关于汽包水位测量的文章
汽包水位是最令人难以捉摸的参数

汽包水位是最令人难以捉摸的参数淮安维信仪器仪表有限公司高维信通常,人们凭感性知识认识汽包水位。
运行人员看到汽包云母水位计显示的清晰水位,就以为是汽包内的真实水位。
如果告诉他,这不是汽包内的实际水位,他会立即反问:难道眼睛看到的还有假?清晰的水位随着给水流量增加而上升,随着给水流量减少而下降,为什么不是汽包内的实际水位?在描述汽包水位时,教科书和一些文献使用了诸如“虚假水位”、“膨胀水位”、“冷缩水位”、“实际水位”等概念,这在火电厂热工测量参数中是绝无仅有的。
使用这些概念无疑地加重了汽包水位神秘性,使那些和汽包水位打交道、又想了解它的人们望而却步。
以致很多人,其中包括一些热工和锅炉运行人员,仅知道严重的汽包水位事故会损坏锅炉或汽轮机,而对汽包水位参数缺乏进一步了解。
尽管大型汽包锅炉运行已有很多年历史,但在汽包水位基本理论、测量监控技术、水位运行研究等方面,“不清楚”之处甚多,仍然有很多问题有很好解决,这在火电厂热工测量参数中也是绝无仅有的。
对于锅炉汽包水位计,我国相关规程、规定在近十年来屡屡进行修改,表明原有关条款确有“说不清道不明”、“难以执行”的不切实际之处,甚至有明显错误。
国家级规定尚且如此,足见汽包水位的确是最令人难以捉摸的、甚至是令人烦恼的参数。
实际水位是什么我们说云母水位计显示的不是运行锅炉汽包内的真实水位,其原因之一是汽包内根本不存在清晰的汽、水界面,假设汽包是透明的,也看不到清晰的水位。
这尽管令人不可思议,但的确如此。
汽包作为水位测量的对象,流入介质有来自锅炉水冷壁的汽水混合物,来自省煤器的给水,还有来自化学系统的加药水,流出介质有饱和汽、流向下降管的炉水循环水、连续排污水和定期排污水,汽包内的汽流、水流速度分布及汽水分离等工况极为复杂。
由于汽水分离是在有一定高度的空间内进行的,又由于锅水中含有的有机化合物、悬浮物、油脂和碱性物质在水面形成泡沫层,那么在汽室与水室之间就存在一个汽水混合层,也叫汽水模糊层,其厚度与上述因素有关,通常大约为100~200mm。
锅炉汽包水位测量与控制

锅炉汽包水位测量与控制锅炉汽包水位测量与控制是锅炉系统中非常重要的一个环节。
正确的水位测量与控制可以确保锅炉的安全运行,避免水位过高或过低造成的危险。
本文将介绍锅炉汽包水位测量与控制的原理、方法和技术。
1. 原理锅炉汽包水位测量的原理是利用水位传感器或测量仪表测量锅炉内部水位的高度,从而控制水位在安全范围内。
常用的水位传感器主要有浮子型、电极型和超声波型等。
2. 测量方法(1)浮子型水位传感器:浮子型水位传感器由浮子和传感器组成,浮子随着水位的升降而浮沉,传感器通过感应浮子位置的变化来测量水位的高度。
通过传感器提供的信号,锅炉的控制系统可以控制水位的升降。
(2)电极型水位传感器:电极型水位传感器由多个电极组成,电极通过与锅炉水位接触,测量水位的高度。
通常情况下,电极根据水位的高低产生不同的电压信号,通过接线盒将信号传输给控制系统。
(3)超声波型水位传感器:超声波型水位传感器利用超声波的传播速度测量水位的高度。
传感器通过发送和接收超声波信号,并根据传播时间计算出水位的高度。
3. 控制技术水位的控制可以通过调整给水量来实现。
当水位过低时,控制系统会增加给水量;当水位过高时,控制系统会减少给水量。
为了确保锅炉水位的稳定控制,通常会使用一种叫做“三元控制”的技术。
三元控制是通过调节给水量、汽泄压力和燃料供给量来控制锅炉的水位。
4. 注意事项在进行锅炉汽包水位测量与控制时,需要注意以下几点:(1)选择合适的水位传感器,根据锅炉的特点和需求,选择适合的传感器进行测量。
(2)安装传感器时要注意正确的位置和角度,确保传感器的测量准确性。
(3)及时检修和维护传感器设备,避免传感器损坏或出现故障。
