天津市五区县2016届九年级上期末数学试卷含答案解析
九年级上册天津数学期末试卷测试卷(含答案解析)

九年级上册天津数学期末试卷测试卷(含答案解析)一、选择题1.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 3.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1) 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( )A .m=-2B .m>-2C .m≥-2D .m≤-25.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 8.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间9.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C 10D 31010.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2 B .a >2 C .a <﹣2 D .a >﹣2 11.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25C .251D 52二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 14.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 15.抛物线2(-1)3y x =+的顶点坐标是______.16.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .17.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.18.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.19.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.20.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.21.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.22.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.23.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.24.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒26.如图,四边形OABC 为矩形,OA =4,OC=5,正比例函数y=2x 的图像交AB 于点D ,连接DC ,动点Q 从D 点出发沿DC 向终点C 运动,动点P 从C 点出发沿CO 向终点O 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s .(1)求点D 的坐标;(2)若PQ ∥OD ,求此时t 的值? (3)是否存在时刻某个t ,使S △DOP =52S △PCQ ?若存在,请求出t 的值,若不存在,请说明理由;(4)当t 为何值时,△DPQ 是以DQ 为腰的等腰三角形? 27.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 28.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值; ②如图2,若∠CBQ =45°,请求出此时点Q 坐标.29.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.30.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?31.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.32.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, 22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A 【解析】 【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可. 【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3), ∴-3=1-m+n , ∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3. ∴代数式mn +1有最小值-3. 故选A. 【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.8.D解析:D 【解析】 【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解. 【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++ ∵1a =-,抛物线开口向下;∴选项A 错误; ∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误; 令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D . 【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.9.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案. 【详解】 tan A =BCAC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C . 【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.10.B解析:B 【解析】 【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论. 【详解】∵1a =,2b =-,1c a =-, 由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2, 故选:B . 【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.11.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:(表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】 先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 15.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.16.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.17.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴s inA=. 解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.18.140°. 【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数.【详解】∵点O 是△ABC 的内切圆的圆心,∴OB 、OC 为∠ABC 和∠ACB 的角平分线,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°.故答案为:140°【点睛】 本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.19.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH AH , 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH . 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.20.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB长度的范围.21.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.22.2023【解析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.23.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴==−1±2, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴3222-≤-≤-, ∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.24.