1.1.2集合之间的基本关系讲义

合集下载

新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案

新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案

课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn 图表达集合间的关系。

教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。

记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

人教版高中数学必修一1.1.2集合间的基本关系ppt课件

【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2

a

1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×

1.1.2集合间的基本关系 课件2(人教A版必修1)

1.1.2集合间的基本关系 课件2(人教A版必修1)

又 0∈N,但 0∉M,∴M⫋ N.
反思:判断两个集合间的关系时,主要是根据这两个集合中元素的特征,结合有
关定义来判断.对于用列举法表示的集合,只需要观察其元素即可得它们之间的
关系;对于用描述法表示的集合,要从所含元素的特征来分析,分析之前可以用
列举法多取几个元素来估计它们之间可能有什么关系,然后再加以证明.当
m=
.
解析:∵B⊆ A,5∈B,
∴5∈A.∴m=5.
答案:5
3.集合相等与真子集
定义
记法
如果集合 A 是

集合 B 的子集,

且集合 B 是集

合 A 的子集,那 A=B

么称集合 A 与
集合 B 相等
如果集合 A⊆ B,
真 子 集
但存在元素 x∈ B,且 x∉A,我们 就称集合 A 是 集合 B 的真子
题型二
判断集合间的关系
【例 2】 集合 M={x|x2+x-6=0},N={x|2x+7>0},试判断集合 M 和 N 的关系.
分析:明确集合 M 和 N 中的元素,再依据有关的定义判断.
解:M={-3,2},N=
x|x
7 2
}
.
∵-3>- 7 ,2>- 7 , 22
∴-3∈N,2∈N.∴M⊆ N.
M⊆ N 和 M⫋ N 均成立时,M⫋ N 较准确地表达了 M 和 N 的关系.
空集是任何非空集合的真子集, 即⌀ ⫋ A(A≠⌀ ).
【做一做 4】 集合 M={x∈R|2x2+3=0}中元素的个数是( ).
A.不确定
B.2
C.1
D.0
解析:由于方程 2x2+3=0 无实根,则 M=⌀ .

1.1.2集合间的基本关系课件(人教版)

1.1.2集合间的基本关系课件(人教版)
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
示例1:视察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
1.子 集 一般地,对于两个集合,如果A中
练习1:视察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形}; AB
③ A={x|x2-3x+2=0},
B={1,2}.
A=B
3.真子集
示例3:A={1, 2, 7},B={1, 2, 3, 7}, 如果AB,但存在元素x∈B,且
x∈A,称A是B的真子集.
记作AB,或BA.
示例4:考察下列集合,并指出集合中的 元素是什么?
A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
ቤተ መጻሕፍቲ ባይዱ
4.空 集
示例4:考察下列集合,并指出集合中的 元素是什么? A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
A表示的是x+y=2上的所有的点; B没有元素.
不含任何元素的集合为空集,记作.
A.3个 B.4个 C.5个 D.6个
课堂小结
子集:AB任意x∈Ax∈B.
真子集:AB x∈A,x∈B,但存在
x0∈A且x0A. 集合相等:A=BAB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
1.子 集
A={1,2,3} B={1,2,7} C={1,2,3,4,5}

1.1.2集合之间的基本关系讲义

1.1.2集合之间的基本关系讲义

第二讲 集合之间的基本关系【知识点】1.子集.对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。

记作()A B B A ⊆⊇或 读作A 含于B2.维恩图.用平面上封闭曲线的内部代表集合,这种图叫做韦恩图3.集合相等.集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B4.真子集.如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.表示记作BA (或A B), 读作“A 真包含B ”(或“B 真包含于A ”). 5.空集.我们把不含任何元素的集合叫作空集.空集是任何集合的子集,且是任何非空集合的真子集.【知识点透析】1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

