人教A版必修3第一章测试题及答案

合集下载

第一章 有机化合物的结构特点与研究方法 测试题-高二化学人教版(2019)选择性必修3

第一章  有机化合物的结构特点与研究方法  测试题-高二化学人教版(2019)选择性必修3

第一章《有机化合物的结构特点与研究方法》测试题一、单选题(共12题)1.桶烯(Barrelene)键线式如图所示,下列有关说法不正确的是A.桶烯分子中所有原子在同一平面内B.0.1 mol桶烯完全燃烧需要消耗氧气22.4 L(标准状况)C.桶烯与苯乙烯(C6H5CH=CH2)互为同分异构体D.桶烯中的一个氢原子被氯原子取代,所得产物只有两种2.下列有机化合物属于链状化合物,且含有两种官能团的是A.B.CH CHBrCH Br D.C.323.下列分离混合物的实验方法中不正确的是A.分离乙酸(沸点77.1 ℃)与某种液态有机物(沸点120 ℃)的混合物-蒸馏B.从含有少量NaCl的KNO3溶液中提取KNO3-热水溶解、降温结晶、过滤C.用CCl4萃取碘水中的碘,液体分层后-下层液体从下口放出,上层液体从上口倒出D.将溴水中的溴转移到有机溶剂中-加入乙醇萃取4.对如图所示两种化合物的结构或性质描述正确的是A.均含有σ键和π键且均存在碳原子的sp3和sp2杂化B.均为芳香族化合物C.二者的分子式均为C10H12OD.可用红外光谱区分,但不能用核磁共振氢谱区分5.下列有机物分子中的碳原子既有sp3杂化又有sp杂化的是A.CH3CH=CH2B.CH3-C≡CH C.CH3CH2OH D.CH≡CH 6.设N A为阿伏加德罗常数的值,下列说法正确的是1.8g H O中含有的氢原子数为0.2N AA.标准状况下,2B.在过氧化钠与水的反应中,每生成0.1mol氧气,转移电子的数目为0.4N AC.常温下,1Ba+数目为0.3N A0.3mol L-⋅的Ba(OH)2溶液中含有的24.2g C H分子中所含的碳碳双键数目一定为0.1N AD.367.某有机物X对氢气的相对密度为30,分子中碳的质量分数为40%,氢的质量分数为6.7%,其余为氧,X可与碳酸氢钠反应。

下列关于X的说法不正确的是A.X的相对分子质量为60B.X的分子式为C2H4O2C.X的结构简式为CH3COOHD.X的同分异构体中含的只有一种(不考虑立体异构)8.下列各组物质中,互为同分异构体的是A.水与冰B.红磷与白磷C.与D.与9.分子式为C5H10O2的酯共有(不考虑立体异构) :A.7种B.8种C.9种D.10种10.下列说法正确的是A.的一溴代物有5种B.分子式是C5H10O2且属于羧酸的结构有5种C.分子式是C4H8O且属于醛的结构有3种D.C4H10的同分异构体有3种11.下列有机化合物按碳骨架分类,结果正确的是CH=CH)、苯()、环己烷()都属于脂肪烃A.乙烯(22B.苯()、环戊烷()、环己烷()都属于芳香烃C.属于脂环化合物D.均属于环烷烃12.下列说法中不正确的是A.乙醛能发生银镜反应,表明乙醛具有氧化性B.能发生银镜反应的物质不一定是醛C.有些醇不能发生氧化反应生成对应的醛D.福尔马林是35%~40%的甲醛水溶液,可用于消毒和制作生物标本二、非选择题(共10题)13.某芳香烃A的质谱图如图所示:(1)A的名称为___________。