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P ∽△BA2B3,△BB1Q ∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B ,∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】 本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12 【解析】【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.26.(1)D (2,4);(2)52t =;(3)存在,t 的值为2 ;(4)当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形 【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得; (4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD=∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.27.2a 1-, -23. 【解析】【分析】先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a 是方程x 2+x ﹣2=0的解,∴a =1(没有意义舍去)或a =﹣2, 则原式=﹣23. 【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.28.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,x=4,52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x , BC =BM+CM =4x 10x =104, CH 10x =52,则点H(0,12), 同直线AC 的表达式的求法可得直线BH (Q )的表达式为:y =﹣12x+12…②, 联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.29.(1)详见解析;(2)⊙O的半径是13.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.52+=, 即⊙O 13. 【点睛】 此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.30.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.31.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.32.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.【解析】 【分析】 (1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x的大小,可得函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像; (2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()22x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像; (3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.【详解】(1)当1x ≤-时,1x x ≤, 当10x -<<时,1x x >, 当01x <≤时,1x x <, 当1x >时,1x x> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像为故选:D .(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:令()2=02x -+得,2x =-,故A 点坐标为(-2,0),令()2=02x --得,2x =,故B 点坐标为(2,0),观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;故答案为:20x -<<或2x >;(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4), 由图可知,当40t -<<时,函数()(){}22max 2,2y x x =---+的图像与y t =有4个不同的交点.故答案为:40t -<<.【点睛】本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.。
学年天津市五区县九年级上期末数学试卷

2015-2016学年天津市五区县九年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把每小题的答案填在下表中。
1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚均匀的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段可以组成一个三角形2.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.ﻩB.C.D.3.半径为5的圆的一条弦长不可能是()A.3 B.5ﻩC.10ﻩD.124.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0C.﹣1ﻩD.25.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)6.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外ﻩD.无法确定7.“天津市明天降水概率是10%”,对此消息下列说法正确的是()A.天津市明天将有10%的地区降水B.天津市明天将有10%的时间降水C.天津市明天降水的可能性较小D.天津市明天肯定不降水8.边长为a的正六边形的内切圆的半径为()A.2aﻩB.a C.ﻩD.9.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是( )A.k>﹣1B.k>﹣1且k≠0ﻩC.k<1ﻩD.k<1且k≠010.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点出发,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是( )A.甲先回到AﻩB.乙先回到A C.同时回到AﻩD.无法确定11.学校组织足球比赛,赛制为单循环形式(2015秋•天津期末)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有( )A.1个B.2个 C.3个ﻩD.4个二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上。
天津市河西区2016届九年级数学上学期期末考试试题含解析新人教版

天津市河西区2016届九年级数学上学期期末考试试题一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)2.如图由圆形组成的四个图形中,可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个3.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.44.如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A.5.5 B.5.25 C.6.5 D.75.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A.40° B.35° C.30° D.25°6.从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A.B.C.D.7.下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的8.观察下列两个三位数的特点,猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×9399.正六边形的周长为6mm,则它的面积为()A. mm2B. mm2C.3mm2D.6mm210.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径11.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm12.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对二、填空题(共6小题,每小题3分,满分18分)13.