同济大学线性代数课件__第四章

合集下载

同济大学线性代数课件第四章

同济大学线性代数课件第四章

, m
2018/10/14
19
已知 : ( 1 , 1 , 1 ) , ( 0 , 2 , 5 ) , ( 2 , 4 , 7 ) 例2: 1 2 3
试讨论向量组 1 , 2 , 3 及向量组 1 , 2 的 线性相关性.
2018/10/14
b1 b2 bm
a11 a 21 记 A a m1
a12 a 22 am 2
a1n a2n a mn
x1 x2 x x n
b1 b2 b b m
R( A) R( A, B )
2018/10/14
16
定理3: 向量组 B : 1 , 2 ,
, l 能由 A : 1 , 2 ,
, m
线性表示,则 R(B) ≤ R(A) 。 其中 A (1 , 2 , , m ), B ( 1 , 2 , , l )
§1 向量组及其线性组合
定义1:n 个数 a1 , a2 ,
, an 所组成的有序数组
称为一个 n 维向量,这 n 个数称为该向量 的 n 个分量,第 i 个数 ai 称为第 i 个分量。
这里定义的 n 维向量就是指行(或列)矩阵。
2018/10/14
1
a1 a 2 (a1 , a2 an
2018/10/14
14
A : 1 , 2 ,
, m B : 1 , 2 ,
, l B 能由 A 线性表示
j k1 j1 k2 j2
kl jl j 1,2,
,l
( 1 , , l ) (k111 km1 m , , k1l1 kml m )

线性代数-工程版(同济大学第六版)第四章

线性代数-工程版(同济大学第六版)第四章
✓ 本书中,列向量用黑色小写字母 a, b, a, b 等表示,行向量则用 a T, bT, a T, b T 表示.
定义2:若干个同维数的列向量(行向量)所组成的集合 称为向量组.
注: (1) 向量组中的向量必须是同型向量.
(2)一个向量组可含有限多个向量,也可含无限多个向量.
例如 (1)
1
2
b1,b2,
, bl a1, a2 ,
, am
k21
k22
km1 km2
k1l
k2l
kml ml
若 Cm×n = Am×l Bl×n ,即
c11 c12
c21
c22
cm1 cm2
c1n a11 a12
c2n
a21
a22
cmn am1 am2
a1l b11 b12
若 Cm×n = Am×l Bl×n ,即
c11 c12
c21
c22
cm1 cm2
c1n a11 a12
c2n
a21
a22
cmn am1 am2
a1l b11 b12
a2l
b21
b22
aml bl1 bl 2
b1n
b2n
bln

r1T r2T
a11 a21
3
2
0
3
1
7
0
2e1 3e2
7e3
7 0 0 1
线性组合的系数
一般地,对于任意的 n 维向量b ,必有
b1 1 0
b3
b1
0
b2
0
b3
1
bn 0 0 0
0
0
bn
0

同济大学线性代数第四章PPT课件

同济大学线性代数第四章PPT课件
讨论它们的线性相关性.
解: Ee1,e2, ,en
结论: 线性无关
问题: n=3时, e1,e2,e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
例如: 2 1 1 0 a11 1,a212,a312,b33
则 b 能由 a1, a2, a3线性表示.
解方程组 x 1 a 1 x 2 a 2 x 3 a 3 b
既解方程组
2x1x12xx22
x3 x3
0 3
x1 x2 2x3 3

x1 1 1
x2 x3
c
1 1
线性表示
AXB有解,其中 A (1 ,2, ,m )
B (1,2, ,l)
R (A )R (A ,B )
定理3: 向量组 B :1,2, ,l能由 A :1,2, ,m
线性表示,则 R(B) ≤ R(A) 。
其中 A ( 1 ,2 ,,m ) , B ( 1 ,2 ,,l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
定义4:设向量组 A : 1 , 2 , , m , 若存在不全为零实数 1 , 2 , , m , 使得 11 2 2 m m 0
则称向量组 A线性相关. 否则称向量组A线性无关.
定理4: n 维向Ax 量 组0 1有 ,非 2, 零 ,解 m,线其 性相A 关 中 1 ,2 , ,m R(A)m

