八年级数学 第一学期期末模拟测试卷
人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。
2022-2023学年浙教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级数学上册期末模拟测试题一、选择题(本大题有10小题,每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D . 2.下列结论中,正确的是( )A .若a >b ,则1a <1bB .若a >b ,则a 2>b 2C .若a >b ,则1﹣a <1﹣bD .若a >b ,ac 2>bc 23.下列命题中,逆命题错误的是( )A .两直线平行,同旁内角互补B .对顶角相等C .直角三角形的两个锐角互余D .直角三角形两条直角边的平方和等于斜边的平方4.若点A(2,m)在一次函数y =2x −7的图象上,则点A 到x 轴的距离是( ) A .2 B .−2 C .3 D .−35.如图,∠AOB =40°,OC 平分∠AOB ,直尺与OC 垂直,则∠1等于( )A .60°B .70°C .50°D .40°(第5题) (第6题) (第7题) (第9题) (第10题) 6.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点.若DA =DB =15,△ABD 的面积为90,则AC 的长是( )A .9B .12C .3√14D .247.如图,∠ABC 中,AB =AC ,∠DEF 为等边三角形,则α、β、γ之间的关系为() A .β=α+γ2 B .α=β+γ2 C .β=α−γ2 D .α=β−γ2 8.一次函数 y 1=ax +b 与 y 2=bx +a ,它们在同一坐标系中的大致图象是( ) A . B . C . D . 9.如图,边长为5的大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF 并延长交CD 于点M.若AH =GH ,则CM 的长为( )A .12B .34C .1D .54 10.在Rt∠ABC 中,AC=BC ,点D 为AB 中点.∠GDH=90°,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点.下列结论:①AE+BF=√22AB ;②∠DEF 始终为等腰直角三角形;③S 四边形CEDF =18AB 2;④AE 2+CE 2=2DF 2. 其中正确的是( )A .①②③④B .①②③C .①④D .②③二、填空题(本大题有6小题,每小题4分,共24分)11.若点P(m+3,m+1)在x轴上,则点P的坐标为.12.一次函数y=(m+4)x+m+2的图象不经过第二象限,则整数m =13.如图,AB=AC,点D是△ABC内一点,∠D=110°,∠1=∠2,则∠A=°.(第13题)(第14题)(第15题)(第16题)14.如图,在长方形ABCD中,AB=3,BC=5,在CD上取一点E,连结BE.将∠BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.15.如图,已知∠A=∠B=90°,AB=6,E,F分别是线段AB和射线BD上的动点,且BF=2BE,点G在射线AC上,连接EG,若△AEG与△BEF全等,则线段AG的长为.16.如图,∠ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若∠ABC 的边长为4,AE=2,则BD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.在平面直角坐标系中,点A、B的坐标是(2a−5, a+1),B(b−1, 3−b).(1)若点A与点B关于x轴对称,求点A的坐标;(2)若A, B关于y轴对称,求(4a+b)2的值.18.如图,在Rt∠ABC中,∠C=90°.(1)作∠BAC的平分线AD交边BC于点D.(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若∠BAC=28°,求∠ADB的度数.19.如图,AB=DC,AC=DB,AC和BD相交于点O.(1)求证:∠ABC∠∠DCB;(2)求证:∠ABD=∠DCA.20.某水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元,每间B种类型的店面的平均面积为20m2,月租费为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?21.如图,一次函数y=2x+b的图像经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45∘至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.22.如图,在△ABC中,BD、CE分别是边AC、AB上的高线.(1)如果BD=CE,那么△ABC是等腰三角形,请说明理由;(2)取F为BC中点,连接点D,E,F得到△DEF,G是ED中点,求证:FG⊥DE;(3)在(2)的条件下,如果∠A=60°,BC=16,求FG的长度.23.如图1,∠ABC和∠DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D在同一直线上,连接AD,BD.(1)求证:∠ACD∠∠BCE;(2)探求AD与BE的数量和位置关系(3)若AC=√10,EC=√2求线段AD的长.24.在平面直角坐标系中,直线l分别于x轴,y轴的正半轴交于A,B两点,OC平分∠AOB,交AB于点D,点M是直线l上一动点,过M作OC的垂线,交x轴于E,交y轴于F,垂足为H,设∠OAB=α°,∠OBA=β°,且α2−4αβ+4β2=0.(1)直接写出α,β的值,α=,β=(2)若M与A重合(如图2),求证AD=BF;(3)①若M是线段AB上任意一点(如图3),则AE,BF,AD之间有怎样的数量关系,说明理由.②若M不在线段AB上时,求出AE,BF,AD之间的数量关系。
辽宁省沈阳市南昌中学2023年八年级数学第一学期期末学业水平测试模拟试题【含解析】