(4)定期校准传感器,确保测量的准确性和可靠性。
(5)根据实际情况进行相应调整,控制水位保持在安全范围内。
锅炉汽包水位测量与控制是锅炉系统中非常重要的一环,对于锅炉的安全运行起着至关重要的作用。
只有掌握了正确的测量方法和控制技术,才能保证水位的稳定和安全。
(完整版)锅炉汽包水位测量原理的介绍

二、双室平衡容器
▪ 双室平衡容器 (简单双室平衡容器) 的结构如图 2所示 。
▪ 双室平衡容器的正压侧与单室平衡容器一样 ,维 持恒定水柱高度 ,负压侧置于平衡容器内 ,上部 比正压管下缘高 10 mm 左右 ,下部与汽包的水 室相连通 ,其水柱高度随着汽包水位的变化而变 化 。双室平衡容器的优点是内外 2 根管内水的 温度比较接近 ,减少了采用单室平衡容器因正负 压取样管内水的密度不同所引起的测量误差 ,但 是 ,由于平衡容器内的温度远远低于汽包内的温 度 ,故负压管内的水位比汽包实际水位偏低 ,因 而产生测量误差 。当汽压和平衡容器环境温度 变化时 ,此误差是个变数 。双室平衡容器的水 位测量关系式与单室平衡容器相同 。
▪ 由此可见,锅炉汽包水位的控制是十分重要的。
第二章 汽包水位的测量方式
火力发电厂中在汽包水位的测量中经常采 用的方法为双色水位计、差压式水位计以及电 接点水位计。其中双色水位计用到就地显示, 利用工业电视技术在主控实现监视;差压式水 位计最为常用,作为水位调节的被调参数;因 为电接点式水位计在汽包水位的测量中用的较 少,本章着重介绍双色水位计和差压式水位计。
输出的差压Δp 比较稳定 ,测量较准确 ; 当汽压 下降时 (即使此时的水位保持不变 , 正压侧压 力 ( p+) 变化不大) , 负压侧的压力( p-) 将显著
增大 ,致使平衡容器输出差压减小 ,水位表指 示偏高 。
▪ 由图 1 可以得到水位测量关系式 :
▪ Δp = p + - p(1)
= L (ρc- ρs) g - H (ρw-
ρs) g
▪或
H ≤L (ρc- ρs) g – ΔP≥ (ρw- ρs) g(2)
▪
图 1 和式 ,kg/m3;
锅炉汽包水位测量与控制

锅炉汽包水位测量与控制锅炉汽包水位测量与控制是保证锅炉运行安全和正常的重要环节。
正确的水位测量和控制可以有效地避免锅炉水位过高或过低,从而保护锅炉的正常运行和工作人员的安全。
在锅炉中,汽包水位是指锅炉内部的水位高度,它的高低直接影响到锅炉的正常工作。
一般来说,过高的水位会导致汽包水溢出,增加锅炉的运行压力,甚至可能造成锅炉爆炸的危险。
而过低的水位则容易引起锅炉的干燥烧坏,甚至可能损坏锅炉设备。
准确地测量和控制汽包水位对于锅炉的安全和稳定运行至关重要。
测量汽包水位可以使用多种方法,常见的有机械水位计、电容式水位计和超声波水位计等。
机械水位计是一种传统的测量方法,它通过一个玻璃管来显示水位高度。
机械水位计的优点是结构简单,使用可靠,但缺点是无法实时监测水位变化,并且受到高温、高压等因素的限制。
电容式水位计通过测量电容的变化来确定水位高度,具有较高的灵敏度和精度,可以实时监测水位变化,但成本较高。
超声波水位计则是通过发射超声波信号并测量信号的回波时间来确定水位高度,具有非接触、无污染等优点,但对环境影响较大。
控制汽包水位可以通过调节给水和排水量来实现。
一般来说,给水与排水的平衡是保持汽包水位稳定的关键。
如果水位偏高,可以增大排水量或减小给水量来调整;如果水位偏低,可以减小排水量或增大给水量来调整。
还可以通过调节汽包内部的排气阀和进水阀来控制汽包水位的变化。
在进行汽包水位测量和控制时,需要注意以下几点:应定期检查和校准水位计的准确性,确保其正常工作。
应设置安全水位,即在正常运行范围内,确保锅炉的安全。
要经常监测和记录锅炉的水位变化,并及时采取措施调整,确保锅炉水位的稳定。