线性代数-同济大学4-2PPT课件

线性代数-同济大学4-2PPT课件

成行阶梯形矩阵 ,可同时看出矩阵( 1, 2, 3
及(1, 2)的秩,利用定理 2即可得出结论 .
2021/3/12
11
11
1 0 2
r2r1
(1,2,3) 1 2 4
~
1 5 7 r3 r1
1 10 0 22 0 02 2 2 2 10 5 5 7 5
~2 0 2 2,
2021/3/12
4.包含零向量的任何向量 组是线性相关的 .
5.对于含有两个向量的向 量组,它线性相关的 充要条件是两向量的分 量对应成比例,几何意 义 是两向量共线;三个向 量相关的几何意义是三 向 量共面 .
2021/3/12
4
4
二、线性相关与线性表示的关系
2021/3/12
定理 向量组1,2,,(m 当m 2时)线性相关
的充分必要条件是1,2,,m 中至少有一个向
量可由其余m 1个向量线性表示.
证明 充分性
设 a1,a2,,am 中有一个向量(比如
能由其余向量线性表示.
即有
am 11 2 2 m1 m1
am)
故 11 2 2 m1 m1 1am 0
因 1,2,,m1,1 这 m 个数不全为0,
故 1,2,,m 线性相关.
而:m 元齐次线性方程组 Ax o 有非零解 R(A) m m 元齐次线性方程组 Ax o只有零解 R(A) m
所以:
定理2 向量组1,2,,m线性相关 R(A) m, 相关性 其中A(1,2,,m);
秩的判
2021/3/12
8
8
四、例题
例1 n 维向量组
T
T
称为n维单位坐标向量组,讨论其线性相关性 .

同济大学线性代数课件共5份(4)

同济大学线性代数课件共5份(4)


(2) 若是A的对应于的特征向量且x1 + x2 0, 则 x1 + x2也是A的对应于的特征 向量. 由于Ax1 = x1, Ax2 = x2, 于是
A( x1 x2 ) Ax1 Ax2 x1 x2 ( x1 x2 )


由(1)和(2)知,对于方阵A的对应于的 特征向量, 其非零的线性组合 k1 x1 k 2 x2 k m xm 也是A的对应于的特征向量. 令V = {x|Ax = x}, 可以验证V是一个向 量空间,称为A的对应于的特征子空间.



由于其广泛的应用背景,已研究出多种 方法计算方阵的特征值和特征向量,特 别是其经典数值计算方法和各种智能计 算方法. 本章内容涉及到线性方程组、矩阵和向 量方面的诸多知识,要求大家具有一定 的综合运用知识的能力. 本章在复数范围讨论.


4.1 特征值与特征向量的概念 与计算


4.1.1 特征值与特征向量的概念 对于给定的方阵A和非零向量x,可以考 虑通过线性变换得到的向量Ax. 给定方阵A,对于某些非零向量x,通过 线性变换得到的向量Ax与x是共线的, 即存在数满足Ax = x,这时就是A的 特征值,x就是A的对应于的特征向量.

例4.1 设
3 2 2 A 2 3 2 2 2 3

求A的特征值与特征向量. S|
2 2
3 2 (7 )(1 ) 2 3


|A - E| = 0得出A的所有不同的特征值 = 1, = 7. 当 = 1时, (A - 1E)x = 0为


3 2 5 1 0 1 row 6 3 9 0 1 1 5 3 8 0 0 0 1 令x3 = 1, ξ 2 1. 1

线性代数(同济大学第五版)第四章

线性代数(同济大学第五版)第四章

3. 将其余n–r个分量依次组成 n–r 阶单位矩阵, 于 是得齐次线性方程组的一个基础解系:
b11 b12 b1,n r b21 b22 b2,n r br 1 br 2 br ,n r 1 , 2 , , n r . 1 0 0 0 1 0 0 0 1
提示:可用方法2证明!
课后题9 设 b1 a1 a2 , b2 a2 a3 , b3 a3 a4 , b4 a4 a1 , 证明向量组 b1 , b2 , b3 , b4 线性相关. 2011期选考题
1、 设 向 量 组 1 , 2 , 3线 性 无 关 , 则 向 量 组 D) ( (A) 1 2 , 2 3 , 3 1线 性 无 关 ; (B) 1 2 , 2 3 , 1 2 2 3线 性 无 关 ; (C) 1 2 3 ,2 1 3 2 3 , 1 4 2线 性 无 关 ; (D) 1 2 2 ,2 2 3 3 , 1 2 2 3线 性 无 关 ;
如无特殊要求,建议用第三章的方法求解线性方程组!
d1 d2 dr , 0 0
考试类型题
一、向量组线性相关性的判定
方法1. 从定义出发 令 k11 + k22 + · + kmm = 0, 即 · ·
若只有零解, 则1, 2, · , m线性无关; 否则, 1, · · 2, · , m线性相关. · · 方法2. 利用矩阵的秩与向量组的秩之间的关系 给出一组n维向量1, 2, · , m, 就得到一个相应 · · 的矩阵A=(1, 2, · , m), 求R(A), 则 · · 若R(A)=m, 则 1, 2, · , m线性无关; · · 若R(A)<m, 则 1, 2, · , m线性相关. · · 利用相关定理(秩的相关性质)

