】B.【解析】将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图形关于y轴对称.故选B.【考点】关于x轴、y轴对称的点的坐标.7.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2【答案】C.【解析】因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选C.【考点】一次函数的图象.8.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【答案】D.【解析】A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=-6,∴一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),故D选项错误.故选D.【考点】一次函数的性质.9.有一个数值转换器,原理如图,则当输入的x为144时,输出的y是()A.12B.C.D.【答案】C.【解析】=12,∵12为有理数,∴把12输入,12的算术平方根为,∵是无理数,∴输出的数值等于.故选C.【考点】算术平方根.10.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是()A.26千米,2千米B.27千米,1千米C.25千米,3千米D.24千米,4千米【答案】B.【解析】设小刚乘车路程为x千米,步行路程y千米,由题意得:,解得:.故选B.【考点】二元一次方程组的应用.二、填空题1.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.【答案】45°.【解析】过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.【考点】平行线的性质.2.如果二元一次方程组的解是二元一次方程3x-5y-7=0的一个解,那么a的值是.【答案】7.【解析】由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a-a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x-5y-7=0,可得6a-5a-7=0,∴a=7.【考点】1.二元一次方程组的解;2.二元一次方程的解.3.已知一次函数y=-x+3,当0≤x≤2时,y的最大值是.【答案】3.【解析】∵一次函数y=-x+3中k=-1<0,∴一次函数y=-x+3是减函数,∴当x最小时,y最大,∵0≤x≤2,∴当x=0时,y=3.最大【考点】一次函数的性质.4.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 cm.【答案】13【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.如图:∵PA=2×(4+2)=12,QA=5∴PQ=13.【考点】平面展开-最短路径问题.三、计算题1.计算:(1)(2).【答案】(1)7;(2).【解析】(1)先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先利用二次根式的乘法法则运算得到原式=,然后化简后合并即可.试题解析:(1)原式===7;(2)原式===.【考点】二次根式的混合运算.2.如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.【答案】(1)△BDE是等腰三角形.理由见解析,(2)10.【解析】(1)由折叠可知,∠CBD=∠EBD,再由AD∥BC,得到∠CBD=∠EDB,即可得到∠EBD=∠EDB,于是得到BE=DE,等腰三角形即可证明;(2)设DE=x,则BE=x,AE=8-x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.试题解析:(1)△BDE是等腰三角形.由折叠可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)设DE=x,则BE=x,AE=8-x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,解得:x=5,=DE×AB=×5×4=10.所以S△BDE【考点】翻折变换(折叠问题).四、解答题1.如图,直线CD、EF被直线OA、OB所截,∠1+∠2=180°.求证:∠3=∠4.【答案】证明见解析.【解析】根据等量代换和对顶角的定义求得∠1+∠5=180°,则“同旁内角互补,两直线平行”,即CD∥EF,故“两直线平行,同位角相等”:∠3=∠4.试题解析:∵∠2与∠5是对顶角,∴∠2=∠5,∵∠1+∠2=180°,∴∠1+∠5=180°,∴CD∥EF,∴∠3=∠4.【考点】平行线的判定与性质.2.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【答案】(1)y=x+45;他们能在汽车报警前回到家.【解析】先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.试题解析:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴,解得,∴y=x+45;(2)当x=400时,y=×400+45=5>3,∴他们能在汽车报警前回到家.【考点】一次函数的应用.3.某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?普通(元/间/天)豪华(元/间/天)【答案】三人间普通客房、双人间普通客房各住了8、13间.【解析】本题最后的问题是旅游团住了三人普通间和双人普通间客房各多少间,跟表中的豪华间是没有关系的.那么根据人数和钱数就可以得到两个等量关系:三人普通间的人数+双人普通间的人数=50;三人普通间的钱数+双人普通间的钱数=1510.试题解析:设三人普通房和双人普通房各住了x、y间.根据题意,得化简得:,②-①×5得:y=13,将y=13代入①得:x=8,∴答:三人间普通客房、双人间普通客房各住了8、13间.【考点】二元一次方程组的应用.4.某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次你调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50,32.(2)平均数是16元,众数是:10元,中位数是:15元;(3)928人.【解析】(1)根据捐款数是5元的,所占的百分比是8%,即可求得总人数,然后根据百分比的意义求得m的值;(2)根据平均数、众数、中位数的定义即可求解;(3)利用总人数2900乘以对应的百分比即可求解.试题解析:(1)调查的学生数是:4÷8%=50(人),m=×100=32.故答案是:50,32;(2)平均数是:=16(元),众数是:10元,中位数是:15元;(3)该校本次活动捐款金额为10元的学生人数是:2900×32%=928(人).【考点】1.条形统计图;2.扇形统计图;3.加权平均数;4.中位数;5.众数.5.阅读所给的材料,然后解答问题:如图①,在“格点”直角坐标系上我们可以发现:求线段DE的长度,可以转化为求Rt△DEF的斜边长,例如:在坐标系中我们发现:D(-7,5),E(4,-3),所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以据勾股定理可得:DE=.(1)在图①中用上面的方法可求出线段AB 的长为 ; (2)在图②中:设A (x 1.y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示:AC= ,BC= ,AB= ;(3)已知A (2,1),B (4,3),试用(2)中得出的结论求线段AB 的长;(4)已知A (2,1),B (4,3),若点C 为y 轴上的点且使得△ABC 是以AB 为底边的等腰三角形,试求出点C 的坐标.【答案】(1)5;(2)y 1-y 2;x 1-x 2,;(3);(4)C 坐标为(0,).【解析】(1)根据图①确定出BC 与AC 的长,利用勾股定理求出AB 的长即可;(2)在图②中,由A 与B 的坐标表示出AC ,BC ,利用勾股定理表示出AB 的长即可;(3)利用题中的方法,根据A 与B 坐标求出AB 的长即可;(4)设C (0,y ),由题意得到AC=BC ,根据A 与B 坐标,利用题中的方法列出方程,求出方程的解得到y 的值,即可确定出C 坐标.