【例题精讲】1.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1) {},,,a b c d {},a b ;(2) ∅ {}1,2,3;(3) N Q ; (4) 0 R ; (5) d {},,a b c ; (6) {}|35x x << {}|06x x <. 2. 写出集合{a ,b }的所有子集,3. 说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}.(2)P ={x |x 2=1},Q ={-1,1}. AB(3)N ,N*.4.求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 判断集合{}2A x x ==与集合{}240B x x =-=的关系.5.判断集合A 与B 是否相等?(1) A ={0},B = ∅;(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.4.下列各式中,正确的是( )A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x5.已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.6.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.7.选用适当的符号“”或“”填空: (1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.8.设集合{}0,1,2M =,试写出M 的所有子集,和真子集9.已知集合A={x|x2-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a 的值所组成 的集合M.10.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.11.下列四个集合中,表示空集的是( )A.{0}B.},,|),{(22R y R x x y y x ∈∈-=C.},,5|||{N x Z x x x ∉∈=D.},0232|{2N x x x x ∈=-+12.已知集合,,那么( ) (A )(B ) (C ) (D ) 13.设,,若,则实数的取值范围是( ) (A )(B ) (C ) (D )【课堂练习】(一)集合与集合关系的理解 1.已知集合X 满足{}{}X X 求所有满足条件的集合,5,4,3,2,12,1⊆⊆.2.已知集合,,312,,61⎭⎬⎫⎩⎨⎧∈-==⎭⎬⎫⎩⎨⎧∈+==Z n n x x Z z m m x x M ,612{+==p x x P }Z p ∈,则M,N,P 满足的关系是:3.已知集合{}{},,3,2,1A x x B A ⊆==求集合B.(二)空集的理解4.下列集合中:(1){0};(2{}{};)4(;)3(;,0,12φφR n x n x x ∈<+=(){}0,0)5(,是空集的为:( )(三)由集合之间的基本关系球参数5.若{}02=-a x x {}31<<-x x ,则a 的取值范围是( )6.已知集合{},01=-=ax x A 集合{},0322=--=x x x B 若A B ,求a 的值.(四)证明两集合相等.7.集合{},,12Z n n x x X ∈-=={},,14Z k k y y Y ∈±==试证明:X=Y.(五)集合与函数的综合8.设集合{}{}R x R a a x a x x B R x x x x A ∈∈=-+++=∈=+=,,01)1(2,,04222,若,A B ⊆求实数a的取值范围.9.若集合{}{}01,062=+==-+=mx x B x x x A ,且BA ,求m 的值.(六)提升拓展10.若不等式1<x 成立时,不等式[][]0)4()1(<+-+-a x a x 也成立,求a 的取值范围.【教学反思】。

集合间的基本关系讲义

集合间的基本关系讲义

1.1.2 集合间的基本关系一、子集(一)子集:对于两个集合A 、B ,如果集合A 中任意一个元素......都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B (或B ⊇A ),读作“A 含于B ”(或“B 包含A ”)数学语言表示形式为:若对任意的x ∈A 有x ∈B ,则A ⊆B子集关系用文氏图表示为:A ⊆B (或B ⊇A ) 根据子集的定义,我们可以知道A ⊆A ,也就是说任何集合都是它本身的一个子集.对于空集φ,我们规定φA .,.即空集是任何集合的子集..........。

例1:用适当的符号填空0____{0} φ____{0} 2____{2} 2____N {2}____N变式练习1:已知A ={x |x 2-3x +2=0 },B ={1,2},C ={ x |x <8,x ∈N },用适当的符号填空A___________B A___________C {2}__________C 2_________C例2:写出集合{,,,}a b c d 的所有子集。

【解析】集合{,,,}a b c d 的所有子集可以分为五类,即:(1)含有0个元素的子集,即空集φ;(2)含有一个元素的子集:{},{},{},{}a b c d ;(3)含有二个元素的子集:{,},{,},{,},{,},{,},{,}a b a c a d b c b d c d ;(4)含有三个元素的子集:{,,},{,,},{,,},{,,}a b c a b d a c d b c d ;(5)含有四个元素的子集:{,,,}a b c d . 结论:如果集合A 中有n 个元素,则集合A 共有2n 个子集变式练习1:已知集合A ={x ∈N +︱-1≤x <4},则集合A 的子集有_________个。