已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直统AB的距离是.14.将点P(3,4)绕原点逆时针旋转90°,得到的点P的对应点的坐标为.15.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.16.已知二次函数y=x2+bx+5(b为常数),若在函数值y=1的情况下,只有一个自变量x的值与其对应,则此时b的值为.17.如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上,即AB=4,点E为线段AB上的动点.若使得BE=,则的值为;请你在网格中,用无刻度的直尺,找到点E的位置,并简要说明此位置是如何找到的(不要求证明).三、解答题(共7小题,满分66分)19.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.20.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O 的半径.23.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(I)分析:根据问题中的数量关系.用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)35 34 33 …每天售量(件)50 52 54 …(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)24.在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).25.如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.2015-2016学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:A、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故A错误;B、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故B错误;C、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.2.如图由圆形组成的四个图形中,可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形.【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:第一、二、四个图形是中心对称图形,共3个,故选:B.3.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.4【考点】抛物线与x轴的交点.【分析】根据解方程x2﹣x=0抛物线与x轴的两交点坐标,然后利用两点间的距离公式求出两交点间的距离.【解答】解:当y=0时, x2﹣x=0,解得x1=0,x2=2,则抛物线与x轴的两交点坐标为(0,0),(2,0),所以抛物线与x轴的两个交点间的距离为2.故选C.4.如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A.5.5 B.5.25 C.6.5 D.7【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定得出△ADE∽△ABC,得出比例式,代入求出即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=4,DB=2,DE=3.5,∴=,∴BC=5.25,故选B.5.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A.40° B.35° C.30° D.25°【考点】切线的性质.【分析】根据题意,可知∠COB=70°,OA=OC,即可推出∠A=35°.【解答】解:∵PC与⊙O相切于点C,∴OC⊥CP,∵∠P=20°,∴∠COB=70°,∵OA=OC,∴∠A=35°.故选B.6.从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A.B.C.D.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:一副扑克牌共有54张,其中只有4张Q,∴从一副扑克牌中随机抽出一张牌,得到Q的概率是=;故选B.7.下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的【考点】相似图形.【分析】根据对应边成比例,对应角相等的图形是相似图形,对各选项分析判断后利用排除法求解.【解答】解:A、任意两个正方形,对应边成比例,对应角都是直角,一定相等,所以一定相似,故本选项正确;B、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误;C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误;D、任意两个等腰梯形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.故选A.8.观察下列两个三位数的特点,猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×939【考点】平方差公式.【分析】根据平方差公式计算即可判断.【解答】解:∵901×999=)=9502﹣49,922×978==9502﹣282,950×950=9502,961×939==9502﹣112,∴950×950最大,故选C.9.正六边形的周长为6mm,则它的面积为()A. mm2B. mm2C.3mm2D.6mm2【考点】正多边形和圆.【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6mm,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6mm,∴BC=6÷6=1mm,∴OB=BC=1mm,∴BM=BC=mm,∴OM==mm,∴S△OBC=×BC×OM=×1×=mm2,∴该六边形的面积为:×6=mm2,故选B.10.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径【考点】圆周角定理.【分析】由AB是直径,根据直径所对的圆周角是直角即可判定∠ACB是直角.【解答】解:∵AB是直径,∴∠ACB是直角.则∠ACB是直角的依据是:直径所对的圆周角是直角.故选C.11.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【考点】弧长的计算.【分析】根据弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm,由L=,∴2.5π=,解得:r=6,故选:A.12.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对【考点】抛物线与x轴的交点.【分析】观察函数图象可直接得到抛物线在x轴上方所对应的自变量的范围,从而可对①进行判断;把A点坐标代入y=﹣x2+2x+m+1中求出m,确定抛物线解析式,再通过解方程﹣x2+2x+3=0得到B点坐标,从而可对②进行判断;先确定抛物线的对称轴为直线x=1,则点P 和点Q在对称轴两侧,所以点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x2﹣1,然后比较点Q点对称轴的距离和点P点对称轴的距离的大小,再根据二次函数的性质可对③进行判断.【解答】解:当a<x<b时,y>0,所以①错误;当a=﹣1时,A点坐标为(﹣1,0),把A(﹣1,0)代入y=﹣x2+2x+m+1得﹣1﹣2+m+1=0,解得m=2,则抛物线解析式为y=﹣x2+2x+3,解方程﹣x2+2x+3=0得x1=﹣1,x2=3,则B(3,0),即b=3,所以②错误;抛物线的对称轴为直线x=﹣=1,因为x1<1<x2,所以点P和点Q在对称轴两侧,点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x2﹣1,则x2﹣1﹣(1﹣x1)=x2+x1﹣2,而x1+x2>2,所以x2﹣1﹣(1﹣x1)>0,所以点Q到对称轴的距离比点P到对称轴的距离要大,所以y1>y2,所以③正确.故选C.二、填空题(共6小题,每小题3分,满分18分)13.已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直统AB的距离是 5 .【考点】切线的性质.【分析】根据圆的切线的性质:圆心到切线的距离等于圆的半径,求出圆的半径即可.【解答】解:∵⊙O的直径是10,∴⊙O的半径是5,∵直线AB与⊙O相切,∴点O到AB的距离等于圆的半径,是5.故答案为:5.14.将点P(3,4)绕原点逆时针旋转90°,得到的点P的对应点的坐标为(﹣4,3).【考点】坐标与图形变化-旋转.【分析】作出图形,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,根据点A的坐标求出PA、PB的长度,根据旋转变换只改把图形的位置,不改变图形的形状与大小求出P′A′、P′B′的长度,即可得解.