辽宁省沈阳市南昌中学2023年八年级数学第一学期期末学业水平测试模拟试题平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,在△ABC 中,点D 是∠ABC 和∠ACB 的角平分线的交点,∠A =80°,∠ABD =30°,则∠DCB 为()A .25°B .20°C .15°D .10°2.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是A .3p q =B .30q p +=C .30p q +=D .3q p=3.如图,A 、B 是两个居民小区,快递公司准备在公路l 上选取点P 处建一个服务中心,使PA +PB 最短.下面四种选址方案符合要求的是()A .B .C .D .4.关于x 的一次函数y =kx ﹣k ,且y 的值随x 值的增大而增大,则它的图象可能为()A .B .C .D .()A .3和4B .4和5C .5和6D .6和76.在平面直角坐标系中,点P (﹣3,1)关于y 轴对称点在()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是()A .2B .4C .5D .8.若直线1l 经过点0,4()和点3,2-(),直线2l 与1l 关于x 轴对称,则2l 的表达式为()A .24y x =--B .24y x =-C .243y x =--D .243y x =-9.下面是某同学在一次作业中的所做的部分试题:①3m+2n=5mn ;②33345a b ab a b -=-;③3253(2)12x x x -=;④324(2)2a b a b a ÷-=-;⑤326()m m =⑥32()()a a a -÷-=-,其中正确的有()A .5个B .4个C .3个D .2个10.若m<0,则点(-m ,m-1)在平面直角坐标系中的位置在()A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.计算(π﹣3.14)0+21(3-=__________.12.已知13x x+=,且01x <<,则2691xx x =+-______.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________14.若分式21x x -+的值为0,则x=____.15.如图,扶梯AB 的坡比为4:3,滑梯CD 的坡比为1:2,若30AE BC ==米,一男孩经扶梯AB 走到滑梯的顶部BC ,然后从滑梯CD 滑下,共经过了_____米.16.若式子21x -在实数范围内有意义,则x 应满足的条件是______.17.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.18.若点P (2-a ,2a -1)到x 轴的距离是3,则点P 的坐标是______.三、解答题(共66分)19.(10分)计算24063-﹣22(53-)20.(6分)如图,在ABC ∆中,BAC 90︒∠=,AB AC =,BE 平分ABC ∠,CE BE ⊥,求证:1CE BD 2=21.(6分)如图,已知AB ⊥BC ,EC ⊥BC ,ED ⊥AC 且交AC 于F ,BC =CE ,则AC 与ED 相等吗?说明你的理由.22.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系之后,△ABC 的顶点均在格点上,点C 的坐标为(5,1).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)连接OB 、OC ,直接写出△OBC 的面积.23.(8分)在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M 在线段AD 的延长线上,点N 在线段AC 上,(1)中其他条件不变.①线段AM 的长为;②求线段AN 的长.24.(8分)先化简,再求值:2211a a a a+-÷,其中a =1.25.(10分)先化简,再求值:2[(5)(5)(5)](2)m n m n m n n --+-÷,其中1,20195m n =-=26.(10分)某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元,每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.参考答案一、选择题(每小题3分,共30分)1、B【分析】由BD 是∠ABC 的角平分线,可得∠ABC =2∠ABD =60°;再根据三角形的内角和求得∠ACB =40°;再由角平分线的定义确定∠DCB 的大小即可.【详解】解:∵BD 是∠ABC 的角平分线,∴∠ABC =2∠ABD =2×30°=60°,∴∠ACB =180°﹣∠A ﹣∠ABC =180°﹣80°﹣60°=40°,∵CD 平分∠ACB ,∴∠DCB =12∠ACB =12×40°=20°,故选B .【点睛】本题考查了三角形的内角和和三角形角平分线的相关知识,解答本题的关键在于所学知识的活学活用.2、B【分析】利用多项式乘多项式法则计算,令一次项系数为1求出p 与q 的关系式即可.【详解】2()(3)x px q x -+-=x 3−3x 2−px 2+3px +qx−3q =x 3+(−p−3)x 2+(3p +q )x−3q ,∵结果不含x 的一次项,∴q +3p =1.故选:B .【点睛】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.3、A【分析】根据轴对称的性质和线段的性质即可得到结论.【详解】解:根据题意得,在公路l 上选取点P ,使PA+PB 最短.则选项A 符合要求,故选:A .【点睛】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.4、B【分析】根据一次函数的性质可得k 的取值范围,进而可得﹣k 的取值范围,然后再确定所经过象限即可.【详解】解:∵一次函数y =kx ﹣k ,且y 的值随x 值的增大而增大,∴k >0,﹣k <0,∴图象经过第一三四象限,故选:B .【点睛】本题考查了一次函数图象与系数的关系:对于y =kx +b (k 为常数,k ≠0),当k >0,b >0,y =kx +b 的图象在一、二、三象限;当k >0,b <0,y =kx +b 的图象在一、三、四象限;当k <0,b >0,y =kx +b 的图象在一、二、四象限;当k <0,b <0,y =kx +b 的图象在二、三、四象限.5、B.,∴45,∴这两个连续整数是4和5,故选:B .