【解析】:8个(二)、集合相等:如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),则集合A 与集合B 相等,记作集合A =集合B 。

1.1.2集合间的基本关系(优秀经典公开课比赛课件)

1.1.2集合间的基本关系(优秀经典公开课比赛课件)
• (2)通过实例分析,获知两个集合间的包含与相 等关系,然后给出定义.
• (3)从自然语言,符号语言,图形语言三个方面 理解包含关系及相关的概念.
• 3.情感、态度与价值观
• 应用类比思想,在探究两个集合的包含和相等关 系的过程中,培养学习的辨证思想,提高学生用 数学的思维方式去认识世界,尝试解决问题的能 力.
• (二)教学重点与难点
• 重点:子集的概念;难点:元素与子集,即属于 与包含之间的区别.
我们知道实数有相等关系、大小关系,如5=5,5<7,5>3,等等, 类比实数之间的关系,集合之间存在着什么关系呢?
观察下面几个例子,我们一起来研究集合之间的关系. 例1 (1)A={1,2,3},B={1,2,3,4,5}; (2)设A为新华中学高一(2)班全体女生组成的集合,B为这个 班全体学生组成的集合;
是集合B的子集,记为 A B(或 B A),
读作”A含于B”(或”B包含A”).
韦恩图:用平面上封闭曲线的内部代表集合,这 种图称作韦恩图
A B或B AA来自B例1 (3)设C={x|x是两条边长相等的三角形},
D={x|x是等腰三角形}. 通过观察我们发现集合C中任何一个元素都是集 合D中的元素,同时,集合D中任何一个元素也都 是集合C中元素.这样,集合D的元素与集合C的元 素是一样的. 那么我们可以用子集概念来对集合相等作进一 步的数学描述.
我们可以发现,在(1)中,集合A的任何一个元素都是集合B中 的元素,(2)中的集合A与集合B也有这种关系.反过来说,集合A 可以看成是集合B派生的一个集合,那么对于这种关系,我们称集 合A是集合B的子集.
一、子集
定义:对于两个集合A、B,如果集合A中的任意一个元素都 是集合B的元素,我们就说这两个集合有包含关系,称集合A

