线性代数课件(完整版)同济大学

合集下载

线性代数_同济大学(第五版)正式课件1

线性代数_同济大学(第五版)正式课件1

D1 b2 a22 a23 ,
b3 a32 a33

b1 a12 a13 D1 b2 a22 a23 ,
b3 a32 a33
aa2111xx11

a12 x2 a22 x2

a13 x3 a23 x3

b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
二阶行列式的计算 ——对角线法则
主对角线 副对角线
a11 a21
a12 a22

a11a22

a12a21
即:主对角线上两元素之积-副对角线上两元素之积
二元线性方程组
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
若令
D a11 a21
a12 a22
(方程组的系数行列式)

a12 x2 a22 x2

b1 b2
其求解公式为

x1


x2

b1a22 a11a22 a11b2 a11a22
a12b2 a12a21 b1a21 a12a21
原则:横行竖列
引进新的符号来表示“四
个数分成两对相乘再相
减”。
a11 a12 数表 a21 a22
a11 a12 a13 D a21 a22 a23
a31 a32 a33
aa2111xx11

a12 x2 a22 x2

a13 x3 a23 x3

b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
a11 b1 a13

D2 a21 b2 a23 ,

线性代数同济大学第五版课件

线性代数同济大学第五版课件

二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
求解公式为
x1
b1a22 a11a22
a12b2 a12a21
x2
a11b2 a11a22
b1a21 a12a21
请观察,此公式有何特点? ➢分母相同,由方程组的四个系数确定. ➢分子、分母都是四个数分成两对相乘再
线性代数_同济大学(第五版)课件
在以往的学习中,我们接触过二 元、三元等简单的线性方程组.
但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
我们先讨论未知量的个数与方程 的个数相等的特殊情形.
在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
32 x 1 1 1 2x 1
对应于
(1)t(1234) a11a22a33a44 (1)t1243 a11a22a34a43
(1)t(1234) a11a22a33a44 x3 ,
(1)t1243 a11a22a34a43 2x3
故 x3的系数为-1.
§4 对换
一、对换的定义
定义 例如
在排列中,将任意两个元素对调,其余的元素 不动,这种作出新排列的手续叫做对换.
简记作 det(a,ij )
1. n 阶行列式共有 n! 项.
其中a为ij 行列式D的(i, j)元
2. 每一项都是位于不同行不同列的 n 个元素的乘积.
3. 每一项可以写成 a1p1a2 p2(正an负pn号除外),其中
是1, 2, …, n 的某个排列.
p1 p2 pn
4. 当 p1 p2 是p偶n 排列时,对应的项取正号; 当 p1 p2 是奇pn排列时,对应的项取负号.

同济大学线性代数课件(第三章)

同济大学线性代数课件(第三章)

0 0 0
1 0 0
1 0 0
1 2 0


0
6 0


B4
2019/6/24
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4

3 3 0


B5
行最简形

x1 x2

x3 x3

4 3
3
2 5
3
2 3
4

0
6 3


B2
2019/6/24
11
1 1 2 1 4
r2 2

rr43 35rr22
0 0 0
1 0 0
1 0 0
1 2 1

0 6 3


B
3
1 1 2 1 4 行阶梯形
r4 12r4
②③
③2①

④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
3x2 3x3 4x4 3, ④
2019/6/24
(B1 )
(B2 )
3
② 1
x1
③52②
④3②

x2 2x3 x2 x3
2019/6/24
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11

x2 3x2

x3 x4 2, ② x3 x4 2, ③

《线性代数》(同济第六版)课件

《线性代数》(同济第六版)课件
0 0 a33 a43
a14 a24 = a11a22a33a44 a34 a44
0 0 = a14a23a33a41 0 a44
a11 0 a21 a22 D4 = a32 a32 a41 a42
四个结论: (1) 对角行列式
a11 D= a22

= a11a22ann
ann
(2)Leabharlann a1nD= an1
规律:
1.三阶行列式共有6项,即3!项. 2.每一项都是位于不同行不同列的三个元素的乘积.
p p
是1、2、3的某个排列.
4.当p1p2p3 是偶排列时,对应的项取正号; 当 p1p2p3 是奇排列时,对应的项取负号.
所以,三阶行列式可以写成
a11 a12 D = a21 a22 a31 a32
a13 a23 = a11a22a33 +a12a23a31 +a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
3
第一章 行列式

内容提要
§1 §2 §3 §4 §5
•行列式是线性代数 的一种工具! •学习行列式主要就 是要能计算行列式 的值.
§6 §7
二阶与三阶行列式 全排列及其逆序数 行列式的概念. n 阶行列式的定义 对换(选学内容) 行列式的性质 行列式的性质及计算. 行列式按行(列)展开 克拉默法则 —— 线性方程组的求解.
注意:对角线法则只适用于二阶与三阶行列式.
例2 计算行列式
1 2 -4 D = -2 2 1 -3 4 -2