高中数学第一章1.2.3循环语句人教A版必修3

高中数学第一章1.2.3循环语句人教A版必修3
正确的是( ) A.UNTIL 语句可以无限循环 B.WHILE 语句可以无限循环 C.循环语句中必须有判断条件 D.WHILE 语句不能实现 UNTIL 语句的功能 解析:选 C.语句是描述算法的一种方式,因此具有有限性,即 循环语句不能无限循环,因此 A,B 不正确.判断条件是循环 语句不可缺少的部分,因此 C 正确.WHILE 语句与 UNTIL 语句可以相互转化,因此 D 不正确.
循环结构的程序设计
写出计算 12+32+52+…+992 的程序.
【解】
用 WHILE 语句编写程序如下: S=0 i=1 WHILE i< =99 S=S+i∧2 i=i+2 WEND PRINT S END
用 UNTIL 语句编写程序如下: S=0 i=1 DO S=S+i∧2 i=i+2 LOOP UNTIL i>99 PRINT S END
【答案】 8
(1)WHILE 语句的适用类型 当型循环也叫“前测试”循环,也就是我们所讲的“先测试后 执行”“先判断后执行”. (2)使用 WHILE 语句应关注五点 ①当型循环以 WHILE 开头,以 WEND 作为结束标志; ②一般来讲,WHILE 语句与 UNTIL 语句可以相互转化;
③执行 WHILE 语句时,先判断条件,再执行循环体,然后再 判断条件,再执行循环体,反复执行,直至条件不满足; ④WHILE 语句中的条件是指循环体的条件,满足此条件时, 执行循环体,不满足时,则跳出循环,执行循环结构后面的语 句; ⑤WHILE 语句由于先判断条件,再执行循环体,因此,循环 体可能一次也不执行就退出循环结构.
A.3 C.15
下面程序的运行结果是( ) i=1 S=0 WHILE i<=4 S=S*2+1 i=i+1 WEND PRINT S END B.7 D.17

最新人教版高中历史必修三单元测试题含答案全套

最新人教版高中历史必修三单元测试题含答案全套

最新人教版高中历史必修三单元测试题含答案全套第一单元测评(时间:60分钟,满分:100分)一、选择题(每小题4分,共60分)1观察下图,孔子在讲学中向其弟子阐释的为人处世之道应是( )杏坛讲学图A.政在大夫B.学而优则仕C.己欲立而立人,己欲达而达人D.内圣外王解析:解答本题,要注意题目限定的是“为人处世之道”。

“己欲立而立人,己欲达而达人”,是儒家道德修养中用于处理人际关系的重要原则,即忠恕,忠恕要求根据自己内心的体验来推测别人的思想感受,以达到推己及人的目的。

答案:C2“奉法者强,则国强;奉法者弱,则国弱。

”持这一观点的人应是( )A.墨翟B.孟轲C.荀况D.韩非子解析:材料中的观点重点强调了“法”的重要性,“奉法”能够强国,反之就会导致国弱,这充分说明了“奉法”与强国之间的关系。

由此可判断出D项是正确答案。

答案:D3荀子是战国时期儒家思想的主要代表人物,其思想与法家共通的是( )A.天行有常B.人性本恶C.礼法并重D.民水君舟解析:本题的关键词是“共通”,即荀子的思想与法家思想的共同点。

A、C、D三项都是荀子的思想主张。

从表面上看,B项“人性本恶”是荀子的观点,但仔细比较,荀子提出“性恶论”,主张用礼乐来规范人的行为,使人向善;法家则主张用严刑峻法来约束和规范臣民的行为,实际上也是相信人性本恶的。

答案:B4儒、道、墨、法四家是先秦诸子学说的重要流派。

下列语句中最符合道家思想的是( )A.兼相爱,交相利B.仁者爱人C.抱法处势则治,背法去势则乱D.道生一,一生二,二生三,三生万物解析:道家学派认为道是世界的本原,D项正确。