线性代数课件(完整版)同济大学


注意:对角线法则只适用于二阶与三阶行列式.
例2 计算行列式
1 2 -4 D -2 2 1
-3 4 -2
解 按对角线法则,有
D 1 2 (2) 2 1 (3) (4) (2) 4 11 4 2 (2) (2) (4) 2 (3)
(1) 2 a1na2,n1 L an1
an1
(3) 上三角形行列式 (主对角线下侧元素都为0)
aa
11
12
0 D
a22

a 1n
a
2n

a a11 22 ann
0 0a nn
(4) 下三角形行列式 (主对角线上侧元素都为0)
a 0 11
D a21 a22
0 D2 0
0 a23 a32 0
0 0
(1)t (4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
a11 a12 a13 a14
0 D3 0
a22 0
a23 a33
a24 a34
0 D3 0
a22 a23 a24 0 a33 a34
0 0 0 a44
a11 0 0 0
D4

a21 a32
a22 a32
0 a33
0 0
a41 a42 a43 a44
解:
a11 0 0 0
0 D1 0
0
a22 0 0 a33
0 0 a11a22a33a44
0 0 a44
0 0 0 a14
p1 p2 L pn

线性代数(同济版第五版)经典课 4章

本文详细讲解了线性代数中向量的内ቤተ መጻሕፍቲ ባይዱ,包括其定义和运算规律,如交换律、数乘结合律和分配律。进一步,引入了向量正交的概念,即两向量内积为零时,它们互相正交。同时,阐述了向量的长度,也称为模,以及单位向量的定义。在正交向量组方面,文档明确了若一组非零向量中任意两个向量正交,则这组向量线性无关。此外,还介绍了线性无关向量组的正交化和单位化方法,即通过施密特正交化过程,可以将线性无关的向量组转化为正交向量组,并进一步单位化得到标准正交向量组。这一过程中涉及到了待定系数的求解和向量的线性组合。通过这些内容的阐述,可以深入理解线性代数中向量空间的结构和性质,以及正交性在解决实际问题中的应用。

线性代数ppt课件同济


05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。

线性代数课件第4章


11
2 1 1 例7: 求矩阵 A 0 2 0 的特征值和特征向量, 4 1 3
并求可逆矩阵P, 使 P 1 AP 为对角阵.
解:
2 1 1 2 | A E | 0 2 0 1 2 4 1 3
| A 3 A 2 E | 9
17
定理2:设 1 , 2 ,
, m 是方阵 A的 m 个特征值,
p1 , p2 ,
若 1 , 2 ,
, pm 依次是与之对应的特征向量。
, m 各不相等,则 p1 , p2 ,
, pm
线性无关。
方阵 A 的属于不同特征值的特征向量线性无关。

( n ) det( A)
ann )( )n1
1 2 n a11 a 22 1 2 n det( A)
a nn
8
1 1 0 例6: 求矩阵 A 4 3 0 的特征值和特征向量. 1 0 2
解:1、由矩阵 A 的特征方程,求出特征值.
1 1 0 1 1 3 0 (2 ) A E 4 4 3 1 0 2
1 2 0
2
特征值为 = 1, 2
9
2、把每个特征值 代入线性方程组 A E x 0, 求出基础解系。
(2) 有相同特征多项式的矩阵不一定相似。
25
矩阵可对角化的条件(利用相似变换把方阵对角化)
定理4: n 阶矩阵 A 与对角阵相似(A可对角化)
A有n个线性无关的特征向量。
26
Api i pi , i 1, 2,
( Ap1 , Ap2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档