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围.6、A【解析】直接利用关于y 轴对称点的性质进而得出答案.【详解】解:点P (﹣3,1)关于y 轴对称点坐标为:(3,1),则(3,1)在第一象限.故选:A .【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.7、A【解析】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC 是直角三角形,最后设BC 边上的高为h ,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:AC ==,AB ==,BC ==222+=,即222AB AC BC +=∴△ABC 是直角三角形,设BC 边上的高为h ,则1122ABCSAB AC h BC =⋅=⋅,∴2AB ACh BC⋅==.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.8、B【分析】根据对称的性质得出两个点关于x 轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数即可.【详解】∵直线l 1经过点(0,4)和点(3,-2),且l 1与l 2关于x 轴对称,∴点(0,4)和点(3,-2)于x 轴对称点的坐标分别是:(0,-4),(3,2),∴直线l 2经过点(0,-4),(3,2),设直线l 2的解析式为y kx b =+,把(0,-4)和(3,2)代入直线l 2的解析式y kx b =+,则432b k b =-⎧⎨+=⎩,解得:24k b =⎧⎨=-⎩,故直线l 2的解析式为:24y x =-,故选:B .【点睛】本题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出对称点的坐标是解题关键.9、C【分析】根据合并同类项,整式的乘除法法则,幂的乘方,同底数幂除法,依次运算判断即可.【详解】①3m+2n=3m+2n ,不是同类项不能合并,故错误;②33334545a b ab a b ab -=-,不是同类项不能合并,故错误;③3253(2)12x x x -=,故正确;④324(2)2a b a b a ÷-=-,故正确;⑤326()m m =,故正确;⑥32()()a a a -÷-=,故错误;∴正确的有③④⑤故选:C 【点睛】本题主要考查了同类项的合并,同底数幂的乘除,幂的乘方,熟悉掌握运算的法则进行运算是解题的关键.10、D【分析】先确定横纵坐标的正负,再根据各象限内点的坐标特征可以判断.【详解】解:∵m<0,∴-m >0,m-1<0,∴点(-m ,m-1)在第四象限,故选:D .【点睛】本题考查了平面直角坐标系各象限点的坐标特征,熟记平面直角坐标系中各象限点的坐标的符号是解题的关键.二、填空题(每小题3分,共24分)11、10【解析】(π﹣3.14)0+213-⎛⎫ ⎪⎝⎭=1+9=10.故答案为10.12、512+.+,再把它们相乘得到1x x-,再对原式进行变形凑出1x x -的形式进行计算.3+=,∴221239xx +=++==,∴17x x+=,∴212725xx =-+=-=,∵01x <<,-=∴1xx =-=-,∴原式======.故答案是:12+.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.13、80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.14、1【分析】根据分式的值为零的条件得到x-1=0且x≠0,易得x=1.【详解】∵分式21x x -+的值为0,∴x−1=0且x≠0,∴x=1.故答案为1.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.15、(80+【分析】根据两个坡度比求出BE 和DF ,再利用勾股定理求出AB 和CD ,最后加上BC 就是经过的路程长.【详解】解:∵AB 的坡度是4:3,∴43BE AE =,∵30AE =,则4303BE =,∴40BE =,∵CD 的坡度是1:2,∴12CF DF =,∵40CF BE ==,则4012DF =,∴80DF =,根据勾股定理,50AB ==,CD ==503080AB BC CD ++=+++故答案是:80+.【点睛】本题考查解直角三角形的实际应用,解题的关键是抓住坡度的比,利用这个关系去解直角三角形.16、x≥12【分析】由二次根式有意义的条件得:2x ﹣1≥0,然后解不等式即可.【详解】解:由题意得:2x ﹣1≥0,解得:x≥1 2,故答案为:x≥1 2.【点睛】本题考查了二次根式有意义的条件,即掌握二次根式有意义的条件为被开方数不为0是解答本题的关键.17、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=14cm1,故答案为14.18、(0,3)或(3,-3)【解析】根据点到x轴的距离是纵坐标的绝对值,可得答案.【详解】解:由题意,得2a-1=3或2a-1=-3,解得a=2,或a=-1.点P的坐标是(0,3)或(3,-3),故答案为:(0,3)或(3,-3).【点睛】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.三、解答题(共66分)19、1【解析】根据二次根式的混合运算的法则计算即可.【详解】原式=-1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20、详见解析【分析】根据题意分别延长CE、BA,并交于F点,由BE平分∠ABC,CE⊥BE,得到△BCF为等腰三角形,FC=2EC;易证得Rt△ABD≌Rt△ACF,则根据全等三角形的性质,BD=CF,进而分析即可得到结论.【详解】解:证明:分别延长CE BA 、,并交于F 点,如图:BE 平分ABC CE BE ∠⊥,,BCF ∴∆为等腰三角形,三线合一可知E 为FC 的中点即2FC EC =,90BAC BEC ADB EDC ∠=∠=︒∠=∠,,23∴∠=∠,而AB AC =,Rt ABD Rt ACF ∴∆∆≌,BD CF ∴=,∵2FC EC =,∴12CE BD =.