答案:D5韩非子在批评某家学说时说:“举先王,言仁义者盈廷,而政不免于乱。

”他批评的是( )A.法家学说B.道家学说C.儒家学说D.墨家学说解析:韩非子的观点非常鲜明,即靠“仁义”无法建立稳定的政治局面,仁、义是儒家学说的核心。

因此,C 项是符合题目要求的正确答案。

答案:C6汉代儒学大师董仲舒的“大一统”的思想实际上吸收了( )A.孟子的思想B.荀子的思想C.韩非子的思想D.孔子的思想解析:“大一统”思想实际上就是加强中央集权,和法家韩非子的思想是一致的。

人教版高二地理必修三第一章地理环境与区域发展测试试题

人教版高二地理必修三第一章地理环境与区域发展测试试题

人教版高二地理必修三第一章地理环境与区域发展测试试题单元闯关检测一、选择题1.(2023广东梅州一模)近十年,中国高铁建设飞速发展。

高铁建成通车后,为了保证高铁安全准时运行,需要采取的地理信息技术有()①GPS②GIS③RSA.①②B.②③C.①③D.①②③答案A高铁安全运行,要准时到达预定位置,需要GPS,①正确。

高铁列车不只一列,必须按规划线路运行,才能保证安全,需要GIS进行线路规划、分析,②正确。

RS主要功能是拍摄图像,不能保证列车运行安全,③错误。

故A正确。

截至2023年5月,南昌市已投放共享单车数量超过5000辆,每天平均租借达8000余次。

下图用户在一天中不同时段通过APP查询到的同一区域单车分布状况。

读图完成下面两题。

2.(2023辽宁师大附中期末)上图中不同时段单车分布差异大的原因,可能是该地()①行政区集中③工业区集中A.①②②住宅区集中④高校集中C.①③D.②④B.②③答案C图中不同时段单车分布差异大,夜晚单车数量少,白天单车数量多,可能该地行政区或工业区集中,白天来此地工作的人多,①③正确;若住宅区或高校集中,夜晚单车数量应较多,②④错误。

故选C项。

3.(2023辽宁师大附中期末)利用手机查询、租用共享单车主要运用的地理信息技术是()①RS②GPS③GIS④数字地球A.①②B.②③C.①③D.②④答案B本题考查3S技术的应用。

利用手机查询、租用共享单车,首先要利用单车租赁点分布、实时借还数据等查询系统,使用的是GIS技术;而单车分布的具体位置则要用GPS技术来确定。

故选B。

下图示意赞比西河水系分布和该流域内的一些地理要素。

据此完成下面三题。

4.图示区域原来是水草丰美的大草原,而现在却荒漠化严重,造成这种转变的人为原因是()A.气候由湿润向干旱转变B.人类过度农垦、放牧对植被的破坏严重C.农业由耕种向畜牧转变D.植被由草原向荒漠退化答案BA、D项均为荒漠化的结果,故排除。