试题解析:(1)根据题意得:AB=;(2)根据题意得:AC=y 1-y 2;BC=x 1-x 2,AB=; (3)∵A (2,1),B (4,3),∴AB=; (4)设C 坐标为(0,y ),A (4,5),B (1,1), 根据题意得:AC=BC ,即, 解得:y=,则C 坐标为(0,). 【考点】一次函数综合题.6.如图,直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 正半轴上一动点(OC >1),连接BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)△OBC 与△ABD 全等吗?判断并证明你的结论;(2)随着点C 位置的变化,点E 的位置是否会发生变化?若没有变化,求出点E 的坐标;若有变化,请说明理由.【答案】(1)△OBC ≌△ABD ,证明见解析,(2)点E 的位置不会发生变化,E 的坐标为E (0,).【解析】(1)判断△OBC 与△ABD 全等,由等边△AOB 和等边△CBD 得到全等条件;(2)根据(1)容易得到∠OAE=60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE=2,从而得到E 的坐标是固定的.试题解析:(1)△OBC ≌△ABD ,理由:∵△AOB 是等边三角形,∴OB=AB ,∠OBA=∠OAB=60°,又∵△CBD 是等边三角形∴BC=BD ,∠CBD=60°, ∴∠OBA+∠ABC=∠CBD+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,,∴△OBC ≌△ABD (SAS ).(2)∵△OBC ≌△ABD ,∵∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°-∠OAB-∠BAD=60°,∴Rt△OEA中,∵∠OAE=60°,∴∠AEO=30°,∴AE=2OA=2,∴OE=,∴点E的位置不会发生变化,E的坐标为E(0,).【考点】一次函数综合题.。
西安交通大学第二附属中学南校区初中数学八年级下期末经典测试题

一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间3.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .1 4.(0分)[ID :10203]三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形5.(0分)[ID :10200]某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95元B .2.15元C .2.25元D .2.75元 6.(0分)[ID :10197]随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元7.(0分)[ID :10196]已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .48.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .9.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5 B .2 C .2.5 D .-610.(0分)[ID :10195]如图,菱形ABCD 中,∠B =60°,AB =2cm,E,F 分别是BC,CD 的中点,连接AE,EF,AF ,则△AEF 的周长为( )A .2√3cmB .3cmC .4√3cmD .3√3cm11.(0分)[ID :10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 212.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定13.(0分)[ID :10164]某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色 绿色 白色 紫色 红色 数量(件)120 150 230 75 430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数 B .中位数 C .众数 D .平均数与众数14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .5 15.(0分)[ID :10148]如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .43二、填空题16.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.17.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.18.(0分)[ID :10258]2019x -x 的取值范围是_____.19.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.20.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.21.(0分)[ID :10245]我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.22.(0分)[ID :10243]如图,已如长方形纸片,ABCD O 是BC 边上一点,P 为CD 中点,沿AO 折叠使得顶点B 落在CD 边上的点P 处,则OAB ∠的度数是______.23.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.24.(0分)[ID :10239]若m =√n −2+√2−n +5,则m n =___.25.(0分)[ID :10236]已知3a b +=,2ab =a b b a的值为_________. 三、解答题26.(0分)[ID :10417]计算:0221218(2020)()(21)2π-----.27.(0分)[ID :10393]为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a 10)>个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a 60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?28.(0分)[ID :10382]如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF .(1)求证:四边形BCFE 是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE 的面积.29.(0分)[ID :10373]如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠.(1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.30.(0分)[ID :10334]近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.C4.C5.C6.A7.B8.B9.A10.D11.B12.B13.C14.A15.A二、填空题16.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D17.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A18.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键19.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7220.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x 的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征21.