锅炉汽包水位测量及汽包水位保护系统探析

锅炉汽包水位测量及汽包水位保护系统探析摘要:本文分析了锅炉汽包水位测量的重要性,简单的介绍了几种电厂常用汽包水位计的工作原理及优缺点,并对消除常见的汽包水位测量误差的方法,汽包水位保护系统的作用做了简要描述关键词:汽包;汽包水位;水位计;测量误差;汽包水位保护系统引言汽包水位是锅炉运行是否正常的重要标志之一,准确测量和控制锅炉汽包水位且使其保持在规定的范围内,是锅炉正常运行的主要指标。
在锅炉的实际运行中,常常因为锅炉汽包水位测量信号的准确度不高、水位计失灵,或者运行人员的失误,而降低了锅炉运行的可靠性,给机组的安全稳定运行带来几大隐患。
由此可见,深入研究并分析锅炉汽包水位测量及保护系统具有重要的现实意义。
1锅炉汽包水位测量的重要性发电厂锅炉汽包是锅炉汽、水的集散中心。
联接了下降管、水冷壁、联箱和引出管,具有储存水和蒸汽的作用,同时对蒸发量与给水量的不平衡、汽压的变化速度有一定的缓冲作用。
汽包内装有汽水分离装置、蒸汽清洗装置等设备,可有效地进行汽水分离、蒸汽清洗、加药、排污等,是用以保证蒸汽品质及锅水品质的重要设备。
因此汽包水位监测对于电厂的安全运行来说至关重要。
汽包水位过高时,会破坏汽水分离效果,减少蒸汽重力分离的行程,同时会引起蒸汽带水,在过热器沉积盐类,使过热器的工作条件恶化,甚至会引起汽轮机水冲击,引发汽轮机转轴弯曲等恶性事故;汽包水位过低时,会破坏锅炉的炉水循环,水冷壁安全会受到威胁,容易缺水烧干,甚至造成炉管大面积爆破。
下面,我们深入了解下汽包水位保护系统,同时对锅炉汽包水位测量的准确性和可靠性进行分析。
2电厂常用汽包水位计的工作原理及优缺点分析2.1就地安装的直观水位计就地安装式水位计,一般安装在汽包附近,通过值班人员就地监督水位,将水位显示值告知操作台。
2.1.1云母水位计汽包水位测量的过程中,现场最易操作、最普遍的是云母水位计,一般安装在汽包两端,是直读式水位计,云母水位计的特点是指示直观,但存在现场条件差,监视不方便的缺点,一般仅在锅炉启停和校对其他水位计时才使用,在锅炉正常运行期间仅做参考。
锅炉汽包水位测量与控制

锅炉汽包水位测量与控制锅炉汽包是锅炉中储存水溶解气体的容器,用以减轻锅炉系统中的压力变化。
汽包内的水位控制是保障锅炉正常运行的重要环节,因此需要实时测量汽包水位并进行控制。
本文将介绍锅炉汽包水位的测量原理和控制方法。
一、测量原理(一)测量方法目前常用的汽包水位测量方法主要有以下几种:1. 水位计法。
水位计法是指通过读取水位计所示的高度差来确定汽包内的水位。
水位计一般采用激光、声波、浮子等原理进行测量。
这种方法使用方便,但需要经常进行维护和校准。
2. 微波法。
微波法是利用微波射频信号与水位之间的关系来测量汽包水位。
这种方法具有高精度、不受温度、压力等因素的影响,但价格较高。
3. 压力变送器法。
压力变送器法是利用汽包内的压力和水位之间的关系来确定水位。
这种方法精度较高,但需要进行定期校准和维护。
(二)测量误差锅炉汽包水位测量误差会受到以下因素的影响:1. 测量方法。
不同的测量方法测量误差不同。
2. 测量设备。
测量设备的精度和稳定性也会影响测量误差。
3. 温度和压力变化。
锅炉操作过程中,汽包内的温度和压力都会发生变化,这些变化也会影响测量误差。
(三)安全措施为保障锅炉运行安全,需要在设计和操作时采取以下措施:1. 在汽包上方安装喷淋装置。
当水位过高时,喷淋装置可以迅速淋水降低汽包水位。
2. 安装多个水位传感器。
这样即使一个传感器出现问题,其他传感器也能够发挥作用。
3. 常规维护与检修。
定期检查、维护水位控制设备,确保其正常运转并定期检查检修控制系统。
二、水位控制方法(一)PID控制器PID控制器是目前常用的汽包水位控制器。