【解答】解:如图,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,∵点P(3,4),∴PA=4,PB=3,∵点P(3,4)绕坐标原点逆时针旋转90°得到点P′,∴P′A′=PA=4,P′B′=PB=3,∴点P′的坐标是(﹣4,3).故答案为:(﹣4,3).15.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为 6 .【考点】位似变换.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6.故答案为:6.16.已知二次函数y=x2+bx+5(b为常数),若在函数值y=1的情况下,只有一个自变量x的值与其对应,则此时b的值为±4.【考点】二次函数的性质.【分析】根据在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等的实数根,求此时b的值即可.【解答】解:由题意得,x2+bx+5=1有两个相等的实数根,所以△=b2﹣16=0,解得,b=±4.故答案为±4.17.如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为 2 .【考点】相似三角形的判定.【分析】利用两角法推知图中的相似三角形即可.【解答】解:如图,∵在△ABP与△CDP中,∠BAP=∠DCP,∠APB=∠CPD,∴△ABP∽△CDP,∴∠ABP=∠CDP,∴∠ADO=∠CBO,又∵∠OAD=∠OCB,∴△OAD∽△OCB,综上所述,图中的相似三角形有2对:△ABP∽△CDP,△OAD∽△OCB.故答案是:2.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上,即AB=4,点E为线段AB上的动点.若使得BE=,则的值为;请你在网格中,用无刻度的直尺,找到点E的位置,并简要说明此位置是如何找到的(不要求证明)在B所在横线的上边第9条线上找到格点F,连接BF,BF交F下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求..【考点】作图—应用与设计作图.【分析】首先求得AE的长,即可求得的值,根据平行线分线段成比例定理即可作出E的位置.【解答】解:AE=AB﹣BE=4﹣=,则===.找到E的方法:在B所在横线的上边第9条线上找到格点F,连接BF,BF交F下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求.三、解答题(共7小题,满分66分)19.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.【考点】二次函数的性质.【分析】(1)把抛物线解析式化为顶点式即可得出对称轴和顶点坐标;(2)利用描点法画出图象,根据图象利用数形结合的方法确定当x>2时,y的取值范围即可.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.20.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【考点】列表法与树状图法.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:6 ﹣2 7第二次第一次6 (6,6)(6,﹣2)(6,7)﹣2 (﹣2,6)(﹣2,﹣2)(﹣2,7)7 (7,6)(7,﹣2)(7,7)(1)P(两数相同)=.(2)P(两数和大于10)=.21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.【考点】相似三角形的判定与性质.【分析】(1)求出∠EDA=∠C=90°,根据相似三角形的判定得出相似即可;(2)根据相似得出比例式,代入求出即可.【解答】(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.22.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O 的半径.【考点】切线的性质;垂径定理.【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O 的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.23.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(I)分析:根据问题中的数量关系.用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)35 34 33 …每天售量(件)50 52 54 …(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)【考点】二次函数的应用.【分析】(I)现在的售价为每件35元,则每件商品降价x元,每件售价为(35﹣x)元;多买2x件,即每天售量为(50+2x)件;(Ⅱ)每天的销售额=每件售价×每天售量,即y=(35﹣x)(50+2x),配方后得到y=﹣2(x﹣5)2+1800,根据二次函数的性质得到当x=5时,y取得最大值1800.【解答】解:(Ⅰ)35﹣x,50+2x;(Ⅱ)根据题意,每天的销售额y=(35﹣x)(50+2x),(0<x<35)配方得y=﹣2(x﹣5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l 800元.24.在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;勾股定理;旋转的性质.【分析】(1)过点D作DM⊥x轴于点M,求证△ADM∽△ABO,根据相似比求AM的长度,推出OM和MD的长度即可;(2)根据等腰三角形的性质,推出α=180°﹣2∠ABC,结合已知条件推出∠ABC=90°﹣∠ABO=90°﹣β,即α=2β;(3)做过点D作DM⊥x轴于点M,根据勾股定理和△OAB∽△OMD,推出D点的横坐标和纵坐标,然后求出C点坐标,就很容易得到CD的解析式了.【解答】解:(1)∵点A(3,0),B(0,4),得OA=3,OB=4,∴在Rt△AOB中,由勾股定理,得AB==5,根据题意,有DA=OA=3.如图①,过点D作DM⊥x轴于点M,则MD∥OB,∴△ADM∽△ABO.有,得,∴OM=,∴,∴点D的坐标为(,).(2)如图②,由已知,得∠CAB=α,AC=AB,∴∠ABC=∠ACB,∴在△ABC中,∴α=180°﹣2∠ABC,∵BC∥x轴,得∠OBC=90°,∴∠ABC=90°﹣∠ABO=90°﹣β,∴α=2β;(3)若顺时针旋转,如图,过点D作DE⊥OA于E,过点C作CF⊥OA于F,∵∠AOD=∠ABO=β,∴tan∠AOD==,设DE=3x,OE=4x,则AE=4x﹣3,在Rt△ADE中,AD2=AE2+DE2,∴9=9x2+(4x﹣3)2,∴x=,∴D(,),∴直线AD的解析式为:y=x﹣,∵直线CD与直线AD垂直,且过点D,∴设y=﹣x+b,把D(,)代入得, =﹣×+b,解得b=4,∵互相垂直的两条直线的斜率的积等于﹣1,∴直线CD的解析式为y=﹣4.同理可得直线CD的另一个解析式为y=x﹣4.25.如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.【考点】动点问题的函数图象.【分析】(Ⅰ)分Q在AB边上与Q在BC边上,分别如图1和图2所示,表示出PQ的长,当Q与B重合时,PQ取得最大值,求出即可;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP;当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,分别表示出S与t的函数关系式即可.【解答】解:(Ⅰ)分两种情况考虑:当Q在AB边上时,过Q作QE⊥AC,交AC于点E,连接PQ,如图1所示:∵∠C=90°,∴QE∥BC,∴△ABC∽△AQE,∴==,在Rt△ABC中,AC=8,BC=6,根据勾股定理得:AB=10,∵AQ=2t,AP=t,∴==,整理得:PE=t,QE=t,根据勾股定理得:PQ2=QE2+PE2,整理得:PQ=t;当Q在BC边上时,连接PQ,如图2所示:由AB+BQ=2t,AB=10,得到BQ=2t﹣10,CQ=BC﹣BQ=6﹣(2t﹣10)=16﹣2t,由AP=t,AC=8,得到PC=8﹣t,根据勾股定理得:PQ==,当Q与B重合时,PQ的值最大,则当t=5时,PQ最大值为3;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP,此时S=AP•QE=t•t=t2(0<t≤5);当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,此时S=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40(5<t≤8).综上,经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式为.。
天津市南开区2016届九年级上期末考试数试题及答案