农业由耕种变为畜牧,顺应了自然规律,故不是荒漠化的原因。

【新教材】人教A版(2019)高中数学必修第一章测试卷

【新教材】人教A版(2019)高中数学必修第一章测试卷

第一章 集合与常用逻辑用语考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={0,1,2},B ={2,3},则集合A ∪B =( B ) A .{1,2,3} B .{0,1,2,3} C .{2}D .{0,1,3}[解析] 依题意得A ∪B ={0,1,2,3},故选B . 2.命题“∀x >0,x 2-2x +1>0”的否定是( A ) A .∃x >0,x 2-2x +1≤0 B .∀x >0,x 2-2x +1≤0 C .∃x ≤0,x 2-2x +1≤0 D .∀x ≤0,x 2-2x +1≤0[解析] 含有量词的命题的否定,一改量词将“∀”改为“∃”,二否结论将“>”改为“≤”,条件不变,故选A .3.设a ∈R ,则a >3是|a |>3的( D ) A .既不充分也不必要条件 B .必要不充分条件 C .充要条件D .充分不必要条件[解析] 由“a >3”能推出“|a |>3”,充分性成立;反之由|a |>3无法推出a >3,必要性不成立.故选D .4.已知M ={x |y =x 2+1},N ={y |y =x 2+1},则M ∩N =( A ) A .{x |x ≥1} B .∅ C .{x |x <1}D .R[解析] 因为M ={x |y =x 2+1}=R ,N ={y |y =x 2+1}=|y |y ≥1|,所以M ∩N ={x |x ≥1},故选A .5.已知m ,n ∈R ,则“mn -1=0”是“m -n =0”成立的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 由m n -1=0得mn =1,得m =n ,m -n =0,即充分性成立;当m =n =0时,满足m -n =0,但m n -1=0无意义,即必要性不成立,即“mn -1=0”是“m -n =0”成立的充分不必要条件,故选A .6.集合{y ∈N |y =-x 2+6,x ∈N }的真子集的个数是( C ) A .9 B .8 C .7D .6[解析] x =0时,y =6;x =1时,y =5;x =2时,y =2;x =3时,y =-3.所以{y ∈N |y =-x 2+6,x ∈N }={2,5,6}共3个元素,其真子集的个数为23-1=7个,故选C .7.命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是( C ) A .∀n ∈N ,f (n )∉N 且f (n )≤n B .∀n ∈N ,f (n )∉N 且f (n )>n C .∃n ∈N ,f (n )∉N 或f (n )≤n D .∃n ∈N ,f (n )∉N 或f (n )>n[解析] 命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是∃n ∈N ,f (n )∉N 或f (n )≤n ,故选C .8.已知全集U =R ,M ={x |x <-1},N ={x |x (x +2)<0},则图中阴影部分表示的集合是( A )A .{x |-1≤x <0}B .{x |-1<x <0}C .{x |-2<x <-1}D .{x |x <-1}[解析] 题图中阴影部分为N ∩(∁U M ), 因为M ={x |x <-1}, 所以∁U M ={x |x ≥-1},又N ={x |x (x +2)<0}={x |-2<x <0}, 所以N ∩(∁U M )={x |-1≤x <0}.故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列命题中,是全称量词命题的有( BC ) A .至少有一个x 使x 2+2x +1=0成立 B .对任意的x 都有x 2+2x +1=0成立 C .对任意的x 都有x 2+2x +1=0不成立 D .存在x 使x 2+2x +1=0成立[解析] A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题,B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题.故选BC .10.下列命题中真命题的是( AB ) A .“a >b >0”是“a 2>b 2”的充分条件 B .“a >b ”是“3a >3b ”的充要条件 C .“a >b ”是“|a |>|b |”的充分条件 D .“a >b ”是“ac 2≤bc 2”的必要条件[解析] 当a >b >0时a 2>b 2,A 正确;B 正确;对于C ,当a =1,b =-2时,满足a >b ,但|a |<|b |,故C 不正确;对于D ,“a >b ”与“ac 2≤bc 2”没有关系,不能相互推出,因此不正确.故选AB .11.定义集合运算:A ⊗B ={z |z =(x +y )×(x -y ),x ∈A ,y ∈B },设A ={2,3},B ={1,2},则( BD )A .当x =2,y =2,z =1B .x 可取两个值,y 可取两个值,z =(x +y )×(x -y )有4个式子C .A ⊗B 中有4个元素D .A ⊗B 的真子集有7个[解析] 当x =2,y =2时,z =(2+2)×(2-2)=0,A 错误;由于A ={2,3},B ={1,2},则z 有(2+1)×(2-1)=1,(2+2)×(2-2)=0,(3+1)×(3-1)=2,(3+2)×(3-2)=1四个式子,B 正确;由集合中元素的互异性,得集合A ⊗B 有3个元素,C 错误;集合A ⊗B 的真子集个数为23-1=7,D 正确.故选BD .12.在下列命题中,真命题有( BC ) A .∃x ∈R ,x 2+x +3=0 B .∀x ∈Q ,13x 2+12x +1是有理数C .∃x ,y ∈Z ,使3x -2y =10D .∀x ∈R ,x 2>|x |[解析] A 中,x 2+x +3=(x +12)2+114>0,故A 是假命题;B 中,x ∈Q ,13x 2+12x +1一定是有理数,故B 是真命题;C 中,x =4,y =1时,3x -2y =10成立,故C 是真命题;对于D ,当x =0时,左边=右边=0,故D 为假命题;故真命题有BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.已知集合A ={1,a 2},B ={a ,-1},若A ∪B ={-1,a,1},则a =__0__.