PID控制器通过比较设定值和反馈值之间的差异,算出控制量,并对水位进行调整,使其接近设定值。
1. 比例(P)控制。
比例控制调整量与反馈量成比例,响应速度较快。
2. 积分(I)控制。
积分控制根据反馈值和设定值之差的积累量进行调整,可以消除稳态误差。
3. 微分(D)控制。
微分控制响应速度较慢,但可有效消除过冲现象。
锅炉汽包水位测量与控制

锅炉汽包水位测量与控制一、概述锅炉是工业生产中常见的一种热能设备,其作用是将化石燃料或其他类型的燃料燃烧产生的热能转化为蒸汽或热水,用于驱动机械设备或提供供热。
锅炉在运行过程中需要保持足够的水位,以确保燃烧过程的稳定性和安全性。
而汽包水位的测量与控制对于锅炉的正常运行起着至关重要的作用。
二、锅炉汽包水位的重要性锅炉汽包水位是指锅炉内部的蒸汽和液态水的分界线,它直接影响着锅炉运行的安全性和效率。
正常的水位控制可以确保锅炉内部热量的传递和热平衡,保证锅炉设备的长期稳定运行,同时也可以保证对外输出的蒸汽质量和能耗的有效控制。
1. 安全性锅炉汽包水位的过低或过高都会对锅炉的运行安全性产生严重的影响。
过低的水位容易导致锅炉爆炸的危险,而过高的水位则容易造成锅炉内部压力过大,从而影响到锅炉的正常运行。
良好的水位控制对于防止锅炉事故的发生至关重要。
2. 能效性正常的汽包水位可以保证燃烧系统和热量传递系统的正常运行,确保燃煤或其他燃料的充分燃烧,从而提高锅炉的热效率,减少能源的浪费。
正常的水位控制也有利于降低锅炉设备的维护成本和延长设备的使用寿命。
1. 机械浮子式水位计机械浮子式水位计是一种比较传统的水位测量仪器,通过浮子在水位上升或下降时推动连杆传动指针进行水位的读数。
它的优点是结构简单,操作方便,但是测量精度相对较低,对水质的要求较高。
2. 电阻式水位计电阻式水位计采用电极测量水位的方式进行水位控制,其优点是测量精度高,适用范围广,但是对电极和电路的维护要求高,且受到水质影响较大。
3. 超声波水位计超声波水位计利用超声波在水中传播的原理测量水位高度,其优点是无需直接接触水位,可远程测量,且对水质的影响较小,但是安装和维护相对较为复杂。
4. 雷达水位计雷达水位计采用雷达波束测量水位高度,其优点是测量范围广,测量精度高,无需接触水位,适用于高温高压和腐蚀性较强的环境,但是成本较高,对安装环境要求严格。
以上四种方法都可以用来测量锅炉汽包水位,不同的方法适用于不同的环境和要求,使用者可以根据实际情况选择适合的水位测量仪器。
330MW供热电厂汽包炉水位测量及改进论文

330MW供热电厂汽包炉水位测量及改进论文摘要:通过对参数与装置的改进及正常维护时对汽包水位测量装置的经常核对,及时发现问题,及时分析消除,保证了汽包水位测量的准确,更好控制汽包水位在安全范围内运行,进而保证了锅炉的安全、经济运行。
0 引言汽包水位测量装置的配置要求符合《火力发电厂锅炉汽包水位测量系统技术规定》(DRZ/T 01-2004)2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式及锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置。
在水位取样管路安装正确的情况下,水侧取样管在与正压侧共同下降处的温度应该相同,基本上接近于室温,两侧取样管内水的密度相同,这样才不会带来水位测量的附加误差。
从水位测量的温度补偿公式中可以看出,参比水柱(正压侧)温度补偿如果不正确,会给水位测量带来很大的误差。
由于平衡容器内参比水柱的温度在一定范围内是逐步梯度下降的,过了这个范围后温度基本恒定,接近室温,采用测量平均温度的办法进行温度补偿比较合理。
但是,过渡到温度基本恒定的范围不是固定不变的,随着汽包压力、温度的变化,这个范围也在不断变化,而且该范围内温度下降并不是线性,要想精确测量平均温度是非常困难的。