2015-2016 年度南开区九年级期末考试数学试卷一、选择题(每小题3分,共36分。
每小题的四个选项中只有一个选项是正确的)1. 下列事件中是必然事件的是A. 平安夜下雪B. 地球在自转的同时还不停的公转C. 所有人15岁时身高必达到1.70米D. 下雨时一定打雷2. 下列图形既是轴对称图形又是中心对称图形的是3. 用配方法解方程,配方后的方程是A、=3B、=3C、=5D、=54. 下列关系式中:①y = 2x ;②= 5;③;④y = 5x +1;⑤y = x2−1;⑥⑦xy = 11,y是x的反比例函数的共有A. 4个B. 3个C. 2个D. 1个5. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2,BD=,则AB的长为A. 2B. 3C. 4D. 56. 对于函数,下列说法错误的是A. 这个函数的图像位于第一、第三象限B. 这个函数的图象既是轴对称图形,又是中心对称图形C. 当x>0时,y随x的增大而增大D. 当x<0时,y随x的增大而减小7. 在二次函数的图像中,若y随x的增大而增大,则x的取值范围是A. x>-1B. x<-1C. x>1D. x<18. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径为半圆,交弦AB 于点D,连接CD,则阴影部分的面积是A. π-1B. 2π-1C. -1D. -29. 已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为A. (2,3)B. (3,1)C. (2,1)D. (3,3)10. 如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若= 1: 3,则的值为A、B、C、D、11. 如图,在平面直角坐标系xOy中,直线y = x经过点A,做AB⊥x轴于点B,将△ABO绕点B 逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为A. ( -1 )B. ( -2 )C. ( -,1)D. ( -,2)12. 如图,抛物线y = ax 2 + bx + c与x 轴交于点A(-1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)(0,3)之间(包括端点),则下列结论:①当x>3时,y<0;②3a+b>0;③−1 ≤ a ≤ −;④3 ≤ n ≤ 4,正确的是A. ①②B. ①③C. ①④D. ③④二、填空题(每小题3分,共18分)13. 在比例尺为1:1000000的地图上,量得甲、乙两地距离是15cm,则甲、乙两地的实际距离为km14. 如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比为15. 某口袋有红色、黄色、蓝色玻璃球共72个。
2016-2017学年天津市河西区初三(上)期末数学试卷带解析答案

12016-2017学年天津市河西区初三(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出地四个选项中,只有一项是符合题目要求地.1.(3分)若将一个正方形地各边长扩大为原来地4倍,则这个正方形地面积扩大为原来地(大为原来地()A.16倍 B.8倍 C.4倍 D.2倍2.(3分)下列图案中,既是轴对称图形又是中心对称图形地是(分)下列图案中,既是轴对称图形又是中心对称图形地是()A .B .C . D. 3.(3分)下列随机事件地概率,既可以用列举法求得,又可以用频率估计获得地是(地是()A.某种幼苗在一定条件下地移植成活率B.某种柑橘在某运输过程中地损坏率C.某运动员在某种条件下“射出9环以上”地概率D.投掷一枚均匀地骰子,朝上一面为偶数地概率4.(3分)正六边形地边长为2,则它地面积为(,则它地面积为( )A . B. C.3 D.65.(3分)袋中装有除颜色外完全相同地a个白球、b个红球、c个黄球,则任意摸出一个球是黄球地概率为(意摸出一个球是黄球地概率为()A .B. C . D.6.(3分)如图,铁路道口地栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆地宽度忽略不计)()A.4m B.6m C.8m D.12m7.(3分)下列说法正确地是(分)下列说法正确地是( )A.两个大小不同地正三角形一定是位似图形B.相似地两个五边形一定是位似图形C.所有地正方形都是位似图形D.两个位似图形一定是相似图形8.(3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A地坐)标为(a,b),则点Aʹ地坐标为(地坐标为(A.(﹣a,﹣b) B.(﹣a.﹣b﹣1) C.(﹣a,﹣b+1) D.(﹣a,﹣b﹣2) 9.(3分)下列4×4地正方形网格中,小正方形地边长均为1,三角形地顶点都)在格点上,则与△ABC相似地三角形所在地网格图形是(相似地三角形所在地网格图形是(A. B. C. D.10.(3分)过以下四边形地四个顶点不能作一个圆地是(分)过以下四边形地四个顶点不能作一个圆地是( )A.等腰梯形B.矩形C.直角梯形D . 对角是90°地四边形11.(3分)如图,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,连接ED ,图中地相似三角形地对数为(图中地相似三角形地对数为( )A .4对B .6对C .8对D .9对12.(3分)二次函数y=ax 2+bx +c 地图象如图所示,则下列结论中错误地是( )A .函数有最小值.函数有最小值B .当﹣1<x <2时,y >0C .a +b +c <0D .当x <,y 随x 地增大而减小二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应横线上.13.(3分)两地地实际距离是2000m ,在绘制地地图上量得这两地地距离是2cm ,那么这幅地图地比例尺为那么这幅地图地比例尺为. 14.(3分)在一个口袋中有4个完全相同地小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出地小球标号相同地概率为出地小球标号相同地概率为.15.(3分)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△AʹBOʹ,点A、O旋转后地对应点为Aʹ、Oʹ,那么AAʹ地长为地长为.16.(3分)如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它地内切圆半径是 .17.(3分)如图,抛物线y=ax 2+bx+c(a>0)地对称轴是过点(1,0)且平行于y轴地直线,若点P(4,0)在该抛物线上,则4a﹣2b+c地值为地值为 .18.(3分)将边长为4地正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD地中点N分别运动到Aʹ、Dʹ和Nʹ地位置,若∠AʹBC=30°,则点N到点Nʹ地运动路径长为地运动路径长为.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(8分)如图,正方形网格中地每个小正方形地边长都是1,每个小正方形地顶点叫做格点.△ABC地三个顶点A,B,C都在格点上,将△ABC绕点A按顺时ABʹCʹʹCʹ.针方向旋转90°得到△AB(1)在正方形网格中,画出△ABʹCʹ;(2)计算线段AB在变换到ABʹ地过程中扫过区域地面积.(结果保留π)20.(8分)学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大地为本局获胜,每次获取地牌不能放回.(1)若每人随机取手中地一张牌进行比较,请列举出所有情况;(2)并求学生乙本局获胜地概率.21.(10分)如图,在△ABC中,DE∥BC,分别交AB、AC于点D、E,若AD=3,DB=2,BC=6,求DE地长.22.(10分)已知二次函数y=2x2﹣4x+1(1)用配方法化为y=a(x﹣h)2+k地形式;(2)写出该函数地顶点坐标;(3)当0≤x≤3时,求函数y地最大值.23.(10分)如图,CD是圆O地弦,AB是直径,且CD⊥AB,垂足为P. (1)求证:PC2=PA•PB;(2)PA=6,PC=3,求圆O地直径.24.(10分)已知AB为⊙O地直径,OC⊥AB,弦DC与OB交于点F,在直线AB 上有一点E,连接ED,且有ED=EF.(Ⅰ)如图1,求证ED为⊙O地切线;(Ⅱ)如图2,直线ED与切线AG相交于G,且OF=1,⊙O地半径为3,求AG 地长.25.(10分)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO地延长线于点D,BE=2AC.(1)用含m地代数式表示BE地长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF地面积相等,求m地值.. ②连结AE,交OB于点M,若△AMF与△BGF地面积相等,则m地值是地值是2016-2017学年天津市河西区初三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出地四个选项中,只有一项是符合题目要求地.1.