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数22.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差24.【解析】【分析】直接利用二次根式有意义的条件得出mn的值进而得出答案【详解】∵m=n-2+2-n+5∴n=2则m=5故mn=25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn的25.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt△AB'C中,82+(x-2)2=x2,解之得:x=17,即芦苇长17尺.故选C.【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间, 故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键. 3.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C .考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5.C解析:C【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元),故选:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).7.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.8.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k 的取值范围.9.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A .【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.10.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE ≌△ADF ,然后连接AC 可推出△ABC 以及△ACD 为等边三角形.根据等边三角形三线合一的性质又可推出△AEF 是等边三角形.根据勾股定理可求出AE 的长,继而求出周长.【详解】解:∵四边形ABCD 是菱形,∴AB =AD =BC =CD =2cm ,∠B =∠D ,∵E 、F 分别是BC 、CD 的中点,∴BE =DF ,在△ABE 和△ADF 中,{AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF .连接AC ,∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形,∴AE ⊥BC ,AF ⊥CD ,∴∠BAE =∠DAF =30°,∴∠EAF =60°,BE=12AB=1cm , ∴△AEF 是等边三角形,AE =√AB 2−BE 2=√22−12=√3,∴周长是3√3cm.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.11.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.12.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】 连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.13.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C .考点:统计量的选择.14.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.15.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题16.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF ⊥OA 于F ,同理证得△AOB ≌△DFA ,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.17.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.18.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x 的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x >2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.19.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.a>b 【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y 随着x 的增大而减小∵1<2∴a>b 故答案为a >b 【点睛】本题考查一次函数图象上点的坐标特征解析:a >b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.21.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数解析:﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.22.30°【解析】【分析】根据题意先通过△ADP求出∠DAP的因为△ABO≌△APO即可求出∠OAB的度数【详解】解:∵P是CD的中点沿折叠使得顶点落在边上的点∴DP=PC=CD△ABO≌△APO∵四边解析:30°【解析】【分析】根据题意先通过△ADP求出∠DAP的,因为△ABO≌△APO,即可求出∠OAB的度数.【详解】解:∵ P是CD的中点,沿AO折叠使得顶点B落在CD边上的点P∴DP=PC=12CD, △ABO≌△APO∵四边形ABCD为长方形∴∠D=∠DAB=90°,AB=CD=AP=2DP ∴∠DAP=30°∵△ABO≌△APO∴∠PAO=∠OAP=12∠BAP∴∠OAP=12∠BAP=12(∠DAB-∠DAP)=12(90°-30°)=30° 故答案为:30°【点睛】 此题主要考查了全等三角形的性质和特殊直角三角形的性质,解题的关键是折叠前后图形全等.23.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案. ∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差24.【解析】【分析】直接利用二次根式有意义的条件得出mn 的值进而得出答案【详解】∵m =n-2+2-n+5∴n =2则m =5故mn =25故答案为:25【点睛】此题主要考查了二次根式有意义的条件正确得出mn 的解析:【解析】【分析】直接利用二次根式有意义的条件得出m ,n 的值进而得出答案.【详解】∵m =√n −2+√2−n +5,∴n =2,则m =5,故m n =25.故答案为:25.【点睛】此题主要考查了二次根式有意义的条件,正确得出m ,n 的值是解题关键.25.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】b a=+=(a b ab+, ∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.三、解答题26.7﹣4.【解析】【分析】利用负指数幂的性质、零指数幂的性质、二次根式的性质进行化简再解答即可.【详解】解:原式=2×+1﹣﹣1=﹣﹣1=4.【点睛】本题考查了负指数幂的性质、零指数幂的性质、二次根式的性质,掌握各类代数式的性质是解答本题的关键.27.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得2(x+50)=3x ,解得x=100,答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.28.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以四边形BCFE 是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE=BC .