所以,电厂一般采用一固定温度的办法进行温度补偿,一般取为50度。
采用一固定温度的办法进行温度补偿也有其缺点,特别是室外安装的锅炉,冬、夏两季汽包平衡容器位置温度相差很大,虽然设计了汽包小间,但是小间密封不好,也会造成温度相差很大。
冬季非常寒冷时,风向的变化也将造成汽包水位测量误差,因为迎风侧与背风侧的汽包平衡容器位置温度相差更大,使汽包两侧水位从测量原因上产生偏差,直接误导运行人员,甚至威胁锅炉安全运行。
1 汽包炉内部装置分析1.1 汽包1.1.1 汽包位于炉膛的后墙顶部,横跨炉宽方向,它内部装有分离设备,并设有供酸洗、热工测量、水压试验、加药、连续排污、紧急放水、炉水及蒸汽取样(在其出口管道上)、安全阀等的管座和相应的阀门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响三种汽包水位计的因素及防范措施:0 O; f1 f* B3 Y$ N% p一、云母双色水位计: |) F ` e6 q8 b W1、环境温度对云母水位计的影响由于云母双色水位计处于环境温度下,温度较低。
其冷凝水密度高于汽包内饱和水密度,因此指示水位必低于汽包内重力水位。
环境温度越低,冷却水平均密度越大,故误差越大。
防范措施是加强对云母水位计汽水连通管路和水位计本体的保温。
; a/ h$ 2、锅炉冷态启动或更换云母片后对云母水位计的影响机组冷态启动时,当汽包升压到一定值时,水位工业电视系统CRT上看云母双色水位计往往模糊不清。
其原因是汽包受热后,水位计汽水管路、支架发生膨胀,相对位置发生了变化,摄像头与双色水位计的角度偏离了最佳视角所致。
另外更换了云母片后也有相同现象发生。
防范措施是适时适当调准。
我厂多次发生在CRT上看云母双色水位计水汽界面不清的现象,后来把水位监视摄像机改成了位置可移动式,摄像头改成定焦自动光圈型后,调节就变得方便简单,而且显示更清楚。
二、电接点水位计- Y* X, T. N4 W4 r* X* a- ]1、汽包水质对电接点水位计的影响汽包内的水质结垢,化学腐蚀及气泡堆堵造成水侧电接点与筒体的“开路”故障。
会造成二次表显示水位不准,或水柱间断显示,误发水位报警信号等异常现象。
P' R- s2 Z& J% Q. ] 2、水位计的电极挂水影响# U V2 N7 P/ g3 C电接点水位计的测量筒因随环境温度的快速冷凝及水浪冲击,造成高导电的炉水沿电极和筒壁溅延,导致电极上形成“挂水”短路现象。
挂水后形成电极间连通,同样会造成水位显示的错误。
9 R9 U" k) G0 [5 c! L" l4 o3、阀对电接点水位计的影响5 e% b% Y+ ~( q3 _! A( x( C- j* g电接点水位计测量筒降水阀的作用是将测量筒与下降管构成一个循环回路,将测量筒里的水不断地引到下降管中去,以保持测量筒里的凝水温度和密度与汽包内一致。
但在实际应用中我们发现降水阀的开度对测量有很大的影响。
降水阀开度大时测量出的水位偏低且水位不稳;开度小时起不到降水阀的作用,而且多了降水阀后也增加了测量筒检修的隔离难度,这样设计的系统在更换电极时也较难判断测量筒是否已可靠隔离。
因此我们采取的措施是将测量筒到下降管的管路取消,增加一路向空排汽阀。
因此,防止以上几个因素对电接点水位计的影响,主要措施是采取合理的保温措施,确保汽包小室的环境温度、采用数字逻辑判断电路等方法,以提高对炉水和蒸汽的分辨能力。
同时我们也在#1炉上偿试采用进口型电接点水位计,使用下来发现进口型无论在可靠性还是可维修性上都比国产型有明显的优势。
三、压式水位计1、水柱对差压式水位计的影响; r% |1 {* Q8 H0 d# Y6 ]锅炉启动时由于汽包内温度低、压力低,平衡容器内可能无水而无法建立参比水柱。