【点睛】本题考查等腰三角形的判定与性质以及三角形全等的判定与性质,熟练掌握等腰三角形三线合一的性质即等腰三角形底边上的高,中线和顶角的角平分线三线合一.21、AC =ED ,理由见解析【分析】证得∠ACB =∠DEC ,可证明△DEC ≌△ACB ,则AC =ED 可证出.【详解】解:AC =ED ,理由如下:∵AB ⊥BC ,EC ⊥BC ,DE ⊥AC ,∴∠ACB +∠FCE =90°,∠FCE +∠DEC =90°,∴∠ACB =∠DEC ,∵BC =CE ,∠ABC =∠DCE =90°∴△DEC ≌△ACB (ASA ),∴AC =ED .【点睛】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.22、(1)图见解析,C 1(﹣5,1);(2)7【分析】(1)利用图形轴对称的特点进行画图;(2)直角坐标系中不规则三角形面积利用“割补法”来计算.【详解】解:(1)如图所示,111A B C △即为所求,点C 1的坐标为(﹣5,1);(2)111351315241587222OBC S =⨯-⨯⨯-⨯⨯-⨯⨯=-=.【点睛】掌握直角坐标系图形对称的特点及不规则图形求面积的方法为本题的关键.23、(1623-;(2623+,②33【分析】(1)根据等腰三角形的性质、直角三角形的性质得到2BD AD DC ===,求出∠MBD=30°,根据勾股定理计算即可;(2)①方法同(1)求出AD 和DM 的长即可得到AM 的长;②过点M 作//ME BC 交AB 的延长线于点E ,首先证明BME NMA △≌△得到BE=AN ,再根据勾股定理求出AE 的长,利用线段的和差关系可求出BE 的长,从而可得AN 的长.【详解】解:(1)90BAC ∠=︒,AB AC =,AD BC ⊥,45ABC ACB ∴∠=∠=︒,45BAD CAD ∠=∠=︒,ABC BAD CAD ∴∠=∠=∠45ACB =∠=︒,12BD AD DC BC ∴===,在Rt ABC △中,90BAC ∠=︒,2AB AC ==,根据勾股定理,222BC AB AC =+=2BD AD DC ∴===,30AMN ∠=︒,90BMN ∠=︒,180903060BMD ∴∠=︒-︒-︒=︒,30MBD ∴∠=︒,2BM DM ∴=,在Rt BDM 中,90BDM ∠=︒,由勾股定理得,222BM DM BD -=,即()2222DM DM -=,解得,63DM =,63AM AD DM ∴=-=;(2)①方法同(1)可得AD =,3DM =,∴3+,3;②过点M 作//ME BC 交AB 的延长线于点E ,如图,AD BC⊥90ADB ∴∠=︒,90AME ADB ∴∠=∠=︒,45E BAD ∴∠=︒=∠,ME MA ∴=,45E CAD ∠=∠=︒,30AMN ∠=︒,90BMN ∠=︒,90AME ∠=︒,30BME AMN ∴∠=︒=∠,()BME NMA ASA ∴△≌△,BE AN ∴=,在Rt AME △中,90AME ∠=︒,由①63AM =+,63ME AM ∴==+.根据勾股定理,AE ==2323==+,AN BE AE AB ∴==-2233=+-=.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.24、1a a -,20192018.【分析】先将分式的除法转化为乘法,即可化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】2211a a a a+-÷=21(1)(1)a a a a a +⋅+-=1a a -,当a =1时,原式=201920191-=20192018.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25、5m n -+,2020【分析】先根据完全平方公式、平方差公式展开,再合并,然后计算除法,最后把m ,n 的值代入计算即可.【详解】()()()()25552m n m n m n n ⎡⎤--+-÷⎣⎦,()()2222=2510252m mn n m n n -+-+÷()()2=1022mn n n -+÷=5m n -+;当15m =-,2019n =时,原式=1520195⎛⎫-⨯-+ ⎪⎝⎭2020=.【点睛】本题考查的是整式的化简求值,解题的关键是注意公式的使用,以及合并同类项.26、(1)y=-0.1x+100(2)该商场销售甲50件,乙150件时,能获得最大利润.【分析】(1)根据题意即可列出一次函数,化简即可;(2)设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.。
人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。
2022-2023学年上学期八年级数学期末模拟测试卷(01)

2022-2023学年上学期八年级数学期末模拟测试卷(01)一、选择题(本大题共8小题,每小题2分,共16分。
在每小题所给出的四个选项中,只有一项是正确的)1.下列图形是轴对称图形的是()A.B.C.D.2.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣3,2)3.下列各数是无理数的是()A.0B.πC.D.4.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3D.a=9,b=40,c=416.某一次函数的图象经过点(1,5),且函数值y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+3B.y=3x﹣8C.y=﹣3x+8D.y=﹣2x+57.如图,在△ABC中,AD是∠BAC的平分线,延长AD至E,使AD=DE,连接BE,若AB=4AC,△BDE的面积为12,则△ABC的面积是()A.6B.9C.12D.158.如图,函数y=kx+b的图象与y轴、x轴分别相交于点A(0,2)和点B(4,0),则关于x的不等式kx+b≥2的解集为()A.x≤0B.x≤4C.x≥0D.x≥4二、填空题(本大题共8小题,每小题2分,共16分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.﹣的立方根是.10.用四舍五入法,对0.12964精确到千分位得到的近似数为.11.已知点P在第三象限,且P点的横坐标与纵坐标的积是4,试写出一个符合条件的点:.12.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是尺.15.如图,小明将长方形纸片ABCD对折后展开,折痕为EF,再将点C翻折到EF上的点G处,折痕为BH,则∠GBH=°.16.如图,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,P A=1,PB=3,PC=,那么∠CP A=度.三、解答题(本大题共9小题,共88分。
