物理学第二章刚体转动
刚体旋转知识点归纳总结

刚体旋转知识点归纳总结1. 刚体旋转的基本概念刚体是指在一定时间内,其内部各点的相对位置不改变的物体。
刚体旋转是指刚体围绕固定点或固定轴发生的旋转运动。
在刚体旋转中,需要引入一些基本概念:1.1 刚体的转动刚体的旋转可以是定点转动,也可以是定轴转动。
在定点转动中,刚体绕固定点旋转,而在定轴转动中,刚体绕固定轴旋转。
定点转动和定轴转动都是刚体旋转运动的两种基本形式。
1.2 刚体的转动角度和角速度刚体的转动角度是刚体在单位时间内所转过的角度,通常用θ表示。
刚体的角速度是指刚体单位时间内转过的角度,通常用ω表示。
在刚体定点转动中,角速度是刚体绕定点旋转的角度速度;在刚体定轴转动中,角速度是刚体绕定轴旋转的角度速度。
1.3 刚体的转动惯量刚体的转动惯量是衡量刚体抵抗旋转的惯性大小,通常用I表示。
刚体转动惯量的大小取决于刚体形状、质量分布以及旋转轴的位置。
对于质点组成的刚体,其转动惯量可以通过对质点的质量进行积分得到。
1.4 刚体的角动量刚体的角动量是刚体旋转运动的物理量,通常用L表示。
角动量的大小和方向分别由角速度和转动惯量决定。
在定点转动中,如果刚体的角速度和转动惯量都不变,那么刚体的角动量也保持不变;在定轴转动中,如果刚体绕固定轴旋转,那么刚体的角动量也保持不变。
2. 刚体的转动力学刚体的转动力学研究刚体在旋转运动中所受的力和力矩,包括转动定律、角动量定理、动能定理等内容。
2.1 刚体的平衡刚体旋转平衡需要满足一定的条件,包括力矩平衡条件和动量平衡条件。
刚体力矩平衡条件是指刚体所受的合外力矩为零;刚体动量平衡条件是指刚体所受的合外力矩关于某一点的力矩为零。
2.2 刚体的角动量定理刚体的角动量定理描述了刚体在受到外力矩作用下,其角动量的变化规律。
根据角动量定理,刚体所受外力矩产生的角动量变化率等于刚体所受外力矩的矢量和。
2.3 刚体的动能定理刚体的动能定理描述了刚体在旋转运动中,其动能的变化规律。
根据动能定理,刚体所受外力矩产生的功率等于刚体动能的变化率。
刚体定轴转动概述

m
已知: m , m1 , m2 , r , 0 0
r
求: t ?
m2
m1
思路:质点平动与刚体定轴转 动关联问题,隔离法,分别列 方程,先求角加速度, 再
23
N
β
r
解:在地面参考系中,分别以 m1 , m2 , m 为研究对象,用隔离法,分别以牛顿第 二定律和转动定律建立方程。 对于 m 1
3 、物理意义:转动惯性的量度 .