因此采用锅炉上水时向平衡容器内注水,同时,在汽包满水时及时排出取样管路中的空气泡和杂质,使差压变送器的取样管路全部充满清洁的水。
同时,运行人员升降汽包水位,观察差压水位表显示值变化是否与实际水位相符。
差压式水位计平衡容器与其取样点间连接的取样管应合理保温,否则平衡容器的温度越低,其冷凝水密度增大,水位计输出差压增大,使显示值偏低.但平衡容器罐体不应保温,以产生足够的冷凝水量而保证参比水柱的稳定。
引到差压变送器的两根仪表管道应平行敷设、共同保温。
2、安装对差压式水位计的影响9 M" H5 S" ~/ W6 u- X9 W变送器汽侧取样管上安装有平衡容器。
平衡容器也称凝结容器,通常是一个球型容器或筒型容器。
容器侧面水平引出一个管口接到汽包上的汽侧取样孔。
容器底部垂直引出一个管口接到差压变送器的负压侧(属正接方式)。
进入平衡容器的饱和蒸汽不断凝结成水,多余的凝结水自取样管流回汽包使容器内的水位保持恒定。
为了确保平衡容器内的凝结水能可靠地流回汽包,平衡容器前的汽侧取样管应向汽包侧下倾斜。
由于同一汽包三个平衡容器的汽连通管及容器安装高度不一致,会使汽侧取样管的参比水柱高度不同(变送器均安装在同一高度),从而造成三个汽包水位测量值之间存在较大偏差.解决的办法是待锅炉启动且热膨胀稳定后核对三个平衡容器的高度是否一致,并核对平衡容器与汽包几何中心线(零水位线)间高度是否有变化,否则应在DCS修正。
应水位差压信号比较小,变送器的接头漏水或平衡阀内漏对信号影响很大,根据目前变送器的受压能力,我们取消了平衡阀,并将多次弹出的卡套式变送器接头改为标准压力表式接头。
3、电伴热带对差压式水位计的影响电伴热带是冬季防止汽包水位测量管路结冰的一项措施,正常时水位变送器正压负压侧伴热带的发热量基本一致,对水位测量的影响较小,但当正压负压侧的发热量不一致时,伴热带就会对汽包水位的正确测量产生重大影响。
我厂#3炉曾发生过这样一个故障:汽包双色水位计、电接点水位计均显示正常,但原本误差稳定的三个差压式水位计中有一个与另外两路信号偏差加大。
检查后发现,由于差压式水位变送器取样管路上缠绕的伴热带温控失灵使正负压侧水柱温度和密度偏差加大,造成正压和负压取样管的水柱压差增大。
另外我厂也曾发生因伴热带短路跳闸和管路结冰引起差压式水位计测量不准的故障.解决此问题的措施是根据季节温度及时投用和停用电伴热装置,并将伴热带检查作为入冬前的常规安全检查项目。
. h+ K3 f* p0 E8 E# J( t% g4、锅炉启动初期差压式水位计8 T& o4 D( l3 r8 F" E. S锅炉启动初期差压式水位计一般较难准确测量水位,出现的问题也比较多,我们认为这是由于锅炉启动初期由于汽包内温度低、压力低,平衡容器内较难建立参比水柱及仪表管积存空气杂质等原因所致。
测量汽包水位:请用双室平衡容器-引压管-三阀组-差压变送器(然后负迁移)-智能数字调节-伺服器-调节阀。
组成完整的调节回路。
按锅炉汽包直经,选差压变送器的量程。
在测量汽包水位时,蒸汽流量波动时要当心引起“虚假水位”单冲量调节请选用宇电AI调节器AI-808AL5L2L2控制电动调节阀,伺服机构一体化。
5.补偿系统5.1.基础知识与基本概念从容器的特性中可以看到,双室平衡容器不能完全满足生产的需要。
究其原因,是由于介质密度的变化所造成的。
因此,必须要采取一定的措施,进一步消除密度变化对汽包水位测量的影响。
这种被用来消除密度变化带来的影响的措施就叫做补偿。
通过补偿以准确地测定汽包中的水位。
汽包水位测量补偿的方法通常有两种,一种是压力补偿,另一种是温度补偿,无论采取哪种方法补偿效果都一样。
但是它们之间略有区别,即温度补偿可以从0℃开始,而压力补偿只能从100℃开始。