[解析] 由题意可知⎩⎪⎨⎪⎧a 2=a ≠1,a ≠-1,解得a =0.14.已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为__3或6或9__. [解析] 由题意可知B ={x |x =a 3}.若A ∩B ≠∅,则a 3=1或a 3=2或a3=3,得a =3或6或9.15.某校开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.王小二略加思索,反手给了王小一一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 的范围是否一致?__是__(填“是”或“否”).[解析] 因为命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”,而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题,所以两位同学题中m 的范围是一致的.16.在下列所示电路图中,下列说法正确的是__(1)(2)(3)__(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件; (2)如图②所示,开关A 闭合是灯泡B 亮的必要不充分条件; (3)如图③所示,开关A 闭合是灯泡B 亮的充要条件;(4)如图④所示,开关A 闭合是灯泡B 亮的必要不充分条件.[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件,因此正确;(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件,因此正确;(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件,因此正确;(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件,因此错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.[解析] 由x 2+x -6=0得x =2或x =-3,因此M ={2,-3}. ①当a =2时,N ={2},此时N ⊆M ; ②当a =-3时,N ={2,-3},此时N =M ;③当a ≠2且a ≠-3时,得N ={2,a },此时,N M .故所求实数a 的值为2或-3. 18.(本小题满分12分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除; (2)末位是0的实数能被2整除; (3)∃x >1,x 2-2>0;(4)存在实数没有算术平方根; (5)奇数的平方还是奇数.[解析] (1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题. (2)命题中省略了全称量词“所有”,是全称量词命题,真命题. (3)命题中含有存在量词“∃”,是存在量词命题,真命题. (4)命题“存在实数没有算术平方根”,是存在量词命题,真命题. (5)命题中省略了全称量词“所有”,是全称量词命题,真命题.19.(本小题满分12分)设集合A ={x |-1<x <4},B ={x |-5<x <32},C ={x |1-2a <x <2a }.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且C ⊆(A ∩B ),求实数a 的取值范围. [解析] (1)因为C ={x |1-2a <x <2a }=∅,所以1-2a ≥2a ,所以a ≤14,即实数a 的取值范围是{a |a ≤14}.(2)因为C ={x |1-2a <x <2a }≠∅, 所以1-2a <2a ,即a >14.因为A ={x |-1<x <4},B ={x |-5<x <32},所以A ∩B ={x |-1<x <32},因为C ⊆(A ∩B ),所以⎩⎨⎧1-2a ≥-1,2a ≤32,a >14,解得14<a ≤34,即实数a 的取值范围是{a |14<a ≤34}.20.(本小题满分12分)已知全集U =R ,集合A ={x |4x -1>x +2},B ={x |-1<x <2m -3}.(1)当m =4时,求(∁U A )∩B ;(2)若A ∩B 恰好包含了两个整数,写出这两个整数构成的集合的所有子集. [解析] (1)因为全集U =R ,集合A ={x |4x -1>x +2}={x |x >1}, 当m =4时,∁U A ={x |x ≤1},集合B ={x |-1<x <5}, 所以(∁U A )∩B ={x |-1<x ≤1}. (2)因为A ={x |4x -1>x +2}={x |x >1}, B ={x |-1<x <2m -3}.A ∩B 恰好包含了两个整数,则这两个整数是2,3, 则集合{2,3}的所有子集为:∅,{2},{3},{2,3}.21.(本小题满分12分)若集合A ={x |x >-2},B ={x |bx >1},其中b 为实数且b ≠0,试写出:(1)A ∪B =R 的一个充要条件; (2)A ∪B =R 的一个必要不充分条件; (3)A ∪B =R 的一个充分不必要条件.[解析] 若b >0,则集合B ={x |x >1b },若b <0,则集合B ={x |x <1b}.(1)若A ∪B =R ,则必有⎩⎪⎨⎪⎧b <0,1b >-2,即⎩⎪⎨⎪⎧b <0,b <-12,所以b <-12. 故A ∪B =R 的一个充要条件是b <-12.(2)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个必要不充分条件可以是b <0. (3)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个充分不必要条件可以是b <-1.22.(本小题满分12分)(1)已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围;(2)已知p :A ={x |-1≤x ≤5},q :B ={x |-m <x <2m -1},若p 是q 的充分条件,求实数m 的取值范围.[解析] (1)p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件, 即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. (2)因为p 是q 的充分条件,所以A ⊆B , 如图:则⎩⎪⎨⎪⎧-m <-1,2m -1>5,解得m >3.。