按对角线法则,有
D = 1×2×( 2)+ 2×1×( 3)+ ( 4)×( 2)×4

同济版线性代数课件-第一节向量组及其线性组合

同济版线性代数课件-第一节向量组及其线性组合

实际应用举例
电路分析
在电路分析中,经常需要求解由 基尔霍夫定律列出的线性方程组,
以确定各支路的电流或电压。
经济学
在经济学中,线性方程组常用于 描述市场均衡条件,如供求平衡、
投入产出分析等。
工程技术
在工程技术领域,如结构力学、 流体力学等,经常需要求解由物
理定律导出的线性方程组。
04 矩阵运算与性质回顾
分配律
矩阵乘法满足分配律, 即A(B+C)=AB+AC, (B+C)A=BA+CA。
数乘分配律
数乘运算满足分配律, 即k(A+B)=kA+kB, (k+l)A=kA+lA。
矩阵秩概念引入
矩阵秩的定义
矩阵A中不等于0的子式的最大阶 数称为矩阵A的秩,记作r(A)。
矩阵秩的性质
矩阵的秩满足一些基本性质,如
同济版线性代数课件-第一节向量 组及其线性组合
目录
• 向量组基本概念与性质 • 向量空间与子空间 • 线性方程组求解与讨论 • 矩阵运算与性质回顾 • 特征值与特征向量初步探讨 • 总结回顾与拓展延伸
01 向量组基本概念与性质
向量定义及表示方法
01
02
03
向量的定义
向量是既有大小又有方向 的量,常用带箭头的线段 表示。
矩阵基本运算规则回顾
加法运算
两个矩阵相加,要求它们的行数和列数分别相等, 相加时对应元素直接相加。
数乘运算
一个数与矩阵相乘,用该数乘以矩阵的每一个元 素。
乘法运算
两个矩阵相乘,要求第一个矩阵的列数等于第二 个矩阵的行数,相乘时对应元素相乘再相加。
矩阵性质总结
结合律

同济版线性代数课件--第一节 向量组及其线性组合

同济版线性代数课件--第一节 向量组及其线性组合
推论
件是矩阵 A
( A , B ) (a1 , a 2 , , R ( A ) R ( A , B ).
向量组 A : a 1 , a 2 , a m 与向量组 B : b 1 , b 2 , b l R( A) R(B ) R( A, B ) .
等价的充分必要条件是
其中 A 和 B 是向量组 A 和 B 所构成的矩阵
且 5 2 ( 5 ) 求 2 ,
R x ( x 1 , x 2 , , x n ) x 1 , x 2 , , x n R
n

T

叫做 n 维向量空间.
n 3
时 , n 维向量没有直观的几何形象.
T
x ( x 1 , x 2 , , x n ) a 1 x 1 a 2 x 2 a n x n b
第四章 向量组的线性相关性
第一节
向量组及其线性组合
一、n 维向量 二、向量组与矩阵 三、向量组的线性组合 四、等价向量组
一、n 维向量
1、概念
定义1
组称为 量,第 n 个有次序的数 n 维向量,这 i 个数 a i 称为第 a 1 , a 2 , , a n 所组成的数 n 个数称为该向量的 i 个分量 . n 个分
a2 a 12
a 22 am2

aj a1 j
a2 j a mj

an a 1n a 2n a mn
A 的列向量组 .
向量组 a1, a 2 , , a n 称为矩阵
3 、类似地
, 矩阵 A
( a ij )

1 , 2 , m ,

同济大学线性代数课件11

同济大学线性代数课件11

的线性方程组,
•精品课件

•精品课件

同济大学线性代数课件11
•我们先讨论未知量的个数与方程 的个数相等的特殊情形.
•在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
第一章 行列式
内容提要
•行列式是线性代 数的一种工具! •学习行列式主要 就是要能计算行列 式的值.
§1 二阶与三阶行列式
§2 全排列及其逆序数 •行列式的概念.
•注意:对角线法则只适用于二阶与三阶行列式.
•2.•三阶行列式包括3!项,每一项都是位于不同行, •不同列的三个元素的乘积,其中三项为正,三项为 •负. • 利用三阶行列式求解三元线性方程组
• 如果三元线性方程组
•的系数行列式
•若记 •或
•记 •即
•得
•得
•则三元线性方程组的解为:
•例2 计算行列式 •解 •按对角线法则,有
•例1 •求解二元线性方程组 •解 •因为
•所以