(3分)若将一个正方形地各边长扩大为原来地4倍,则这个正方形地面积扩大为原来地(大为原来地( )A .16倍B .8倍C .4倍D .2倍【解答】解:根据正方形面积地计算方法和积地变化规律,根据正方形面积地计算方法和积地变化规律,如果一个正方形地边如果一个正方形地边长扩大为原来地4倍,那么正方形地面积是原来正方形面积地4×4=16倍. 故选:A .2.(3分)下列图案中,既是轴对称图形又是中心对称图形地是(分)下列图案中,既是轴对称图形又是中心对称图形地是( )A .B .C .D .【解答】解:A 、不是轴对称图形,是中心对称图形,故本选项错误; B 、既是轴对称图形又是中心对称图形,故本选项正确; C 、不是轴对称图形,也不是中心对称图形,故本选项错误; D 、不是轴对称图形,也不是中心对称图形,故本选项错误. 故选:B .3.(3分)下列随机事件地概率,既可以用列举法求得,又可以用频率估计获得地是(地是( )A .某种幼苗在一定条件下地移植成活率B .某种柑橘在某运输过程中地损坏率C .某运动员在某种条件下“射出9环以上”地概率D .投掷一枚均匀地骰子,朝上一面为偶数地概率【解答】解:A 、某种幼苗在一定条件下地移植成活率,只能用频率估计,不能用列举法;故不符合题意;B、某种柑橘在某运输过程中地损坏率,只能用列举法,不能用频率求出;故不符合题意;C、某运动员在某种条件下“射出9环以上”地概率,只能用频率估计,不能用列举法;故不符合题意;D、∵一枚均匀地骰子只有六个面,即:只有六个数,不是奇数,便是偶数,∴能一一地列举出来,∴既可以用列举法求得,又可以用频率估计获得概率;故符合题意.故选:D.4.(3分)正六边形地边长为2,则它地面积为(,则它地面积为( )A. B. C.3 D.6【解答】解:如图,设正六边形ABCDEF地中心为O,连接OC、OD,过O作OG⊥CD于G,∵∠COD==60°,OC=OD,∴△COD是等边三角形,∴OC=CD=OD=2,∴CG=DG=1,由勾股定理得:OG=,∴S=6S△OCD=6××CD×OG=3×2×=6,正六边形ABCDEF故选:D.5.(3分)袋中装有除颜色外完全相同地a个白球、b个红球、c个黄球,则任意摸出一个球是黄球地概率为(意摸出一个球是黄球地概率为( )A .B .C .D .【解答】解:根据题意,任意摸出一个球是黄球地概率为,故选:A .6.(3分)如图,铁路道口地栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆地宽度忽略不计)( )A .4mB .6mC .8mD .12m【解答】解:设长臂端点升高x 米, 则=,∴解得:x=8.故选:C .7.(3分)下列说法正确地是(分)下列说法正确地是( ) A .两个大小不同地正三角形一定是位似图形 B .相似地两个五边形一定是位似图形 C .所有地正方形都是位似图形 D .两个位似图形一定是相似图形【解答】解:A 、错误.两个大小不同地正三角形不一定是位似图形; B 、错误.相似地两个五边形不一定是位似图形; C 、错误.所有地正方形不一定是位似图形;D 、正确.两个位似图形一定是相似图、正确.两个位似图形一定是相似图故选:D .8.(3分)如图,将△ABC 绕点C (0,﹣1)旋转180°得到△A'B'C ,设点A 地坐标为(a ,b ),则点Aʹ地坐标为(地坐标为( )A.(﹣a,﹣b) B.(﹣a.﹣b﹣1) C.(﹣a,﹣b+1) D.(﹣a,﹣b﹣2) 【解答】解:把AAʹ向上平移1个单位得A地对应点A1坐标为(a,b+1).因A1、A2关于原点对称,所以Aʹ对应点A2(﹣a,﹣b﹣1).∴Aʹ(﹣a,﹣b﹣2).故选:D.9.(3分)下列4×4地正方形网格中,小正方形地边长均为1,三角形地顶点都)相似地三角形所在地网格图形是(在格点上,则与△ABC相似地三角形所在地网格图形是(A. B. C. D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC地三边之比为:2:=1:2:,A、三角形地三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形地三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B 选项正确;C 、三角形地三边分别为2,3,=,三边之比为2:3:,故C 选项错误;D、三角形地三边分别为=,=,4,三边之比为::4,故D 选项错误. 故选:B .10.(3分)过以下四边形地四个顶点不能作一个圆地是(分)过以下四边形地四个顶点不能作一个圆地是( ) A .等腰梯形B .矩形C .直角梯形D .对角是90°地四边形【解答】解:A 、等腰梯形地对角互补,、等腰梯形地对角互补,所以过等腰梯形地四个顶点能作一个圆,所以过等腰梯形地四个顶点能作一个圆,故本选项不符合题意;B 、矩形地对角互补,矩形地对角互补,所以过矩形地四个顶点能作一个圆,所以过矩形地四个顶点能作一个圆,所以过矩形地四个顶点能作一个圆,故本选项不符合题意;故本选项不符合题意;C 、直角梯形地对角不互补,所以过直角梯形地四个顶点不能作一个圆,故本选项符合题意;D 、对角是90°地四边形地对角互补,所以过对角是90°地四边形地四个顶点能作一个圆,故本选项不符合题意; 故选:C .11.(3分)如图,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,连接ED ,图中地相似三角形地对数为(图中地相似三角形地对数为( )A .4对B .6对C .8对D .9对【解答】解:∵AD ⊥BC 于D ,BE ⊥AC 于E , ∴∠ADC=∠AEC=90°,∴△FAE ∽△CAD ,△FBD ∽△CBE , 而∠ACD=∠BCE , ∴△CAD ∽△CBE ,∴△FAE ∽△CBE ,△FAE ∽△FBD ,△FBD ∽△CAD , ∵∠AEB=∠ADB ,∴点E 、点D 在以AB 为直角地圆上, 即点A 、B 、D 、E 四点共圆, ∴∠BAD=∠BED , ∴△ABF ∽△EDF , ∵∠DEC=∠ABC , ∴△CDE ∽△CAB , 故选:C .12.(3分)二次函数y=ax 2+bx +c 地图象如图所示,则下列结论中错误地是( )A .函数有最小值.函数有最小值B .当﹣1<x <2时,y >0C .a +b +c <0D .当x <,y 随x 地增大而减小【解答】解:A 、由图象可知函数有最小值,故正确; B 、由抛物线可知当﹣1<x <2时,y <0,故错误; C 、当x=1时,y <0,即a +b +c <0,故正确;D 、由图象可知在对称轴地左侧y 随x 地增大而减小,故正确. 故选:B .二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应横线上. 13.(3分)两地地实际距离是2000m ,在绘制地地图上量得这两地地距离是2cm ,那么这幅地图地比例尺为那么这幅地图地比例尺为 1:100000 . 【解答】解:2cm=0.02m , 0.02m :2000m=1:100000.答:这幅地图地比例尺是1:100000. 故答案为:1:100000.14.(3分)在一个口袋中有4个完全相同地小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出地小球标号相同地概率为相同地概率为 . 【解答】解:如图:两次取地小球地标号相同地情况有4种,概率为P==.故答案为:.15.(3分)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△AʹBOʹ,点A、O旋转后地对应点为Aʹ、Oʹ,那5 .么AAʹ地长为地长为【解答】解:∵A(4,0),B(0,3),∴AB=5,∵把△ABO绕点B逆时针旋转90°,得△AʹBOʹ,∴AʹB=AB=5,且∠ABAʹ=90°,∴AAʹ==5,故答案为:5.16.(3分)如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它地内切圆半径是 2 .【解答】解:根据勾股定理得:AB==10,设三角形ABC地内切圆O地半径是r,∵圆O是直角三角形ABC地内切圆,∴OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,∴四边形ODCE是正方形,∴OD=OE=CD=CE=r,∴AC﹣r+BC﹣r=AB,8﹣r+6﹣r=10,∴r=2,故答案为:2.17.(3分)如图,抛物线y=ax2+bx+c(a>0)地对称轴是过点(1,0)且平行于y轴地直线,若点P(4,0)在该抛物线上,则4a﹣2b+c地值为地值为 0 .【解答】解:设抛物线与x轴地另一个交点是Q,∵抛物线地对称轴是过点(1,0),与x轴地一个交点是P(4,0),∴与x轴地另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.18.(3分)将边长为4地正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD地中点N分别运动到Aʹ、Dʹ和Nʹ地位置,若∠AʹBC=30°,.地运动路径长为则点N到点Nʹ地运动路径长为【解答】解:作NM⊥BC于点M,连接MNʹ,∵点Nʹ和点M分别为线段BDʹ和BC地中点,∴MNʹ==2,∴MNʹ=BM,MBNʹ=ʹ=∠MNʹB,∴∠MBN∵∠AʹBC=30°,∴∠MBNʹ=15°,∴∠NʹMC=30°,∴∠NMNʹ=60°,∴点N到点Nʹ地运动路径长为:,故答案为:.