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

高中数学人教A版必修三 第一章 算法初步 学业分层测评8 Word版含答案

算法案例一、选择题1.用更相减损术求1 515和600的最大公约数时需要做减法次数是()A.15 B.14C.13 D.12【解析】 1 515-600=915915-600=315600-315=285315-285=30285-30=255255-30=225225-30=195195-30=165165-30=135135-30=105105-30=7575-30=4545-30=1530-15=15∴1 515与600的最大公约数是15则共做14次减法.【答案】 B2.计算机中常用的十六进制是逢16进1的计数制采用数字0~9和字母A~F共16个计数符号这些符号与十进制数的对应关系如下表:十六0123456789 A B C D E F 进制十进0123456789101112131415 制例如用十六进制表示:E+D=1B则A×B等于()A.6E B.72C.5F D.B0【解析】A×B用十进制表示10×11=110而110=6×16+14所以用16进制表示6E【答案】 A3.以下各数有可能是五进制数的是()A.15 B.106C.731 D.21 340【解析】五进制数中各个数字均是小于5的自然数故选D【答案】 D二、填空题6.用更相减损术求36与134的最大公约数第一步应为________.【解析】∵36与134都是偶数∴第一步应为:先除以2得到18与67【答案】先除以2得到18与677.用秦九韶算法求f(x)=2x3+x-3当x=3时的值v2=________.【解析】f(x)=((2x+0)x+1)x-3v0=2;v1=2×3+0=6;v2=6×3+1=19【答案】198.将八进制数127(8)化成二进制数为________.【解析】先将八进制数127(8)化为十进制数:127(8)=1×82+2×81+7×80=64+16+7=87再将十进制数87化成二进制数:∴87=1010111(2)∴127(8)=1010111(2).【答案】1010111(2)三、解答题9.用更相减损术求288与153的最大公约数.【解】288-153=135153-135=18135-18=117117-18=9999-18=8181-18=6363-18=4545-18=2727-18=918-9=9因此288与153的最大公约数为910.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.【解】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64由内向外依次计算一次多项式当x=2时的值v0=1v1=1×2-12=-10v2=-10×2+60=40v3=40×2-160=-80v4=-80×2+240=80v5=80×2-192=-32v6=-32×2+64=0所以f(2)=0即x=2时原多项式的值为0[能力提升]1.下面一段程序的目的是()A.求mn的最小公倍数B.求mn的最大公约数C.求m被n除的商D.求n除以m的余数【解析】本程序当mn不相等时总是用较大的数减去较小的数直到相等时跳出循环显然是“更相减损术”.故选B【答案】 B2.若k进制数123(k)与十进制数38相等则k=________.【解析】由k进制数123可知k≥4下面可用验证法:若k=4则38(10)=212(4)不合题意;若k =5则38(10)=123(5)成立所以k =5或者123(k )=1×k 2+2×k +3=k 2+2k +3∴k 2+2k +3=38k 2+2k -35=0k =5(k =-7<0舍去).【答案】 53.若二进制数10b 1(2)和三进制数a 02(3)相等求正整数ab【28750022】【解】 ∵10b 1(2)=1×23+b ×2+1=2b +9a 02(3)=a ×32+2=9a +2∴2b +9=9a +2即9a -2b =7∵a ∈{12}b ∈{01}∴当a =1时b =1符合题意;当a =2时b =112不符合题意.∴a =1b =14.用秦九韶算法求多项式f (x )=8x 7+5x 6+3x 4+2x +1当x =2时的值.【解】 根据秦九韶算法把多项式改写成如下形式: f (x )=8x 7+5x 6+0·x 5+3·x 4+0·x 3+0·x 2+2x +1=((((((8x +5)x +0)x +3)x +0)x +0)x +2)x +1而x =2所以有v 0=8v 1=8×2+5=21v 2=21×2+0=42v3=42×2+3=87v4=87×2+0=174v5=174×2+0=348v6=348×2+2=698v7=698×2+1=1 397所以当x=2时多项式的值为1 397。