八年级上学期期末模拟测试数学试卷-附含有答案

八年级上学期期末模拟测试数学试卷-附含有答案学校: 班级: 姓名: 考号:一、选择题(本题共16个小题,共 42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 自新冠肺炎疫情发生以来,全国人民共同抗疫,靖江市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D. 2. 下列运算正确的是( )A. 632a a a ÷=B. 43()a a -=C. 33339ab a b =()D. 20202021112()22⨯-=- 3. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了0.000000007毫米,将数据0.000000007用科学记数法表示为( )A. 8710-⨯B. 9710-⨯C. 80.710-⨯D. 90.710-⨯4. 如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( )A. 35°B. 70°C. 110°D. 140°5. 某同学用5cm 、7cm 、9cm 、13cm 的四根小木棒摆出不同形状的三角形的个数为( )A. 1B. 2C. 3D. 46. 下列不能用平方差公式直接计算的是( )A. ()()m n m n -+-B. ()()m n m n ---+ C ()()22x x +-D. ()()22x y x y -++ 7. 下列等式中,不成立的是( )A. x x x y y y -==--B. 1x y y x x+=+C. 2242(2)2y y y -=--D. 1x y y x x+-=- 8. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点.若P A = 2,则PQ 的长不可能是( )A. 4B. 3.5C. 2D. 1.59. 如图,在 ∆ABC 中,ED / / BC ,∠ABC 和 ∠ACB 的平分线分别交 ED 于点 G 、F ,若 FG = 2 ,ED = 6 ,则EB + DC 的值为( )A. 6B. 7C. 8D. 9 10. 如图,在等边中,AD 、CE 是的两条中线5AD =,P 是AD 上一个动点,则PB PE+最小值的是( )A. 2.5B. 5C. 7.5D. 1011. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD12. 中国首列商用磁浮列车平均速度为km /h a ,计划提速20km /h ,已知从A 地到B 地路程为360km ,那么提速后从A 地到B 地节约的时间为( )A. 3600(20)a a -B. 3600(20)a a +C. 7200(20)a a +D. 7200(20)a a - 13. 如图,在△ABD 中,∠D =20°,CE 垂直平分AD ,交BD 于点C ,交AD 于点E ,连接AC ,若AB =AC ,则∠BAD 的度数是( )A. 100°B. 110°C. 120°D. 150°14. 如图,在△ABC 中,∠B =90°,∠A =30°,AC =a ,AB =m ,以点C 为圆心,CB 长为半径画弧交AC 于点D ,再以点A 为圆心,AD 长为半径画弧交AB 于点E ,则BE 的长为( )A. m ﹣2aB. a ﹣mC. 2a ﹣mD. m ﹣a15. 如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A. 4B. 32C. 52D. 616. 如图,若x 为正整数,则表示分式22(2)(1)x x x x +++的值落在( )A. 线①处B. 线②处C. 线③处D. 线④处二.填空题(本大题共3题,总计 12分)17. 计算:101(2021)3π-⎛⎫+-= ⎪⎝⎭________. 18. 如图,ACB ∆中90C ∠=︒,30A ∠=︒分别以点A ,B 为圆心,以大于12AB 的长为半径画弧交于点M ,N ,直线MN 交AB 于点E ,交AC 于点D .若3CD =,则AD =__.19. 如图,在中90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)20. (1)计算:()()()()22212141m m m m m +++--+(2)分解因式:32244a ab a b --+21. 先化简,再求值:(1)x y x y x y 2(23)(2)(2),其中x y 11,32. (2)222333691x x x x x x x x +-÷++++-,再求当1x +与6x +互为相反数时,代数式的值. 22. 如图,△ABC 三个顶点的坐标分别为A (﹣4,﹣2),B (﹣1,﹣1),C (﹣1,﹣4).(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)在x 轴上作出一点P ,使P A +PB 的值最小(保留作图痕迹)23. 如图,在中AB AC =,D 是BC 的中点,EF 垂直平分AC ,交AC 于点E ,交AB 于点F ,M 是直线EF 上的动点.(1)当MD BC ⊥时.①若1ME =,则点M 到AB 的距离为________②若30CMD ∠=︒,3CD =求BCM 的周长;(2)若8BC =,且的面积为40,则CDM 的周长的最小值为________.24. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-则()()203010x x ab --==即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=.