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(8分)如图,正方形网格中地每个小正方形地边长都是1,每个小正方形地顶点叫做格点.△ABC地三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△ABʹCʹ.(1)在正方形网格中,画出△ABʹCʹ;ABʹʹ地过程中扫过区域地面积.(结果保留π) (2)计算线段AB在变换到AB【解答】解:(1)如图所示:△ABʹCʹ即为所求;(2)∵AB==5,∴线段AB在变换到ABʹ地过程中扫过区域地面积为:=π.20.(8分)学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大地为本局获胜,每次获取地牌不能放回.(1)若每人随机取手中地一张牌进行比较,请列举出所有情况;(2)并求学生乙本局获胜地概率.【解答】解:(1)由题意可得,每人随机取手中地一张牌进行比较地所有情况是:(6,5)、(6,7)、(6,9)、(8,5)、(8,7)、(8,9)、(10,5)、(10,7)、(10,9);(2)学生乙获胜地情况有:(6,7)、(6,9)、(8,9),∴学生乙本局获胜地概率是:=,即学生乙本局获胜地概率是.21.(10分)如图,在△ABC中,DE∥BC,分别交AB、AC于点D、E,若AD=3,DB=2,BC=6,求DE地长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,又∵AD=3,DB=2,BC=6,∴AB=AD+DB=5,即:=,∴DE=.22.(10分)已知二次函数y=2x2﹣4x+1(1)用配方法化为y=a(x﹣h)2+k地形式;(2)写出该函数地顶点坐标;(3)当0≤x≤3时,求函数y地最大值.【解答】解:(1)y=2(x2﹣2x)+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣1,(2)顶点坐标为(1,﹣1),(3))∵对称轴为直线x=1,∴当0≤x<1时,y随x地增大而减小,当1<x≤3时,y随x地增大而增大,∴当x=3时二次函数有最大值,最大值为2×(3﹣1)2﹣1=8﹣1=7,即最大值为7.23.(10分)如图,CD是圆O地弦,AB是直径,且CD⊥AB,垂足为P. (1)求证:PC2=PA•PB;(2)PA=6,PC=3,求圆O地直径.【解答】(1)证明:如图,连接AC、BC,∵CD⊥AB,AB是直径,∴=,∴∠CAB=∠BCP,∵∠CPA=∠CPB=90°,∴△APC∽△CPB,∴=,即PC2=PA•PB;(2)解:将PA=6,PC=3,代入PC2=PA•PB,可得32=6PB,∴PB=1.5,∴AB=PA+PB=6+1.5=7.5,即圆地直径为7.5.24.(10分)已知AB为⊙O地直径,OC⊥AB,弦DC与OB交于点F,在直线AB 上有一点E,连接ED,且有ED=EF.(Ⅰ)如图1,求证ED为⊙O地切线;(Ⅱ)如图2,直线ED与切线AG相交于G,且OF=1,⊙O地半径为3,求AG 地长.【解答】(1)证明:连接OD,如图1所示.∵ED=EF,∴∠EDF=∠EFD,∵∠EFD=∠CFO,∴∠EDF=∠CFO.∵OD=OC,∴∠ODF=∠OCF.∵OC⊥AB,∴∠CFO+∠OCF=∠EDF+∠ODF=∠EDO=90°,∴ED为⊙O地切线.(2)解:连接OD,过点D作DM⊥BA于点M,如图2所示.由(1)可知△EDO为直角三角形,设ED=EF=a,EO=EF+FO=a+1,由勾股定理得:EO2=ED2+DO2,即(a+1)2=a2+32,解得:a=4,即ED=4,EO=5.∵sin∠EOD==,cos∠EOD==,∴DM=OD•sin∠EOD=3×=,MO=OD•cos∠EOD=3×=,∴EM=EO﹣MO=5﹣=,EA=EO+OA=5+3=8.∵GA切⊙O于点A,∴GA⊥EA,∴DM∥GA,∴△EDM∽△EGA,∴,∴GA===6.25.(10分)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO地延长线于点D,BE=2AC.(1)用含m地代数式表示BE地长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF地面积相等,求m地值..地值是②连结AE,交OB于点M,若△AMF与△BGF地面积相等,则m地值是【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m 2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=, ∴点M横坐标为,∵△AMF地面积=△BFG地面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.单词地词性变化动词变为名词seller player surfer singer owner①+er(r) cleaner,jumper speaker traveler teacher worker painter,farmer diver driver, writer waiter (waitress)winner robberRunner②+or Visitor inventor conductor inspector(检查员) Actor (actress )③+ing cross——crossing wash——washing meet——meetingpark——parking pack——packing(包装) surf——surfingmean——meaning hiking breathingBeginning Shopping④describe---description invent ---invention discuss--discussion disappear ---disappearanceenter---entrance know---knowledge live---life die---deathplease---pleasure sit ---seat fly ---flight rob ---robberydevelop ---development decide——decision二、动词变为形容词挫败地) Close ---closed excited ——excited frustrate ——frustrated (挫败地interest——interested surprise ——surprised die——deadfrighten ——frightened fry ——fried worry ——worriedbreak ——broken enjoy ——enjoyable lose ——lost下列地) amaze ——amazing miss ——missing follow ——following (下列地excite——exciting interest——interesting move ——movingsleep ——asleep wake——awakewonder——wonderful thank——thankful forget ——forgetful三、名词变为形容词care——careful color——colorful help——helpfulPain ——painful use——useful success——successfulheath——healthy luck——lucky noise——noisycloud——cloudy rain ——rainy mist——mistyshower——showery snow——snowy wind——windyfog——foggy sun ——sunnysouth——southern north——northernwool——woolen confidence ——confident danger——dangerousperson ——personal post ——postal friend——friendlyAmerica ——American Australia ——Australian Canada ——CanadianItaly ——Italian china ——Chinese Japan —— Japanese Britain ——British England ——English France ——French Germany ——German四、形容词变为名词 good ——goodness busy ——business different ——difference foreign ——foreigner difficult ——difficulty safe ——safetytrue ——truth proud ----Pride dry ——droughtimportant ---improtanceconfident ——confidence (信心)五、形容词变为副词①+ly useful, wide, strong②改y 为,再加lyhealthy , heavy, happy, lucky, noisy,六.形容词和副词同形。
天津市九年级(上)期末数学试卷