I 大 转动惯性大
4、转动惯量的计算
若质量离散分布 若质量连续分布
I= mi ri
i
2
I r dm
2
O m2
例:如图m1 ,m2绕OO′转动,
它们距轴的距离分别为
2 1 l l 3 、 3
m1
2 l 3 1 l 3
则,系统的转动惯量为
2 1 I = m1 l m2 l 3 3
dm 2rdr l
l
3
R
O
r
dr
dI r dm 2lr dr
2
I
dI
R
0
m 1 2 I mR R 2l 2
1 4 2lr dr R l 2
3
可见,转动惯量与l无关。所以,实心圆柱对其轴的转动惯量 也是mR2/2。
m1 g T1 m1a1 (1)
T2 m2 g m2 a2 (2)
2
T2 mg
T1
对于 m 2
对于滑轮 m T r T r I 1 mr 2 (3) 1 2
T2
a2
T1
m2 g
思考:
大学物理—刚体的动轴转动

F
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
r
F2
(4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
2. 刚体定轴转动定律 对刚体中任一质量元mi
O’
f i -内力
-外力
ω
Fi
ri
mi
fi
i i
Fi
应用牛顿第二定律,可得: O
v v r sin r sin 900
和 构成的平面,如 图所示相应的切向加速度和向心加速度分别为
v 的方向垂直于
2
r 78.5m / s
r
at ar 3.14m / s
3
2
2
an r 6.16 10 m / s 边缘上该点的加速度 a an al 其中 a l 的方向 与 v 的方向相反,a n 的方向指向轴心,a 的大小
1 m1 2m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2
22
1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
§4- 1 刚体的平动、转动和定轴转动
1. 刚体 刚体是一种特殊的质点系,无论它在多大外力 作用下,系统内任意两质点间的距离恒保持不变。 2.平动和转动 刚体最简单的运动形式是平动和转动。 当刚体运动时,如果刚体内任何一条给定的直 线,在运动中始终保持平行,这种运动叫平动。 刚体平动时,在任意一段时间内,刚体中各质 点的位移相同。且在任何时刻,各质点的速度和加 速度都相同。
大学物理中的刚体运动转动惯量和角动量的研究

大学物理中的刚体运动转动惯量和角动量的研究在大学物理中,研究刚体运动的转动惯量和角动量是非常重要的。
本文将深入探讨刚体运动中转动惯量和角动量的概念、计算公式以及其在物理学中的应用。
一、转动惯量的概念及计算公式刚体的转动惯量,简称为惯量,是描述刚体旋转运动惯性大小的物理量。
转动惯量的计算与刚体的形状和质量分布有关。
刚体的转动惯量用符号"I"表示,其计算公式为:I = ∑mr²其中,"m"是刚体上各个质点的质量,"r"是该质点到转轴的距离。
对于连续分布的质量,转动惯量的计算将采用积分的方式。
二、角动量的概念及计算公式角动量是描述物体旋转状态的物理量。
在刚体运动中,角动量的大小和方向都很重要。
角动量(L)的计算公式为:L = Iω其中,"I"是刚体的转动惯量,"ω"是刚体的角速度。
刚体的角速度定义为单位时间内转过的角度。
对于质点和刚体的角动量,其大小和方向可以通过力矩(τ)和时间(t)的计算得到。
L = τt三、转动惯量和角动量的应用1. 刚体平衡在研究刚体的平衡时,转动惯量和角动量是非常重要的参考量。
通过计算刚体的转动惯量和角动量,可以确定平衡条件,从而解决物体受力平衡问题。
2. 陀螺原理陀螺是刚体运动转动惯量和角动量的经典应用之一。
陀螺的旋转方向不易改变,是因为陀螺具有较大的转动惯量,保持角动量守恒的特性。
3. 物体滚动在物体滚动的过程中,转动惯量和角动量的变化会影响物体的运动。
通过计算刚体的转动惯量和角动量,可以理解物体滚动的物理原理,并进行相关的问题求解。