【高中化学】《有机化合物的结构特点与研究方法》测试题2022-2023学年人教版化学选择性必修3

【高中化学】《有机化合物的结构特点与研究方法》测试题2022-2023学年人教版化学选择性必修3

第一章《有机化合物的结构特点与研究方法》单元检测题一、单选题1.下列有机物分子中属于手性分子的是 A .甘氨酸(NH 2CH 2COOH) B .氯仿(CHCl 3) C .乳酸[CH 3CH(OH)COOH]D .丙醛(CH 3CH 2CHO)2.A 、B 两种有机物都属于烃类,都含有6个氢原子,它们的核磁共振氢谱如图。

下列说法一定错误的是A .A 是26C H ,B 是B .A 是26C H ,B 是32CH CH CH = C .A 是,B 是32CH CH CH =D .A 是,B 是23HC C CH C CCH ≡≡——3.下列有机物的官能团名称和分类错误的是 A .3CH C CH ≡,碳碳三键,炔烃 B .,羟基,二元醇C .32CH CH OOCH ,酯基,酯类D .()24CH OH CHOH CHO ,羟基、醛基,单糖4.中国文化源远流长,三星堆出土了大量文物,下列有关说法正确的是。

A .测定文物年代的14C 与12C 互为同素异形体B .三星堆出土的青铜器上有大量铜锈,可用明矾溶液除去C .青铜是铜中加入铅,锡制得的合金,其成分会加快铜的腐蚀D .文物中做面具的金箔由热还原法制得5.2021年诺贝尔化学奖授予本杰明。