请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值. 25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?刘峰:我查好地图了,你看看李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天8:30的车.刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上8:00点从家出发,如顺利,咱俩同时到达.26. 如图,△ABC 是等边三角形,AB =6,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)证明:在运动过程中,点D 是线段PQ 的中点;(2)当∠BQD =30°时,求AP 的长;(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.参考答案及解析一.选择题1.【答案】:C解析:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意.故选:C .2.【答案】:D解析:A 、633a a a ÷=故不符合题意;B 、43121()a a -=故不符合题意;C 、333(3)27=ab a b 故不符合题意;D 、20202021112()22⨯-=-故符合题意;故选:D .3.【答案】:B解析:解:0.000000007=7×10-9.故选:B .4.【答案】:C解析:解:∵∠A =70°-∠B∴∠A +∠B =70°∴∠C =180°-(∠A +∠B )=180°-70°=110°.故选C .5.【答案】:C解析:解:四条木棒的所有组合:5,7,9和5,9,13和5,7,13和7,9,13; 只有5,7,9和5,9,13和7,9,13能组成三角形.故选:C .6.【答案】:A解析:A. ()()m n m n -+-()2m n =--不符合平方差公式,符合题意 B. ()()m n m n ---+符合平方差公式,不符合题意C. ()()22x x +-符合平方差公式,不符合题意D. ()()22x y x y -++符合平方差公式,不符合题意故选:A. 7.【答案】:C解析:A 、x x x y y y -==--故A 不符合题意. B 、1x y y x x +=+故B 不符合题意. C 、22242(2)2(2)(2)2y y y y y --==---故C 符合题意. D 、1x y x x y y x x x+---==-故D 不符合题意. 故选:C .8.【答案】:D解析:解:当PQ ⊥OM 时,PQ 的值最小∵OP 平分∠MON ,P A ⊥ON ,P A =2∴PQ =P A =2所以PQ 的最小值为2所以A ,B ,D 不符合题意,D 符合题意;故选:D .9.【答案】:C解析:∵ED ∥BC∴∠EGB=∠GBC ,∠DFC=∠FCB∵∠GBC=∠GBE ,∠FCB=∠FCD∴∠EGB=∠EBG ,∠DCF=∠DFC∴BE=EG ,CD=DF∵FG=2,ED=6∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8 故选C .10.【答案】:B解析:解:连结PC∵△ABC 为等边三角形∴AB =AC∵AD 为中线∴AD ⊥BC ,BD =CD=12BC∵点P 在AD 上,BP =CP∴PE +PB=PE +PC∵PE +PC ≥CE∴C 、P 、E 三点共线时PE +CP 最短=CE ∵CE 为△ABC 的中线 ∴CE ⊥AB ,AE =BE =12AB∵△ABC 为等边三角形∴AB =BC ,∠ABC =60°∴BE =BD在△ABD 和△CBE 中AB CBABD CBE BD BE=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CBE (SAS )∴AD =CE =5∴PB +PE 的最小值为5.故选择B .11.【答案】:D解析:由题意得,∠ABD =∠BACA.在△ABC 与△BAD 中AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△BAD (SAS );故选项正确;B.在△ABC 与△BAD 中ABD BCA AB BADAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩△ABC ≌△BAD (ASA )故选项正确;C.在△ABC 与△BAD 中C D BAC ABD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC ≌△BAD (AAS )故选项正确;D.在△ABC 与△BAD 中BC =AD ,AB =BA ,∠BAC =∠ABD (SSA ),△ABC 与△BAD 不全等,故错误; 故选:D . 12.【答案】:C解析:解:由题意可得360360720020(20)a a a a -=++故选:C .13.【答案】:C解析:解:∵CE 垂直平分AD∴CA CD =∴20D CAD ∠=∠=︒∴40ACB D CAD ∠=∠+∠=︒∵AB =AC∴40ABC ACB ∠=∠=︒∴180100BAC ABC ACB ∠=︒-∠-∠=︒∴10020120BAD BAC CAD ∠=∠+∠=︒+︒=︒故选:C .14.【答案】:A解析:解:∵∠B =90°,∠A =30°,AC =a∴BC =12AC =12a ∵以点C 为圆心,CB 长为半径画弧交AC 于点D ∴CD =BC =12a ∵以点A 为圆心,AD 长为半径画弧交AB 于点E ∴AD =AE =AC -CD =12a ∵AB =m ∴BE =AB -AE =m -12a 故选:A .15.【答案】:B解析:解:设AB =a ,AD =b ,由题意得8a +8b =24,2a 2+2b 2=12即a +b =3,a 2+b 2=6∴()()222963222a b a b ab +-+-=== 即长方形ABCD 的面积为32 故选:B .16.【答案】:B解析:原式(2)(1(2))x x x x =+++∵x 为正整数∴20x +≠∴原式可化为:(1)xx +∵分子比分母小1,且x 为正整数∴(1)xx +是真分数,且最小值是12即,0.51x <<∴表示这个数的点落在线②处故选:B .