4. 自行车行驶自行车作为一种常见的运动方式,其行驶原理也涉及到转动惯量和角动量。
通过刚体运动的转动惯量和角动量,可以分析自行车的稳定性和行驶效果,为相关问题提供解答。
总结:转动惯量和角动量是刚体运动中重要的物理概念。
它们的计算公式和理论基础为我们解决刚体运动问题提供了重要的数学工具。
大学物理_第二章_刚体

2rdr
m
R2
2
rdr
(2) 求 d J
利用上题结果 dJ = r2 dm
r 0
(3) 求 J
dr
J
r 2dm
m
Rr2
0
m
R2
2
rdr
1 mR 2 2
J 1 mR 2
2
例3:求均匀细杆对中心轴及边缘轴的转动惯量
对质心轴 (1) dm dx m dx
l
mO
在半径为r、宽度为dr的面积元dS上的质元
0
具有相同的线速度v。则dS上阻力的大小为:
dF f dS f 2 r dr
考虑盘的上下表面,故阻力矩大小为
dM 2 r dF
总阻力矩
R
M dM 0 (2r f 2 r)dr
m
R
0 (2r kv 2 r)dr
与力的作用点的位置和方向都有关。即,只有力矩才
能改变刚体的转动。当M=0时,刚体匀速转动或静止
r
f11 f
f⊥
m
M
r
f
M r f11 f rf11 r f
对转动没影响 M r f r f
大小f:应 M 理 r解f s为 in在方转向动:平沿面r 内f
2
1 3
mL2
又如求均匀圆盘对于通过其边缘一点 O 的平行
轴的转动惯量:
JO JC md2
Jo
1 2
mR2
mR2
3 mR2 2
大学物理—刚体的动轴转动

25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
F1
转动 平面
F
F2
r F1 只能引起轴的
变形, 对转动无贡献。 注 (1)在定轴动问题 中,如不加说明,所指的 力矩是指力在转动平面内 的分力对转轴的力矩。
r
(2) M Z rF2 sin F2d
d r sin 是转轴到力作
用线的距离,称为力臂。
F123麦克来自韦分布例 2: 一半径为 R ,质量为 m 匀质圆盘,平放 在粗糙的水平桌面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘 面的轴旋转,问它经过多少时间才停止转动?
d r dr
R
e
解 : 因摩擦力不是集中作用于一点,而是分布 在整个圆盘与桌子的接触面上,力矩的计算要用积 分法。在图中,把圆盘分成许多环形质元,每个质 元的质量dm=rddre,所受到的阻力矩是rdmg 。
a m2 G2
a
21
式中是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等,即
麦克斯韦分布
a r
从以上各式即可解得
m 2 m1 g M r / r m 2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
1. 刚体的角动量
图为以角速度绕定轴oz 转动的一根均匀细棒。
L
z
ri
O
Li
把细棒分成许多质点,其中第 i 个质点的质量为 mi 当细棒以转动时,该 质点绕轴的半径为 ri
大学物理刚体的定轴转动

2l
l
17
例 一匀质细杆,长为 l 质量为 m ,在摩擦系数为
的水平桌面上转动,求摩擦力的力矩 M阻。 解: 建立如图坐标,取质元
dm dx
质元受阻力矩:
dM 阻 dmgx
o
xl dm m dx
x
细杆受的阻力矩
M阻
dM
阻
0l
gxdx
1 mgl
2
18
例 一半径为R,质量为m的均匀圆盘平放在粗糙的
令 J miri2
刚体绕Z轴转动的转动惯量
即
M z J ----刚体的定轴转动定律
说明
1. 上式是矢量式(力矩只有两个方向)。
2. M、J、是对同一轴而言的。
3. 具有瞬时性,是力矩的瞬时效应。
4. 转动惯量J是刚体转动惯性大小的量度。
8 8
3、转动惯量的计算
转动惯量: J miri2
l
r
dr
d
dm g
M
dM
l
0
mg l
r
cosdr
mg
l 2
cos
16
M J 1 ml2
3
3g cos