李斯特、大卫·麦克米兰,以表彰在“不对称有机催化的发展”中的贡献,用脯氨酸催化合成酮醛反应如图:下列说法错误的是A.c可发生消去反应形成双键B.该反应原子利用率100%C.脯氨酸与互为同分异构体D.a、b、c均可使酸性高锰酸钾溶液褪色6.有机物Y的分子式为C4H8O2,其红外光谱如图所示,则该有机物可能的结构简式为()A.CH3COOCH2CH3B.OHCCH2CH2OCH3C.HCOOCH2CH2CH3D.(CH3)2CHCOOH7.已知某有机物A的红外光谱和核磁共振氢谱如图所示,下列说法中错误的是A.由红外光谱可知,该有机物中至少有三种不同的化学键B.由核磁共振氢谱可知,该有机物分子中有三种不同化学环境的氢原子C.仅由A的核磁共振氢谱无法得知其分子中的氢原子总数D.若A的化学式为C2H6O,则其结构简式为CH3-O-CH38.下列反应中,属于加成反应的是A.甲烷燃烧生成二氧化碳和水B.乙醇与乙酸反应制备乙酸乙酯C.乙烯与溴反应生成1,2-二溴乙烷D.甲烷与氯气在光照条件下反应9.下列叙述正确的是A.某有机物燃烧后产物只有CO2和H2O,可推出的结论是有机物属于烃B.某有机物燃烧后产物只有CO2和H2O,可推出的结论是有机物属于烃的含氧衍生物C.某有机物燃烧后产物只有CO2和H2O,通过测定有机物、CO2和H2O的质量,可确定有机物是否含有氧D.甲烷在同系物中含碳量最高,因而是清洁能源C H O,下列关于该分子的结构推测合理的是10.已知某有机物的分子式是684A.可能含有1个苯环B.可能含有2个碳碳三键和4个羟基C.可能含有2个羧基和1个碳碳双键D.可能含有1个醛基、2个羧基和1个碳碳双键11.分子式为C10H14的苯的同系物X,苯环上只有一个取代基则符合条件的X有A.2种B.3种C.4种D.5种12.实验室制备苯甲醇和苯甲酸的化学原理是:已知苯甲醛易被空气氧化;苯甲醇的沸点为205.3 ℃,微溶于水,易溶于乙醚;苯甲酸的熔点为121.7 ℃,沸点为249 ℃,微溶于水,易溶于乙醚;乙醚的沸点为34.8 ℃,难溶于水。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
8.执行如图所示的程序框图,若输入数据 , , , , , ,则输出的结果为
A. B. C. D.
9.执行如图所示的程序框图,若输入数据 , , , ,则输出的结果为
A. B. C. D.
10.定义某种运算 , 的运算原理如图所示,设 ,则 在区间 上的最大值为
A. B. C. D.
end
end
print(%io(2),y);
19. (1)如图所示:
20. (1)程序框图如图所示:
21. (1)先把函数整理成
按照从内向外的顺序依次求解:
所以
人教A版必修3第一章测试题及答案
一、选择题(共10小题;共40分)
1.如图程序框图中,若输入 , ,则输出 , 的值分别是
A. B. C. D.
2.利用如图所示程序框图在直角坐标平面上打印一系列点,则打印的点落在坐标轴上的个数是
A. B. C. D.
3.执行两次如图所示的程序框图,若第一次输入的 的值为 ,第二次输入的 的值为 ,则第一次,第二次输出的 的值分别为
20.以下是某次考试中某班 名同学的数学成绩: , , , , , , , , , , , , , , .要求将 分以上的同学的平均分求出来,试画出实现此功能的程序框图.
21.用秦九韶算法写出求 在 时的值的过程.
答案
第一部分
1. C2. B3. C4. C5. A
6. B7. C8. C9. C10. D
A. , B. , C. , D. ,
4.某程序的框图如右图所示,执行该程序,则输出的序框图,若输入 ,则输出的有序数对为
A. B. C. D.
6.执行如图所示的程序框图,如果输入 ,那么输出的 的值为
A. B. C. D.
7.执行如图所示的程序框图,输出的 值为
第二部分
11.
12.
13.
14. 1
15.
第三部分
16. (1)
17. (1) ; .
18. (1)分段函数的解析式为( 表示不超过 的最大整数):
程序如下:
x=input("=");
if x<=2
y=3;
else
if int(x)=x
y=3+1.6 *(x-2);
else
y=3+1.6*([x-2]+1);
16.利用秦九韶算法计算 在 时的函数值.
17.给出如图所示的程序框图,在执行该框图表达的算法后,输出的 , 的值分别是多少?
18.某同学坐出租车上学,出租车按以下方法收费: 内 元, 以外,超过 的部分每千米 元,不足 按 计.请你设计一个计算某同学乘出租车行驶 应付的车费 元的程序.
19.画出计算 的值的程序框图.
二、填空题(共5小题;共20分)
11.执行如图所示的程序框图,输入 , , ,则输出的 的值是.
12.执行如图所示的程序框图,若 ,则输出的 .
13.执行下边的程序框图,输出的 .
14.执行如图所示的程序框图,则输出的结果为
15.执行如图中的程序框图,如果输入的 ,则输出的 所在区间是
三、解答题(共6小题;共62分)
相关文档
最新文档