又∵BE=2DE ,EF=BE ,∴EF=BC ,EF ∥BC .∴四边形BCFE 是平行四边形.又∵BE=FE ,∴四边形BCFE 是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC 是等边三角形.∴菱形的边长为4,高为23∴菱形的面积为4×38329.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥ 根据勾股定理,得2212AE AD DE =-= (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.30.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.【解析】分析:(1)根据B 的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A 和D 的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A 种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A 和B 两种支付方式的购买者共有多少名.详解:(1)56÷28%=200, 即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人), A 方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A 种支付方式所对应的圆心角为:360°×60200=108°, (3)1600×60+56200=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年陕西省西安市交大二附中八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.52.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.x3﹣x=x(x2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)3.(3分)已知a<3,则不等式(a﹣3)x<a﹣3的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣14.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°5.(3分)如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD 与BE相交于点P,则∠1+∠2的度数是()A.45°B.55°C.60°D.75°6.(3分)如图,l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处7.(3分)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.6 B.8 C.9 D.108.(3分)如图,平行四边形ABCD周长是28cm,△ABC的周长是22cm,则AC 长()A.14cm B.12cm C.10cm D.8cm9.(3分)观察下列图象,可以得出不等式组的解集是()A.x<B.﹣<x<0 C.0<x<2 D.﹣<x<210.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2x﹣2≤7的正整数解分别是.12.(3分)分式方程+1=有增根,则m=.13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出来.16.(6分)分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.17.(6分)先化简,再求值(+)÷,其中x=﹣2,y=1.18.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?19.(8分)如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.20.(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A(1,0),B(3,0),C(4,3),求点D的坐标.2016-2017学年陕西省西安市交大二附中八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)在中,分式的个数是()A.2 B.3 C.4 D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在中,分式有,∴分式的个数是3个.故选:B.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.2.(3分)因式分解正确的是()A.m3+m2+m=m(m2+m)B.x3﹣x=x(x2﹣1)C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式=m(m2+m+1),错误;B、原式=x(x+1)(x﹣1),错误;C、原式不是分解因式,错误;D、原式=(﹣2a+3b)(2a+3b),正确,故选:D.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3.(3分)已知a<3,则不等式(a﹣3)x<a﹣3的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】先根据a<3判断出a﹣3<0,再根据不等式的性质解答即可.【解答】解:因为a<3,∴a﹣3<0.两边同时除以a﹣3得,x>1.故选:A.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选:A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.5.(3分)如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD 与BE相交于点P,则∠1+∠2的度数是()A.45°B.55°C.60°D.75°【分析】在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,由此可以证明△ABD ≌△BCE,根据全等三角形的性质得到∠CBE=∠1,而∠CBE+∠2=60°,所以∠1+∠2=60°.【解答】解:∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选:C.【点评】本题主要考查了等边三角形的性质,全等三角形的判定等内容,比较简单.6.(3分)如图,l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处【分析】根据角平分线上的点到角的两边的距离相等作出图形即可得解.【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并是解题的关键,作出图形更形象直观.7.(3分)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.6 B.8 C.9 D.10【分析】根据线段垂直平分线的性质和平行四边形的性质可知,△CDE的周长=CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.【解答】解:根据垂直平分线上点到线段两个端点的距离相等知,EC=AE;根据在平行四边形ABCD中有BC=AD,AB=CD,∴△CDE的周长等于CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.故选:B.【点评】本题结合线段垂直平分线的性质考查了平行四边形的性质,利用中垂线将已知转化是解题的关键.8.(3分)如图,平行四边形ABCD周长是28cm,△ABC的周长是22cm,则AC 长()A.14cm B.12cm C.10cm D.8cm【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵▱ABCD的周长是28cm,∴AB+AD=14cm,∵△ABC的周长是22cm,∴AC=22﹣(AB+AC)=8cm,故选:D.