二、三阶行列式
•定义 设有9个数排成3行3列的数表
•引进记号 •主对角线 •副对角线
•原则:横行竖列
•称为三阶行列式.
•二阶行列式的对角线法则 并不适用!
•三阶行列式的计算 •(1)沙路法
•.列标 •行标
•三阶行列式的计算•——对角线法则
•实线上的三个元素的乘积冠正号, •虚线上的三个元素的乘积冠负号.
•数表所确定的二阶行列式,即
•原则:横行竖列
•其中,
称为元素.
•i 为行标,表明元素位于第i 行; •j 为列标,表明元素位于第j 列.
•二阶行列式的计算•——对角线法则
•主对角线 •副对角线
•即:主对角线上两元素之积-副对角线上两元素之积

同济大学出版社线性代数课件(完整版)

同济大学出版社线性代数课件(完整版)

0 0
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0
a41 0 0 0
a11 a12 a13 a14
0 D3 0
a22 a23 a24 0 a33 a34
0 0 0 a44
a11 0 0 0
D4

a21 a32
a22 a32
0 a33
0 0
a41 a42 a43 a44
引进记号
a21 a22 a23
原则:行列式
主对角线 a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
副对角线 a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
a11 a12
a1n
D a21 a22
a2n
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
anpn
an1 an2 二、annn 阶行简列记式作的det定(a,ij 义)
1. n 阶行列式共有 n! 项.
其中a为ij 行列式D的(i, j)元
2. 每一项都是位于不同行不同列的 n 个元素的乘积.

b1 b2
求解公式为
请观察,此公式有何特点?

x1


x2

b1a22 a11a22 a11b2 a11a22
a12b2 a12a21 b1a21 a12a21
分母相同,由方程组的四个系数确定. 分子、分母都是四个数分成两对相乘再
相减而得.
二元线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

再看有多少个比 p2 大的数排在 p2 前面,记为 t 2 ;
…… 最后看有多少个比 pn大的数排在 pn 前面,记为 t n ; 则此排列的逆序数为 t t1 t2 tn
例1:
解:
求排列 32514 的逆序数.
t (32514) 0 1 0 3 1 5
二元线性方程组
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
其求解公式为
我们引进新的符号来表示“四个 数分成两对相乘再相减”.
数表 a
a11
21
a12 a22
a11 a12 记号 a a22 21
b1a22 a12b2 x1 a a a a 11 22 12 21 x a11b2 b1a21 2 a11a22 a12a21
4
§1
二阶与三阶行列式
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
一、二元线性方程组与二阶行列式
二元线性方程组 由消元法,得
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
(a11a22 a12a21 ) x1 b1a22 a12b2 (a11a22 a12a21 ) x2 a11b2 b1a21
求解公式为 请观察,此公式有何特点? 分母相同,由方程组的四个系数确定. 分子、分母都是四个数分成两对相乘再 相减而得.
b1a22 a12b2 x1 a a a a 11 22 12 21 x a11b2 b1a21 2 a11a22 a12a21
规律:
1. 三阶行列式共有6项,即3!项. 2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1 p1 a2 p2 a3 p3 (正负号除外),其中 p1 p2 p3
是1、2、3的某个排列. 4. 当 p1 p2 p3 是偶排列时,对应的项取正号; 当 p1 p2 p3 是奇排列时,对应的项取负号.
其中
p1 p2 p3

表示对1、2、3的所有排列求和.
二阶行列式有类似规律.下面将行列式推广到一般的情形.
二、n 阶行列式的定义
a11 a21 D a n1 a12 a1n a22 a2 n an 2 ann
p1 p2 pn

( 1)t ( p1 p2 pn ) a1 p1 a2 p2 anpn
二阶行列式的计算 ——对角线法则
主对角线
副对角线
a11 a12 a11a22 a12a21 a21 a22
即:主对角线上两元素之积-副对角线上两元素之积
a11 x1 a12 x2 b1 二元线性方程组 a21 x1 a22 x2 b2
若令
a11 a12 D a21 a22 b1 D1 b2 a12 a22
奇排列:逆序数为奇数的排列. 偶排列:逆序数为偶数的排列. 思考题:符合标准次序的排列是奇排列还是偶排列?
答:符合标准次序的排列(例如:123)的逆序数
等于零,因而是偶排列.
计算排列的逆序数的方法
设 p1 p2 pn 是 1, 2, …, n 这n 个自然数的任一排列,
并规定由小到大为标准次序. 先看有多少个比 p1 大的数排在 p1 前面,记为 t1 ;
练习:
求排列 453162 的逆序数.
解:
t9
§3
n 阶行列式的定义
一、概念的引入
a11 D a21 a31 a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13 a21a32 a33 a13a22a31 a12a21a33 a11a23 a32
所以,三阶行列式可以写成
a11 D a21 a31
a12 a22 a32
a13 a23 a11a22a33 a12a23a31 a13 a21a32 a33 a13a22a31 a12a21a33 a11a23 a32