二. 填空题17.【答案】: 4解析:解:原式=11(2021)3π-⎛⎫+- ⎪⎝⎭31=+4=故答案为:418.【答案】: 6解析:连接BD ,如图由作法得MN 垂直平分ABDA DB ∴=30ABD A ∴∠=∠=︒9060ABC A ∠=︒-∠=︒30CBD ∴∠=︒2236BD CD ∴==⨯=6AD BD ∴==.故答案为:6.19.【答案】: =ACD CBA DAF ∠∠∠+解析:先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.证明:∵90ACB ∠=︒ CE BE ⊥∴+90ACD ECB ∠=︒∠ +90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC = CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.三.解答题20【答案】:(1)23m + (2)()22a a b -- 解析:【小问1解析】解:原式222444144m m m m m =+++---23m =+;【小问2解析】解:原式()2244a a b ab =-+-()22a a b =--. 21【答案】:(1)21210xy y + 12;(2)61x x ++,-1 解析:解:(1)x y x y x y 2(23)(2)(2)x xy y x y 22221294(4)x xy y x y 222212944 21210xy y =+ 当x y 11,32时 原式21210xy y =+211112()10()322=⨯⨯-+⨯-522=-+ 12=;(2)222333691xx x x x x x x +-÷++++-2226933=31xx x x x x x x ++-⨯+++-2(3)3(1)=3(1)(1)(1)x x x x x x x x +-⨯++++-33=11x x x ++++6=1x x ++由题意得160x x +++=27x =- 解得72x =- 当72x =-时 原式6=1x x ++6722=17--++=5 25 2 -1=-.22【答案】:(1)见解析.(2)见解析解析:【小问1解析】解:A1(4,﹣2),B1(1,﹣1),C1(1,﹣4).如图所示:△A1B1C1,即为所求;【小问2解析】解:如图所示:点P即为所求.23【答案】:(1)①1;②18(2)14解析:【小问1解析】①解:如图1,作MN AB⊥于N∵MD BC⊥,D是BC的中点∴MD是BC的垂直平分线∴BM CM = MBD MCD ∠=∠∵AB AC =∴A ABC CB =∠∠∵ABM ABC MBD ∠=∠-∠ ACM ACB MCD ∠=∠-∠∴ABM ACM ∠=∠在和中∵90NBM ECM BNM CEM BM CM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()NBM ECM AAS ≌∴1NM ME ==故答案为:1.②解:∵D 是BC 的中点MD BC ⊥∴MD 是BC 的垂直平分线26BC CD ==∴BM CM = 30BMD CMD ∠=∠=︒∴260BMC CMD ∠=∠=︒∴BCM 是等边三角形∴6BM MC BC ===∴BCM 的周长为18BC BM MC ++=故答案为:18.【小问2解析】解:如图2,连接AD∵1402ABC S BC AD =⨯= 8BC = 解得10AD =∵EF 垂直平分AC∴C 关于直线EF 的对称点为A ∴由两点之间线段最短可知AD 与直线EF 的交点即为M∴CDM 的周长的最小值为14CD CM DM CD AD ++=+=∴CDM 的周长的最小值为14.24【答案】:(1)120 (2)2021解析:【小问1解析】设80a x =- 70b x =-则10ab =- 807010a b x x +=-+-=所以,2222(80)(70)()2102(10)120x x a b ab -+-=+-=-⨯-=【小问2解析】设2020a x =- 2017b x =-则(2020)(2017)3a b x x -=---=所以2221(2020)(2017)()()2x x ab a b a b ⎡⎤--==+--⎣⎦ 21(40513)20212=-= 25【答案】:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米 解析:解:设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米根据题意,得203030360x x =+解得20x经检验,20x是所列分式方程的解,且符合题意 ∴360x =(千米/时)答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.26【答案】:(1)见解析;(2)AP =2;(3)DE 的长不变,定值为3.解析:(1)过P 作PF ∥QC 交AB 于F ,则AFP ∆是等边三角形,根据AAS 证明三角形全等即可; (2)想办法证明BD =DF =AF 即可解决问题;(3)想办法证明12DE AB =即可解决问题.【解析】(1)证明:过P 作PF ∥QC 交AB 于F ,则AFP ∆是等边三角形∵P 、Q 同时出发,速度相同,即BQ =AP∴BQ =PF在DBQ ∆和DFP ∆中 DQB DPF QDB PDF BQ PF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DBQ DFP AAS ∆∆≌∴DQ =DP ;(2)解:∵DBQ DFP ∆∆≌∴BD =DF∵60DBC BQD BDQ ∠∠+∠︒== 30BQD ∠︒=∴30BQD BDQ FDP FPD ∠∠∠∠︒====∴123BD DF PF FA AB ===== ∴AP =2;(3)解:由(2)知BD =DF∵AFP ∆是等边三角形,PE ⊥AB∴AE =EF∴DE =DF +EF1122BF FA =12AB ==3,为定值,即DE 的长不变.。
人教版2022-2023学年八年级上册数学期末模拟测试卷含答案

(2)若点A(8,0),请直接写出B的坐标并求出OAOB的值;
(3)如图2,若点B在y轴正半轴上运动,其他条件不变,请直接写出OAOB的值.