2l
(2) d d d d 3g cos dt d dt d 2l
分离变量积分 g cos d l d
02
03
(3g sin ) l
300 , 3g 900 , 3g
i
质量连续分布的刚体: J r2dm
质量为线分布: dm dl
面分布: dm ds
体分布: dm dV
1)总质量
转动惯量与下列因素有关: 2)质量分布 3)转轴位置
9
✓ J与质量分布有关:
质点系动力学:刚体运动规律及转动动能定理

质点系动力学在物理学中,质点系动力学是研究物体间相互作用的力以及物体运动轨迹的学科。
本文将讨论质点系动力学中的一个重要概念:刚体运动规律及转动动能定理。
刚体运动规律刚体是一个比较理想化的物理模型,假设物体的形状和大小在运动过程中保持不变。
根据刚体运动规律,刚体在外力作用下会发生运动,根据牛顿第二定律,刚体的运动状态取决于作用在刚体上的合力。
刚体的运动可分为平动和旋转两种类型。
在平动运动中,刚体整体沿直线或曲线运动;而在旋转运动中,刚体绕固定轴线旋转。
根据刚体运动规律,刚体的运动轨迹可以用运动学方程描述,运动方程中包含了速度、加速度等因素。
转动动能定理转动动能定理是描述刚体绕固定轴线旋转动能变化的重要定理。
根据转动动能定理,刚体旋转过程中的动能变化等于作用在刚体上的转动力做功的总和。
假设有一个质量为m、半径为r的刚体,绕垂直轴线(转动惯量为I)旋转。
根据转动动能定理,刚体的转动动能变化ΔK等于转动力做的功W。
转动动能的变化由以下公式给出:ΔK = W = τθ其中,τ为转动力矩,θ为转动角度。
转动角度与角速度的关系为θ = ωt,因此转动动能变化ΔK还可以表示为ΔK = τωt。
结论通过以上讨论,我们了解了质点系动力学中的刚体运动规律以及转动动能定理。
刚体运动规律可以帮助我们理解物体在运动过程中的轨迹和状态变化,而转动动能定理则为解释物体旋转运动提供了重要定量关系。
深入研究质点系动力学中的这些概念,有助于我们更好地理解物体的运动规律和相互作用过程。
在质点系动力学的研究中,刚体运动规律及转动动能定理是重要的基础知识,对于进一步探索物体间相互作用和运动规律具有重要意义。
希望本文的介绍能够帮助读者更好地理解质点系动力学中的这一部分内容,激发对物理学的兴趣和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 刚体的转动
一、计算题
2、求质量为m,长为l 的均匀细棒对下面几种情况的转动惯量。
转轴通过棒中心并和棒成θ角。
4、一飞轮直径为0.3 m,质量为5 kg,边缘绕绳,现用恒力拉绳一端,使它由静止均匀地加速,经0.5 s转速达到10 rev /s,假定飞轮可看做实心圆柱体,求:
(1)飞轮的角加速度及其在这段时间内转过的转数;
(2)从拉动后t =10 s时飞轮的角速度及轮边缘上一点的速度和加速度。
(3)拉力及拉力所作的功;
5、用线绕于半径R=1 m,质量m=100 kg 的圆盘上,在绳的一端作用10 N 的拉力,设圆盘可绕过盘心垂直于盘面的定轴转动。
求
(1)圆盘的角加速度;
(2)当线拉下5 m时,圆盘所得到的动能。
11、一根质量为m ,长为l 的均匀细棒,绕一水平光滑转轴O 在竖直平面内转动。
O轴离A 端距离为3
l ,此时的转动惯量为
9
1ml2,今使棒从静止开始由水平位置绕O 轴转动,求: (1) 棒在水平位置上刚起动时的的角加速度; (2) 棒转到竖直位置时角速度和角加速度;
(3) 转到垂直位置时,在A 端的速度及加速度。
(重力作用点集中于距支点6l
处)
12、如图2-8所示,一圆形飞轮可绕垂直轴转动,边缘绕有绳子,在绳子下端挂以质量m =20kg 的物体。
已知圆形飞轮半径R=2.0m,质量M =300kg 。
求:(已知转动惯量I =
2
1
MR2) (1) 圆形飞轮的角加速度;
(2) 绳子下端挂的物体下落4m 后圆形飞轮的角速度和转动动能。
14、固定的发动机飞轮,转动惯量为2000㎏·㎡,在恒外力矩的作用下,飞轮从静止开始转动,经过100s后,转速达15rev/s,求:
(1) 外力矩的大小。
