刚体的定轴转动习题

合集下载

第五章刚体定轴转动典型题型

第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。


质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt


钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩

质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。


• 5)角动量守恒定律和机械能守恒定律的综 合应用

刚体简单运动(23题)

刚体简单运动(23题)

刚体简单运动(23题)一、是非题(正确用√,错误用×,填入括号内。

)1. 定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。

( √ )2. 刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线。

( √ )3. 刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。

( √ )4. 两个作定轴转动的刚体,若其角加速度始终相等,则其转动方程相同。

( × )5. 刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。

( √ )6. 如果刚体上各点的轨迹都是圆,则该刚体一定作定轴转动。

( × )7. 刚体的平动和定轴转动都是刚体平面运动的特殊情形。

( × )8. 刚体绕定轴转动时,下列说法是否正确:(1)当转角ϕ >0时,角速度ω为正。

(×)(2)当角速度0>ω时,角加速度为正。

(×)(3)当ϕ >0,0>ω时,必有ϕ >0。

(×)(4)当ϕ>0时为加速转动, ϕ >0时为减速转动。

(×)(5)当ϕ与ω同号时为加速转动, 当α与ω异号时为减速转动。

(√)9. 刚体绕定轴OZ 转动,其上任一点M 的矢径、速度和加速度分别为a a a v OM 、、、、τn ,问下述说法是否正确:(1) n a 必沿OM 指向O 点。

(×)(2) τa 必垂直于矢径OM 。

(√)(3) a 方向同OM ,指向可与OM 同向或反向。

(×)(4) v 必垂直于OM 、a 与n a 。

(√)二、单选题10. 在图示机构中,杆B O A O 21//,杆D O C O 32//,且201=A O cm ,402=C O cm,CM=MD =30cm, 若杆1AO 以角速度ω=3rad/s 匀速转动,则D 点的速度的大小为____B_____cm ,M 点的加速度的大小为____D_____。

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

(练习)刚体转动

(练习)刚体转动

d π 2 t 由 dt 150 π t 2 t dt 得 d 0 150 0 π 3 t rad 450
在 300 s 内转子转过的转数
π 3 4 N (300 ) 3 10 2π 2π 450

例6 半径为R,质量为m的均 匀圆盘在水平桌面上绕中心轴 转动,盘与桌面间的摩擦系数为 μ ,求转动中的摩擦力矩的大小. 解:设盘厚度为h,以盘轴心 为圆心取半径为r, 宽为dr的 微圆环,其质量为
(mA mC 2)mB g FT2 mA mB mC 2 mA mB g 令 mC 0,得 FT1 FT2 mA mB
FT1
PC
FC
FT2
例3 一根长为l 质量为m 的均匀细直棒,其一端有一固定的光 滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平位 置,求它由此下摆 角时的角加速度和角速度。( J 1 ml 2 ) 解: 棒下摆为加速过程,外力矩为 重力对O 的力矩。
x O
3

mg
x
重力对整个棒的合力矩与全部重力集中 作用在质心所产生的力矩一样。 重力力矩为: M mgx
1 M mgl cos 2 d d d d dt d dt d
1 mgl cos M 2 3g cos (为一变量) 1 J 2l ml 2 3
由动能定理

O

m
l
x

C
mg
l A 0 Md 0 mgcosd 2 1 2 lmg 1 2 J ml sin 0 J 0 3 2 2 3gsin 1/ 2 3gsin 2 ( ) l l
此题也可用机械能守恒定律方便求解

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

刚体的定轴转动(带答案)

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ] (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小。

(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[ D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

刚体的定轴转动习题

WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。

大学物理A 练习题 第2章《刚体定轴转动》

《第2章 刚体定轴转动》一 选择题1. 关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的. (B) (1)、(2) 是正确的. (C) (2)、(3) 是正确的.(D) (1)、(2)、(3)都是正确的.[ ]2. 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.[ ]3. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.[ ]4. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.[ ]5. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒.[ ]二 填空题1. 一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.2. 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =_________________.3. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为ω.若A 轮的转动惯量为J A ,则B 轮的转动惯量J B =________.4. 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________.5. 一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 三 计算题1. 均质圆轮A 的质量为M 1,半径为R 1,以角速度ω绕OA 杆的A 端转动,此时,将其放置在另一质量为M 2的均质圆轮B 上,B 轮的半径为R 2.B 轮原来静止,但可绕其几何中心轴自由转动.放置后,A 轮的重量由B 轮支持.略去轴承的摩擦与杆OA 的重量,并设两轮间的摩擦因素为μ,问自A 轮放在B 轮上到两轮间没有相对滑动为止,需要经过多长时间?2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.3. 如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.4. 一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)m21215. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V 刚体的定轴转动习题
班级 姓名 学号
成绩
一、选择题
1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢
k j i r 543++=,单位为m 210-,若以1
210--⋅s m 为速度单位,则该时刻点P 的速度为【 】
(A )k j i v
0.1546.1252.94++= (B )j i v 8.181.25+-=
(C )j i v
8.181.15+= (D )k v 4.32=.
2、关于刚体对转轴的转动惯量,下列说法中正确的是【 】 (A )只取决于刚体的质量,与质量的空间分布和转轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与转轴的位置无关 (C )取决于刚体的质量、质量的空间分布和转轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关
3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】
(A )B A J J > (B )B A J J <
(C )B A J J = (D )A J 、B J 哪个大,不能确定
4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】
(A )B A J J > (B )B A J J <
(C )B A J J = (D )A J 、B J 哪个大,不能确定
5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。

杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】
(A )4)cos (θmg (B ))tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:
(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零。

(2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零。

(3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零。

(4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零。

在上述说法中【 】
(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确
7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】
(A )32mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。

现有一质量为m /10、速度沿如图方向、大小为V 0的子弹射来,则子弹击入摆球后两者的速度为【 】
(A )V 0/11 (B )V 0/22 (C )2230V (D )无法确定
二、填空题
1、已知一刚体绕定轴转动的运动学方程为)(58102SI t t -+=θ,则s t 2.0=时,刚体的角速度为 ,角加速度为 。

对离转轴距离为m r 5.0=的质点来说,s t 2.0=时,它的速度大小为 ;切向加速度为 ,法向加速度为 。

2、转动惯量的物理意义是 ,它的计算公式是 ,转动惯量的大小与 、 、 三个因素有关。

3、质量分别为m 和2m 的两物体(都可视为质点),用一长为L 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为L/3,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴O 的角动量(动量矩)大小为 。

4、以初速度0v
从O 点抛射一质量为m 的小球,与水平方向之间的夹角为α,如图所示。

在不考虑空气阻力的情况下,t 时刻小球对O 点
拉ω的速度的两倍,则两人到达顶点的顺序为 (填甲先到、乙先到、同时到达)。

7、如图所示,长为l 的均质细杆左端与墙用铰链A 连接,右端用一铅直细绳B 悬挂,杆处于水平静止状态,若绳B 突然被烧断,则杆右端点的加速度为 。

8、当滑冰者转动的角速度原为0ω,转动惯量为0I ,当他收拢双臂后,转动惯量减少41,这时他转动的角速度为 ;他若不收拢双臂,而被另一滑冰者作用,角速度变为02ωω=,
则另一滑冰者对他施加力矩所作的功W 为 。

三、计算题
1、两个质量为1m 和2m 的物体分别系在两条绳上,这两条绳又分别绕在半径为1r 和2r 并装在同一轴的两鼓轮上。

设轴间摩擦不计,鼓轮和绳的质量均不计,求鼓轮的角加速度。

2、电风扇在开启电源后,经过1t 时间达到了额定转速,此时相应的角速度为0ω。

当关闭电源后,经过2t 时间风扇停转。

已知风扇转子的转动惯量为I ,并假定摩擦阻力矩和电机的电磁力矩均为常量,试根据已知量推算电机的电磁力矩。

3、有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动。

另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。

已知小滑块在碰撞前后的速度分别为1v 和2v
,如图所示。

求碰撞后从细棒开始转动到停止转动的过程所需的时间。

4、一轻绳绕于半径cm r 20=的飞轮边缘,在绳端施以N F 98=的拉力,飞轮的转动惯量为25.0m kg I ⋅=,飞轮和转轴间的摩擦不计。

试求:
(1)飞轮的角加速度。

(2)当绳端下降5m 时飞轮所获得的动能。

(3)如以质量kg m 10=的物体挂在绳端,试计算飞轮的角加速度。

5、长为1m 、质量为2.5kg 的一均质棒,垂直悬挂在转轴O 点上,用F =100N 的水平力撞击棒的下端,该力的作用时间为0.02s ,如图所示。

试求:(1)棒所获得的角动量。

(2)棒的端点能上升的最大高度。

6、轮A 和轮B 通过皮带传送动力,轮B 的半径是轮A 的3倍,如图所示。

设轮与皮带间无相对滑动,求在下列两种情况下,轮A 和轮B 的转动惯量之比:(1)两飞轮的动能相等。

(2)
两飞轮的角动量大小相等。

2
1
m 2
l
O
F。

相关文档
最新文档