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:第1个是轴对称图形;
第2个是轴对称图形;
第3个不是轴对称图形;
第4个是轴对称图形;
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
7.【答案】:D
【解析】:A.代数式 不是分式,故该选项不正确,不符合题意;
B.分式 中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C.分式 的值为0,则x的值为 ,故该选项不正确,不符合题意;
D.分式 是最简分式,故该选项正确,符合题意;
解: , ,
,
,
,
,
.
24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示 ,图2的面积表示 ,两个图形阴影面积相等,得到
故选A;
(2)①
∵
∴ ,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得 最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.
八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省广安市官盛中学2019-2020学年八年级数学上册期末模拟测试卷
一、选择题(本大题共10小题,每小题3分,满分30分)
1、下列命题与其逆命题都是真命题的是
A.全等三角形对应角相等
B.对顶角相等
C.角平分线上的点到角的两边的距离相等
D.若a 2>b 2,则a>b 2、下列运算中,结果正确的是( )
A .x 3·x 3=x 6
B .3x 2+2x 2=5x 4
C .(x 2)3=x 5
D .(x +y )2=x 2+y 2
3、将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为( )
A .145°
B .135°
C .120°
D .115° 4、分式方程
+3=无解,m 的值为( ) A .7 B .﹣7 C .1
D .﹣1 5、若点A(1+m ,1-n)与点B (-3,2)关于y 轴对称,则m+n 的值是( )
A.1
B.5
C.-1
D.-5
6、如图所示,在△ABC 中,BAC ∠=90°,ACB ∠=30°,AD BC ⊥于D ,BE
是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )
A. 2
B. 4
C. 6
D. 8
7、有一天,张华赶不上公交车,他爸爸开车送他去学校,结果他比以前乘坐公交车上学所需的时间少用了20分钟,现已知张华家距学校8千米,他爸爸开车的平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走X 千米,根据题意可列方程为( )
A . +20=
B . =+
C . =+20
D . +=
8、如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;
④AD=AB+CD.其中正确的是()
A.①②④
B.①②③
C.②③④
D.①③
9、已知a是方程x2+x﹣2020=0的一个根,则的值为()
A.2018 B.2019 C
1
2018
.D.
1
2019
10、如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD
上的一个动点,当PC与PE的和最小时,∠CPE的度数是()
A.30°B.45°C.60°D.90°
二、填空题(本大题共6小题,每小题3分,满分24分)
11、一个多边形的内角和是外角和的2倍,则这个多边形的边数为____.
12、若4x2+2(k-3)x+9是完全平方式,则k=______.
13、如图,△ACE≌ΔDBF,点A、B、C、D 共线,若A C=5,BC=2,则C D 的长度
等于 .
14、H7N9 病毒的长度约为0.000065 mm,用科学记数法表示数0.000065 为.
15、如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等
式.
1 1 1 1 1 1
16、分解因式=+-xy y x y x 22332 .
17、已知34(x 1)(x 2)12
x A B x x +=+----,则实数A-B=_________。
18、如图,线段AB=CD ,AB 与CD 相交于点O ,且∠AOC=60°,CE 是由AB 平移所
得,AC 与BD 不平行,则AC+BD 与AB 的大小关系是:AC+BD AB .(填“>”“<”或“=”)
三、(满分72分)
17
、解方程:52x
+4-12-x =x 2
x 2-4
-1;
18、分解因式(1)x (x ﹣a )+y (a ﹣x ) (2)x 3y ﹣10x 2y +25xy
19、如图,已知CD 是AB 的中垂线,垂足为D ,DE ⊥AC 于点E ,DF ⊥BC 于点F.
(1)求证:DE=DF ;(2)若线段CE 的长为3 cm,BC 的长为4 cm,求BF 的长.
20、△ABC 在平面直角坐标系中的位置如图所示.
(1) 作出△ABC 关于 y 轴对称的△A B C ,并写出△A B C 各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用粗线条画出对称轴.
21、如图,AD,AE分别是△ABC的高和角平分线.
(1)已知∠B=30°,∠C=60°,求∠DAE的度数;(2)设∠B=x,∠C=y(x<y).请直接写出∠DAE的度数.(用含x,y的代数式表示)
22、一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如
果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
23、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE ⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
24、如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠
PAQ=90°,连接CQ.
(1)求证:CQ⊥BC.
(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.
(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.
25、在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,
连接DE并延长交BC于点F,连接BD.
(1)如图1,若∠BAC=100°,求∠BDF的度数;
(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.
①补全图2;
②若BN=DN,求证:MB=MN.。