1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义

1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义

新教材必修第一册1.2:集合间的基本关系课标解读:1.子集的含义.(理解)2.真子集的含义.(理解)3.集合相等的含义.(理解)4.空集的含义.(理解)5.Veen图.(了解)学习指导:1.准确理解子集的概念,把握子集与真子集之间的关系.2.注意灵活运用集合的三种语言(文字语言、符号语言、图形语言)分析解决有关问题.3.谨防掉进“空集”陷阱.4.本节难点是对相似概念及符号的理解,例如:区别元素与集合,属于与包含等概念及其符号表示.知识导图:教材全解知识点1:Veen图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Veen图.例1-1:用Veen图表示集合之间的关系:}xxB=,是平行四边形xA=x|{|}{是菱形,xxD=是矩形xC=x}|}.,{|{是正方形答案:知识点2:子集例2-2:给出下列说法:①任意集合必有子集;②若集合BA⊆,则A中元素的个数一定少于集合B中的元素个数;③若集合A是集合B的子集,集合B是集合C的子集,集合C是集合D的子集,则集合A是集合D的子集;④若不属于集合A的元素也一定不属于集合B,则集合B是集合A的子集,其中正确的是()A. ②③B.①③④C.①③D.①②④ 答案:B例2-3:设集合}1,1{},,3,1{2+-==a a B a A ,且A B ⊆,则a 的值为 . 答案:-1或2知识点3:集合的相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A=B.也就是说,若B A ⊆且A B ⊆,则A=B.例3-4:集合},12|{Z n n x x X ∈+==,},14|{z k k y y Y ∈±==,试证明Y X =. 答案:(1)设X x ∈0,则,1200+=n x 且.0Z n ∈①若0n 是偶数,可设Z m m n ∈=,20,则Z m m x ∈+=,140,∴Y x ∈0②若0n 是奇数,可设Z m m n ∈-=,120,则Z m m m x ∈-=+-=,141)12(20,∴Y x ∈0 ∴不论0n 是奇数还是偶数,都有Y x ∈0. ∴Y X ⊆. (2)设Y y ∈0,则.,141400000Z k k y k y ∈-=+=,或∵Z k k k y k k y ∈+-⋅=-=+⋅=+=00000001)12(21412214,,或, ,12,200Z k Z k ∈-∈ ∴X y ∈0,则X Y ⊆ 由(1)(2)得,Y X =. 知识点4:真子集例4-5:在“新冠肺炎”疫情期间,某社区男、女党员自发组成自愿者队伍,参加社区防疫工作.若集合A={参与防疫工作的志愿者},集合B={参与防疫工作的男党员},集合C={参与防疫工作的女党员},则下列关系正确的是( ) A. B A ⊆ B. C B ⊆ C.A C ⊄ D.B ⫋A 答案:D例4-6:指出下列各组集合之间的关系: (1))};1,1(),1,1(),1,1(),1,1{(},1,1{----=-=B A (2)}6,3,2{=A ,B=}12|{的约数是x x ;(3)}|{}|{是等腰三角形,是等边三角形x x B x x A ==; (4)},12|{+∈-==N n n x x M ,},12|{+∈+==N n n x x N .答案:(1)A 与B 无包含关系;(2)A ⫋B ;(3)A ⫋B ;(4)N ⫋M .知识点5:空集 1.空集的定义一般地,我们把不含任何元素的集合叫做空集,记为∅. 2.空集的性质(1)空集是任何集合的子集;(2)空集的任何非空集合的真子集,即∅⫋A (A 为非空集合). 由上述性质可知空集只有一个子集,即它本身. 辨析明理:∅、0、{0}、{ ∅}之间的关系:例5-7:下面四个集合中,表示空集的是( ). A. {0} B.},01|{2R x x x ∈=+ C.},01|{2R x x x ∈>- D.},,0|),{(22R y R x y x y x ∈∈=+ 答案:B例5-8:若集合==+-=}02|{2m x x x A ∅,则实数m 的取值范围是( ) A.1-<m B.1<m C.1>m D.1≥m 答案:C知识点6:有限集合的子集个数 对于集合A 的子集我们有如下结论: 集合AA的所有子集子集个数 真子集个数 非空真子集个数}{a ∅,}{a 122= 1 0 },{b a ∅,}{a ,}{b ,},{b a 224=3 2 },,{c b a∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a328=76猜想:A=},...,,{21n a a a n 2 12-n 22-n例6-9:已知集合},,01234|),{(++∈∈<-+=N y N x y x y x A ,则集合A 的子集个数为( ).A.3B.4C.7D.8 答案:D例6-10:已知集合M 满足}2,1{⫋M }5,4,3,2,1{⊆,则有满足条件的集合M 的个数是( ).A.6B.7C.8D.9 答案:B知识点7:集合的图示法 1.Veen 图(1)用Veen 图表示集合间基本关系,如图所示:(2)用Veen图表示集合之间的关系:A⫋B⫋C可表示为如图:2.