p1 p2 p3

(1)t ( p1 p2 p3 ) a1 p1 a2 p2 a3 p3

行列式
内容提要
§1 §2 §3 §4 §5 §6 §7
•行列式是线性代 数的一种工具! •学习行列式主要 就是要能计算行列 式的值.
二阶与三阶行列式 全排列及其逆序数 行列式的概念. n 阶行列式的定义 对换(选学内容) 行列式的性质及计算. 行列式的性质 行列式按行(列)展开 克拉默法则 —— 线性方程组的求解.
2 x1 x2 1

因为 D
3 2 2 1
3 ( 4 ) 7 0
1 1 3 12 D2 3 24 21 2 1
D1 14 2, 所以 x1 D 7
D1
12 2
12 ( 2) 14
D2 21 x2 3 D 7
0 D2 0 0 a41
0 0 a32 0
0 a23 0 0
a14 0 0 0
(1)t (4321) a14a23a33a41 a14a23a33a41
3 4 6. 其中 t (4321) 0 1 2 3 2
a11 0 D3 0 0
a12 a22 0 0
线性代数
在以往的学习中,我们接触过二 元、三元等简单的线性方程组.
但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
我们先讨论未知量的个数与方程 的个数相等的特殊情形.
在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
3
第一章
例:写出四阶行列式中含有因子a11a23 的项.
a11a23a32a44 和 a11a23a34a42 . 解:
例:计算行列式
a11 0 D1 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44
0 D2 0 0 a41
a11 a21 D4 a32 a41
0 0 a32 0
0 a22 a32 a42
§2
全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
显然
Pn n (n 1) (n 2)3 2 1 n!
即n 个不同的元素一共有n! 种不同的排法.
n 个不同的自然数,规定从小到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同时, 就称这两个元素组成一个逆序. 例如 在排列32514中, 逆序 3 2 5 1 4 逆序 逆序
思考题:还能找到其它逆序吗?
答:2和1,3和1也构成逆序.
20
定义 排列中所有逆序的总数称为此排列的逆序数.
排列 i1i2 in的逆序数通常记为 t (i1i2 in ) .
当 p1 p2 pn 是奇排列时,对应的项取负号.
思考题: 1 1成立吗? 答:符号 1 可以有两种理解: 若理解成绝对值,则 1 1 ; 若理解成一阶行列式,则 1 1.
注意:当n = 1时,一阶行列式|a| = a,注意不要与
绝对值的记号相混淆. 例如:一阶行列式 1 1 .
简记作 det(aij ) ,
1. n 阶行列式共有 n! 项. 2. 每一项都是位于不同行不同列的 n 个元素的乘积. 是1, 2, …, n 的某个排列. 4. 当 p1 p2 pn 是偶排列时,对应的项取正号;
其中 aij 为行列式D的(i,Байду номын сангаасj)元
3. 每一项可以写成 a1 p1 a2 p2 anp(正负号除外),其中 p1 p2 pn n
注意:对角线法则只适用于二阶与三阶行列式.
1 2 -4 例2 计算行列式 D -2 2 1 -3 4 -2

按对角线法则,有
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
表达式 a11a22 a12a21 称为由该 数表所确定的二阶行列式,即
a11 a12 D a11a22 a12a21 a21 a22
aij (i 1, 2; j 1, 2) 称为元素. 其中,
i 为行标,表明元素位于第i 行; j 为列标,表明元素位于第j 列.
原则:横行竖列
a11 a21 D an1
二、三阶行列式
定义 设有9个数排成3行3列的数表
引进记号 主对角线 副对角线
a11 a21 a31
a11 a21 a31 a12 a22 a32
a12 a22 a32
a13 a23 a33
原则:横行竖列
a13 a23 a11a22a33 a12a23a31 a13 a21a32 a33 a13a22a31 a12a21a33 a11a23 a32
a13 a23 a33 0
a14 a24 a11a22a33a44 a34 a44
D4
a11 a21 a32 a41
0 a22 a32 a42
0 0 a33 a43
0 0 0 a44
a14a23a33a41
四个结论:
(1) 对角行列式
a11 D a22 ann
(2)
a11a22 ann
0 a23 0 0
0 0 a33 a43
a14 0 0 0
0 0 0 a44
相关文档
最新文档