这是因为温度可以一一对应饱和密度以及100℃以下时的非饱和密度,而压力却只能一一对应饱和密度,即最低压力0MPa只能对应100℃时的饱和密度。
故而由这两种方法构成的补偿系统各自对应的补偿起始点有所不同,即差压变送器量程有所不同。
表1中0MPa对应两行差压值,其原因即在于此;其中上一行对应的是温度补偿,下一行对应压力补偿。
很显然,温度补偿也可以从100℃开始。
5.2.建立补偿系统的步骤第一步确定双室平衡容器的0水位位置容器的0水位的位置一般情况下比较容易确定,通过查阅锅炉制造厂家有关汽包(学名锅筒)及附件方面的图纸和资料,进行比较和计算即可获得。
文中例举的容器0水位位置位于连通器水平管轴线以上365mm处,即基准杯口水所在的平面下方215mm处。
但是,偶尔由于图纸的疏漏缺少与确定0水位相关的数据,无法计算出0水位的位置,那么确定起来就比较复杂。
如图1中就缺少数据。
这种情况下就只有根据容器的自我补偿特性在0水位所体现的特点通过反复验算来获得。
由于容器本身就是用这样的方法经反复验算而设计制造的,只要验算的方法正确通过验算得到的数据会很准确可靠,当然这只限于图纸不详的情况下。
由于限于篇幅,这里只提供思路,具体的验算的方法本文不予介绍。
对此感兴趣的读者可以试一试。
第二步确定差压变送器的量程差压变送器的量程是由汽包水位的测量范围、容器的0水位位置以及补偿系统的补偿起始点等三方面因素决定的。
一些用户一般只考虑了前两方面因素,而忽略了补偿起始点因素,甚至极个别的用户只简单地根据汽包水位的测量范围确定变送器的量程,造成很大的测量误差。
一般情况下,忽略容器的0水位位置所造成的误差在70~90mm之间,忽略补偿起始点所产生的误差在30mm以下,特别情况下误差都将会更大。
此外,这里特别提醒用户,在进行汽包水位测量工作时,关于变送器的量程,在没有得到确认的情况下,切不可单纯依赖设计部门的图纸。
事实上,多数情况下,设计部门在进行此类设计,对变送器选型时,只确定基本量程,而不给出应用量程。
下面来确定变送器的量程。
本文的例子中容器的0水位位置位于连通器水平管轴线以上365mm处。
由于该容器的量程为±300mm,因此(1)式中的hw的最大值和最小值分别为665mm和65mm。
如果采用压力补偿,从《饱和水与饱和水蒸汽密度表》中查出100℃时的饱和水与饱和水蒸汽的密度代入(1)式,再分别将665mm和65mm代入(1)式,即得最小差压ΔPmin=-70.5mm水柱和最大差压ΔPmax=504mm水柱这两个差压值就是变送器的量程范围(见表1中0MPa对应的下行),即-70.5~504mm水柱。
如果采用温度补偿,且从0℃开始补偿,则由于水的密度极其接近1mg/mm3,误差可以忽略,令蒸汽的密度为0。
用同样方法即可得到变送器的量程为-85~515mm水柱(见表1中0MPa对应的上行)。
实际上,从0℃开始补偿是完全没有必要的,其原因这里无需遨述。
第三步确定数学模型数学模型是补偿系统中的最重要环节。
由(1)式得(2)由于相对于规定的0水位的汽包水位 h= hw-365mm,所以(3)式中h ——相对于规定的0水位的汽包水位γw ——饱和水的密度γ s ——饱和水蒸气的密度γ c ——环境温度下水的密度ΔP——差压(3)式即为补偿系统的数学模型。
式中γ c为常数,令环境温度为30℃,则γ c=0.9956mg/mm3,所以(4)(4)式为最终的数学模型。
显然,它与(3)式的作用完全一样。
在补偿系统中可以任选其一。
第四步确定函数、完成系统在(3)式和(4)式中含都有“320 γ w-580 γ s”和“γ w-γ s”关于饱和水与饱和水蒸汽密度的两个子式。
查《饱和水与饱和水蒸汽密度表》,可以获得这两个子式关于压力或温度的函数曲线。
将所得到的曲线以及(3)式或者(4)式输入用以执行运算任务硬件设备,补偿系统即告完成。