数轴法对于由连续实数组成的集合,通常用数轴表示,这也属于集合表示的图示法.在数轴上,若端点值是集合中元素,则用实心点表示;若端点值不是集合中的元素,则用空心点表示.集合}3<-xx≤xx与用数轴分别表示如图:{{≥}5|1|例7-11:图中反映的是“文学作品”、“散文”、“小说”、“叙事散文”这四个文学概念之间的关系,请在下面的空格上填入适当的内容:A为;B为;C为;D为 .答案:{小说} {文学作品} {叙述散文} {散文}例7-12:已知集合A=}2{<≤-xx,则集合A与B的关系是 .|2{-≥x|x,集合B=}8答案:B⫋A题型与方法例13:指出下列各组集合之间的关系: (1)}.50|{},51|{<<=<<-=x x B x x A (2)}.,4|{},,2|{Z n n x x B Z n n x x A ∈==∈==(3)}.,2)1(1|{},0|{2Z n x x B x x x A n∈-+===-= (4)}.0,00,0|),{(},0|),{(<<>>=>=y x y x y x B xy y x A 或 (5)}.,54|),{(},,1|{22++∈+-==∈+==N a a a x y x B N a a x x A答案:(1)B ⫋A ;(2)B ⫋A ;(3)A=B ;(4)A=B ;(5)B A ⊆;(6)A ⫋B.例14:已知集合}|{},3,2,1{A x x Y A ⊆==,则下列结论错误的是( ) A.Y ⊆}1{ B.Y A ∈ C.∅Y ⊆ D.{∅}⫋Y 答案:A变式训练:已知集合},612|{},312|{},,61|{Z c c x x C Z b b x x B Z a a x x A ∈+==∈-==∈+==,,则A ,B ,C 满足的关系是( )A. A=B ⫋CB. A ⫋B=CC. A ⫋B ⫋CD.B ⫋C ⫋A 答案:B题型2:确定集合的子集、真子集例15:设}0)45)(16(|{22=++-=x x x x A ,写出集合A 的子集,并指出其中哪些是它的真子集.答案:集合A 的子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}、{-4、-1、4},集合A 的真子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}.例16:已知集合A={1,3,5},则集合A 的所有非空子集的元素之和为 . 答案:36变式训练:已知集合A=}065|{},033|{22=+-∈==++∈x x R x B x x R x ,A P ⊆⫋B ,求满足条件的集合P. 答案:∅或{2}或{3}例17:已知}012|{},082|{222=-++∈==+-∈=a ax x R x B x x R x A ,若A=B ,则实数a 的取值范围为 . 答案:}44|{>-<a a a 或例18:已知集合}.121|{},52|{-≤≤+=≤≤-=m x m x B x x A (1)若B ⫋A ,求实数m 的取值范围; (2)若B A ⊆,求实数m 的取值范围.答案:(1)}.3|{≤m m (2)不存在m 使得B A ⊆.变式训练:已知}|{},31|{a x x B x x A <=<<-=,若B A ⊄,则实数a 的取值范围是( ). A.}3|{<a a B.}3|{≤a a C.}1|{->a a D.}1|{-≥a a 答案:A例19:已知集合},|{},,12|{},1,1|{2A x x z z C A x x y y B R a a a x x A ∈==∈-==∈->≤≤-=且,是否存在实数a 使得B C ⊆?若存在,求出实数a 的取值范围;若不存在,请说明理由. 答案:当1=a 时,B C ⊆易错题型易错1:混淆属于关系和包含关系例20:已知集合A={0,1},B=}|{A x x ⊆,则下列关于集合A 与B 的关系正确的是( ) A.A B ⊆ B.A ⫋B C.B ⫋A D.B A ∈ 答案D易错2:忽略对参数的讨论例21:已知集合},0)1(|{},0|{22=--===x a x x F x x E 判断集合E 和F 的关系. 答案:①当1=a 时,E=F ;②当1≠a 时,E ⫋F.易错3:忽略空集例22:已知集合A={-1,1},B=A B ax x x ⊆+=若},1|{,则实数a 的所有可能取值组成的集合为( ).A.{-1}B.{1}C.{-1,1}D.