【点评】本题考查了平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.9.(3分)观察下列图象,可以得出不等式组的解集是()A.x<B.﹣<x<0 C.0<x<2 D.﹣<x<2【分析】3x+1>0的解集即为y=3x+1的函数值大于0的对应的x的取值范围,第二个不等式的即为直线y=﹣0.5﹣1的函数值大于0的对应的x的取值范围,求出它们的公共解集即可.【解答】解:根据图象得到,3x+1>0的解集是:x>﹣,第二个不等式的解集是x<2,∴不等式组的解集是﹣<x<2.故选:D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形.10.(3分)A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(本题共4小题,每小题3分,共12分)11.(3分)不等式2x﹣2≤7的正整数解分别是1,2,3,4.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4.5,所以不等式的正整数解是1,2,3,4.【点评】正确解不等式,求出解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.12.(3分)分式方程+1=有增根,则m=3.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得:x+x﹣3=m∵原方程有增根,∴最简公分母x﹣3=0,故增根是x=3,把x=3代入整式方程,得m=3.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.(3分)如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为23.【分析】要求底边BC的长,现有△BCE的周长为50,只要求出BE+AE即可,因为DE垂直且平分AB,故BE=AE.可推出AC=BE+EC=AB.易求出BC的长.【解答】解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=23.【点评】本题考查的知识点为线段垂直平分线的性质以及等腰三角形的性质;对线段进行有效的等量代换是解答本题的关键.14.(3分)若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是6.【分析】根据凸n边形的内角和为1260°,求出凸n边形的边数,即可得出,从一个顶点出发可引出(n﹣3)条对角线.【解答】解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,得,n=9;∴9﹣3=6.故答案为:6.【点评】本题考查了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.三、解答下列问题(共58分)15.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.16.(6分)分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【分析】(1)首先提取公因式(x﹣y),进而分解因式得出答案;(2)直接利用平方差公式分解因式,再结合完全平方公式分解因式得出答案.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.(6分)先化简,再求值(+)÷,其中x=﹣2,y=1.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(+)÷===,当x=﹣2,y=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?【分析】工作效率:设A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x﹣20)千克;工作量:A型机器人搬运1000千克,B型机器人搬运800千克;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,由所用时间相等,建立等量关系.【解答】解:设A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x﹣20)千克,依题意得:.(3分)解这个方程得:x=100.(6分)经检验x=100是方程的解,所以x﹣20=80.(7分)答:A、B两种机器人每小时分别搬运化工原料100千克和80千克.(8分)【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.19.(8分)如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【分析】(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;(2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP ≌Rt△BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.【解答】解:(1)依照题意,画出图形,如图所示.(2)∵点P到AB、BC的距离相等,∴PC=PD.在Rt△BCP和Rt△BDP中,,∴Rt△BCP≌Rt△BDP(HL),∴BC=BD.又∵PD垂直平分AB,∴AD=2BD=2BC.在Rt△ABC中,∠C=90°,AB=2BC,∴∠A=30°.【点评】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.20.(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.【分析】通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.【解答】证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∴在△ADE与△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【点评】本题综合考查了平行四边形的性质、平行线的判定以及全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.21.(8分)如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC的数量之间具有怎样的关系?证明你所得到的结论.【分析】(1)证明△AGE≌△ACE,根据全等三角形的性质可得到GE=EC,再利用三角形的中位线定理证明DE∥AB,再加上条件EF∥BC可证出结论;(2)先证明BF=DE=BG,再证明AG=AC,可得到BF=(AB﹣AG)=(AB﹣AC).【解答】(1)证明:延长CE交AB于点G,∵AE⊥CE,∴∠AEG=∠AEC=90°,在△AEG和△AEC中,∴△AGE≌△ACE(ASA).∴GE=EC.∵BD=CD,∴DE为△CGB的中位线,∴DE∥AB.∵EF∥BC,∴四边形BDEF是平行四边形.(2)解:BF=(AB﹣AC).理由如下:∵四边形BDEF是平行四边形,∴BF=DE.∵D、E分别是BC、GC的中点,∴BF=DE=BG.∵△AGE≌△ACE,∴AG=AC,∴BF=(AB﹣AG)=(AB﹣AC).【点评】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形中位线定理,题目综合性较强,证明GE=EC,再利用三角形中位线定理证明DE∥AB是解决问题的关键.22.(8分)在平面直角坐标系中,以A,B,C,D为顶点组成平行四边形,A(1,0),B(3,0),C(4,3),求点D的坐标.【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.【解答】解:分三种情况:①BC为对角线时,点D的坐标为(6,3);②AB为对角线时,点D的坐标为(0,﹣3);③AC为对角线时,点D的坐标为(2,3).综上所述,点D的坐标是(6,3)或(0,﹣3)或(2,3).【点评】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.。