(2)
此时的转动动能的大小。
(3)经过100s 时,发动机飞轮转过的圈数。
参考答案
二、计算题
2、解:(1)如图2-9(a)所示,取质量元x l
m
m d d =
,由转动惯量的定义,得
x x l
m m x I d d d 2
2=
= 则ﻩ ﻩﻩﻩﻩ2220
12
1
d 2d l m x x l m I I I
l ===⎰
⎰ (2)由平行轴定理,得
g
图2-8
2223
1
121)2(ml ml l m I =+⋅=
(3)由平行轴定理,得:
2212
1
ml mh I +
= (4)如图2-9(b)所示,求质量元x l
m
m
d d =
,绕转轴oo ′的转动惯量 x l m
x I d )sin (d 2⋅=θ,
则
2
220
22d 2sin d 1
sin 12
l m I I x x l
ml θθ==⋅=
⎰⎰
4、 解:飞轮绕轴的转动惯量228
1
21d m mR I ==
(1)飞轮在恒力作用下,作匀加速转动,由ω=βt得
ππ
ω
β405
.0210=⨯=
t
=
rad /s 2
又由22
1t βθ=
得 21
40π055π2
.θ=
⨯⨯= rad 则转过的圈数为5π
252π
.N
=
= (2)由转动定律M =I β和Fd R F M 2
1
=
⋅=得 21150340π15πN 44
I F md d ββ.===⨯⨯⨯=
拉力所作的功2
1115π035π1125πJ 22
..W F S F R Fd θθ=⋅=⋅==⨯⨯⨯=
(3)由ω=βt得
ω=40 π×10=400 π rad /s
边缘上一点的速度
v =ωR =400 π×0.15= 60 π m /s
切向加速度
π0.615.040=⨯==πβτR a m/s2
法向加速度
222n (400π)01524000π.a R ω==⨯= m/s2
加速度的大小
图2-9(b )
n 2
n 2
τa a a a ≈+=
ﻩ(n τa a << )
5、解:圆盘绕轴的转动惯量
222m kg 5011002
1
21⋅⨯⨯==
=mR I (1)由转动定律M =I β得
5
1
50110=⨯=⋅==
I R F I M β rad/s2 (2)外力矩所作的功等于圆盘动能的 增加,即
2
k 110550J 2E I F S ω=
=⋅=⨯= 11、解:转轴到A 端的距离为3l ,即转轴到细棒的质心的距离为6
l。
(1)细棒在水平位置上刚起动时所受的力矩为
M = m g·
6l =6l
m gl 由转动定律,可得此时细棒的角加速度为2136129
mgl
M g
I l ml β===
(2)细棒转到竖直位置时,所受力矩为0,角加速度为0。
但角速度最大,由机械能守恒,得
mg ·
6l =1
2
Iω2 即 ﻩ
ﻩω=
(3)竖直位置时,A 端的速度
A 33l l υω=⋅=
=A 端的加速度即为向心加速度
2A n l
a a g g
ω==⋅
= 12、解:(1)如图所示,设圆形飞轮的角加速度为β,物体下落的加速度为a 则有:
a =βR
又由转动定律和牛顿定律得:
TR = Iβ和mg-T = ma
上三式联立解得
22(2+)2?20×10×20+300?210=rad/s 17
m
g
m M R
β=
=(2) (2)由2
2ω
βθ
=得
210440
217217
ω=⨯
⨯=
ω=
rad/s
转动动能ﻩﻩﻩ
212k E I ω=
21140120003002J 221717k E =⨯⨯⨯⨯=
14、解:飞轮在恒外力矩作用下,作匀加速转动 由0t ω
ωβ=+得
152π
03π100
.t
ω
β⨯=
=
= ra d/s 2
(1)由M =I β得外力矩大小为:
200003π=600π.M =⨯ N ·m
(2)转动动能2
12
k
E I ω=
,即 221
2000(30π)900000πJ 2
k E =
⨯⨯=
(3)由2012
t t θ
ωβ=+
得 2211
03π1001500π22.t θβ=
=⨯⨯= rad 转过的圈数
ﻩ
1500π7502π
N ==。