{-1,0,1} 答案:D易错4:利用数轴求参数范围时,忽略端点值是否能取到例23:已知集合},31|{},54|{R a a x a x B x x x A ∈+≤≤+=-<≥=或,若A B ⊆,则a 的取值范围为 .答案:}38|{≥-<a a a 或创新升级例24:已知非空集合21A A ,是集合A 的子集,若同时满足两个条件:(1)若21A a A a ∉∈,则;(2)若12A a A a ∉∈,则,则称),(21A A 是集合A 的“互斥子集”,并规定),(21A A 与),(12A A 为不同的“互斥子集组”,则集合A={1,2,3,4}的不同“互斥子集组”的个数是 . 答案:50组感知高考考向1:集合间关系判定及应用例25:已知集合A={1,2,3},B={2,3},则( )A.A=BB.A B ∈C.A ⫋BD.B ⫋A答案:D例26:已知集合A=},1{a ,B={1,2,3},那么( ).A.若3=a ,则B A ⊆B.若B A ⊆,则3=aC.若3=a ,则B A ⊄D.若B A ⊆,则2=a 答案:C 考向2 :子集的个数 例27:已知集合A=},023|{2R x x x x ∈=+-,B=},50|{N x x x ∈<<,则满足条件B C A ⊆⊆的集合C 的个数为( ).A. 1B. 2C. 3D. 4答案:D基础巩固:1.已知下列四个命题:①;则且若C A C B B A ⊆⊆⊆,②且若B A ⊆B ⫋C ,则A ⫋C ;③若A ⫋B 且B ⊆C ,则A ⫋C ;④若A ⫋B 且B ⫋C ,则A ⫋C.其中正确命题的个数是( )A. 1B. 2C. 3D. 42.满足M a ⊆}{⫋},,,{d c b a 的集合M 共有( )A.6个B. 7个C. 8个D.15个3.已知集合U=R ,则正确表示集合U ,M={-1,0,1},N=}0|{2=+x x x 之间的Veen 图是().4.集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )A.N M =B.N ⫋MC.M ⫋ND.M 与N 没有相同的元素5.设结合A={-1,1},集合B=},1|{R a ax x ∈=,则使得A B ⊆的a 的所有取值构成的集合是 .6.已知7.已知集合A=}.52|{≤≤-x x(1)若}126{-≤≤-=⊆m x m B B A ,,求实数m 的取值范围;(2)是否存在实数m ,使得A=B ,}126{-≤≤-=m x m B ?若存在,求出实数m 的范围;若不存在,请说明理由.综合提升:8.集合A=},,1{y x ,B=}2,,1{2y x ,若A=B ,则实数x 的取值集合为( ) A.{21} B.{2121-,} C.{210,} D.{21210-,,}9.下列四个结合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-10.集合},54|{2R a a a x x A ∈+-==,},344|{2R b b b y y B ∈++==,则下列关系正确的是( ). A. A=B B.B ⫋A C.A B ⊆ D.A B ⊄11.同时满足①}5,4,3,2,1{⊆M ,②M a M a ∈-∈6,且的非空集合M 的个数为( )A. 16B.15C. 7D. 612.若一个集合中含有n 个元素,则称该元素集合为“n 元集合”,已知集合}4,3,21,2{-=A ,则其“2元子集”的个数为( )A. 6B. 8C. 9D. 1013.设集合A=}023|{2=+-x x x ,集合B=},04|{2为常数a a x x x =+-,若A B ⊆,则实数a 的取值范围是 .14.已知集合A=}40|{≤<∈x Z x ,若A M ⊆,且M 中至少有一个偶数,则这样的集合M 的个数为 .15.若规定E=},...,,{1021a a a 的子集},...,,{21ni i i a a a 为E 的第k 个子集,其中1112...2221---+++=ni i i k ,则:(1)},{31a a 是E 的第 个子集;(2)E 的第211个子集为 .16.已知三个集合}02|{}01|{},023|{222=+-==-+-==+-=bx x x C a ax x x B x x x A ,,同时满足B ⫋A ,C ⊆A 的实数b a ,是否存在?若存在,求出b a ,的所有值;若不存在,请说明理由.参考答案1. D2. B3. B4. C5. {-1,0,1}6. }41|{≤a a7. (1)}43|{≤≤m m ;(2)不存在.8. A9. D10.B11.C12.A13.}4|{≥a a14. 1215.(1)5;(2)},,,,{87521a a a a a .16.存在2222,23,2<<-===b a b a 或满足要求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 集合之间的基本关系
【知识点】
1.子集.对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。

记作
()A B B A ⊆⊇或 读作A 含于B
2.维恩图.
用平面上封闭曲线的内部代表集合,这种图叫做韦恩图
3.集合相等.
集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即A =B
4.真子集.
如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.
表示记作B
A (或A B), 读作“A 真包含
B ”(或“B 真包含于A ”). 5.空集.
我们把不含任何元素的集合叫作空集.空集是任何集合的子集,且是任何非空集合的真子集.
【知识点透析】
1.集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

【例题精讲】
1.用符号“⊆”、“⊇”、“∈”或“∉”填空:
(1)
{},,,a b c d {},a b ;(2) ∅ {}1,2,3; (3) N Q ; (4) 0 R ;
(5) d {},,a b c ; (6) {}|35x x << {}|0
6x x <.
2. 写出集合{a ,b }的所有子集,
3. 说出下列每对集合之间的关系. A
B
(1)A ={1,2,3,4,},B ={3,4}.
(2)P ={x |x 2=1},Q ={-1,1}.
(3)N ,N*.
4.求下列集合之间的关系,并用Venn 图表示.
A ={x |x 是平行四边形},
B ={x |x 是菱形},
C ={x |x 是矩形},
D ={x |x 是正方形}. 判断集合{}2A x x ==与集合{}
240B x x =-=的关系.
5.判断集合A 与B 是否相等?
(1) A ={0},B = ∅;
(2) A ={…,-5,-3,-1,1,3,5,…},B ={x| x =2m+1 ,m ∈Z } ;
(3) A ={x| x =2m-1 ,m ∈Z },B ={x| x =2m+1 ,m ∈Z }.
4.下列各式中,正确的是( )
A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x
5.已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.
6.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.
7.选用适当的符号“”或“”填空: (1){1,3,5}_ _{1,2,3,4,5};
(2){2}_ _ {x | |x |=2}; (3){1} _∅.
8.设集合{}0,1,2M =,试写出M 的所有子集,和真子集
9.已知集合A={x|x2
-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a 的值所组成 的集合M.
10.已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.
11.下列四个集合中,表示空集的是( )
A.{0}
B.},,|),{(22R y R x x y y x ∈∈-=
C.},,5|||{N x Z x x x ∉∈=
D.},0232|{2N x x x x ∈=-+
12.已知集合,,那么( ) (A )
(B ) (C ) (D ) 13.设,,若,则实数的取值范围是( ) (A )
(B ) (C ) (D )
【课堂练习】
(一)集合与集合关系的理解 1.已知集合X 满足{
}{}X X 求所有满足条件的集合,5,4,3,2,12,1⊆⊆.
2.已知集合,,312,,61⎭⎬⎫⎩⎨⎧∈-==⎭⎬⎫⎩⎨⎧
∈+==Z n n x x Z z m m x x M ,612{+==p x x P }Z p ∈,则M,N,P 满足的关系是:
3.已知集合{}{},,3,2,1A x x B A ⊆==求集合B.
(二)空集的理解
4.下列集合中:(1){0};(2{}{};)4(;)3(;,0,12φφR n x n x x ∈<+=(){}0,0)5(,是空集的为:( )
(三)由集合之间的基本关系球参数
5.若{}02=-a x x {}31<<-x x ,则a 的取值范围是( )
6.已知集合{},01=-=ax x A 集合{}
,0322=--=x x x B 若A B ,求a 的值.
(四)证明两集合相等.
7.集合{},,12Z n n x x X ∈-=={},,14Z k k y y Y ∈±==试证明:X=Y.
(五)集合与函数的综合
8.设集合{}{}R x R a a x a x x B R x x x x A ∈∈=-+++=∈=+=,,01)1(2,,04222,若,A B ⊆求实数a 的取值范围.
9.若集合{}{}01,062=+==-+=mx x B x x x A ,且B
A ,求m 的值.
(六)提升拓展
10.若不等式1<x 成立时,不等式[][]0)4()1(<+-+-a x a x 也成立,求a 的取值范围.
【教学反思】。

相关文档
最新文档