九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. x2+1x+1=0B. ax2+bx+c=0C. (x−2)(x+3)=1D. 2x2−2xy+y2=02.下列事件中,是必然事件的是()A. 掷一次骰子,向上一面的点数是6B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是180∘D. 射击运动员射击一次,命中靶心3.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A. B. C. D.4.关于x的一元二次方程x2+(k+1)x+k-2=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 根的情况无法判断5.同时抛两个硬币,两个都正面向上的概率是()A. 12B. 13C. 14D. 346.二次函数y=x2+4x+5的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A. 先向右平移2个单位,再向上平移1个单位B. 先向右平移2个单位,再向下平移1个单位C. 先向左平移2个单位,再向上平移1个单位D. 先向左平移2个单位,再向下平移1个单位7.圆锥的底面面积为16πcm2,母线长为6cm,则这个圆锥的侧面积为()A. 24cm2B. 24πcm2C. 48cm2D. 48πcm28.一次会议上,每两个参加会议的人互相握了一次手,有人统计一共握了45次手,如果这次会议到会的人数为x人,根据题意可列方程为()A. x(x+1)=45B. x(x−1)=45C. 2x(x+1)=45D. x(x−1)=45×29.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.若∠DCA=55°,则∠CAO的度数为()A. 25∘B. 35∘C. 45∘D. 55∘10.一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有6个红球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在30%,那么估计盒子中小球的个数n 为()A. 15B. 18C. 20D. 2411.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A. 1:2:3B. 3:2:1C. 3:2:1D. 1:2:312.从如图所示的二次函数y=ax2+bx+c的图象中,观察得出下面五条信息:①c<0;②abc>0;③a+b+c>0;④2a+3b=0;⑤c-8b>0.你认为其中正确信息的个数为()A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共18.0分)13.关于x的一元二次方程(m-3)x2+x+m2-9=0有一根为0,则m的值为______.14.已知点P关于x轴的对称点为P1(2,3),那么点P关于原点的对称点P2的坐标是______.15.小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,搅匀后从中随机抽取1个题,他抽中综合题的概率是______.16.如图,在⊙O中,弦AB、CD相交于点P,∠A=40°,∠CPB=70°,则∠B的大小为______(度)17.如图,AB为⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,PC=6,PB=3,则⊙O的直径等于______.18.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为______.三、解答题(本大题共7小题,共66.0分)19.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.20.某市为响应国家“退耕还林”的号召,改变水土流失严重现状,2016年某地区退耕还林1200亩,计划2018年退耕还林1728亩.求这两年平均每年退耕还林的增长率.21.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,请画树状图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于6.22.如图,在⊙O中,点C为AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.某宾馆有50个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,房价定为多少时,宾馆利润最大?并求出一天的最大利润是多少?24.已知抛物线y=ax2+bx+2经过A、B、C三点,当x≥0时,其图象如图所示.(1)求抛物线解析式并写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+2当x<0时的图象;(3)利用抛物线y=ax2+bx+2,写出x为何值时,y>0.25.已知AB是⊙O的直径,点C是OA的中点,CD⊥OA交⊙O于点D,连接OD.(1)如图①,求∠AOD的度数;(2)如图②,PD切⊙O于点D,交BA的延长线于点P,过点A作AE∥PD交⊙O 于点E,交DO于点F,若⊙O的半径为4,求AE的长.答案和解析1.【答案】C【解析】解:A、不是整式方程,故A错误;B、ax2+bx+c=0,当a=0时,不是一元二次方程,故B错误;C、(x-2)(x+3)=1是一元二次方程,故此C正确;D、2x2-2xy+y2=0,是二元二次方程,故D错误.故选:C.依据一元二次方程的定义进行解答即可.本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.2.【答案】C【解析】解:A.掷一次骰子,向上一面的点数是6是随机事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.任意画一个三角形,其内角和是180°是必然事件;D.射击运动员射击一次,命中靶心是随机事件;故选:C.必然事件就是一定发生的事件,依据定义即可判断.本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【解析】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.4.【答案】A【解析】解:∵△=(k+1)2-4(k-2)=(k-1)2+8>0,∴关于x的一元二次方程x2+(k+1)x+k-2=0一定有两个不相等的实数根.故选:A.先计算出判别式得到△=(k-1)2+8>0,然后根据判别式的意义判断根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】C【解析】解:一共有4种情况,两个正面向上的有1种情况,∴这两个正面向上的概率是.故选:C.列举出所有情况,看两个正面向上的情况数占总情况数的多少即可.本题主要考查了等可能事件的概率,属于容易题,用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】C【解析】解:根据题意y=x2+4x+5=(x+2)2+1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向上平移1个单位得到.故选:C.把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.7.【答案】B【解析】解:∵圆锥的底面面积为16πcm2,∴圆锥的半径为4cm,这个圆锥的侧面积=•2π•4•6=24π(cm2).故选:B.根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.本题考查了圆锥的计算:关键是根据圆锥的底面面积,得出圆锥的半径.8.【答案】D【解析】解:设这次会议到会的人数为x人,则每人将与(x-1)人握手,依题意,得:x(x-1)=45,即x(x-1)=45×2.故选:D.设这次会议到会的人数为x人,则每人将与(x-1)人握手,由每两个参加会议的人互相握了一次手且一共握了45次手,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】B【解析】解:如图,连接OC,∵DC是⊙O切线∴OC⊥CD,∴∠DCA+∠ACO=90°,且∠DCA=55°,∴∠ACO=35°∵AO=CO∴∠OAC=∠ACO=35°故选:B.由切线的性质可得OC⊥CD,由等腰三角形的性质可得OAC=∠ACO=35°.本题考查了切线的性质,圆的有关知识,熟练运用切线的性质是本题的关键.10.【答案】C【解析】解:根据题意得=30%,解得n=20,经检验:n=20是原分式方程的解,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故选:C.根据利用频率估计概率得到摸到红球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.11.【答案】B【解析】解:设圆的半径是r,则多边形的半径是r,则内接正三角形的边长是2rsin60°=r,内接正方形的边长是2rsin45°=r,正六边形的边长是r,因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比为::1.故选:B.从中心向边作垂线,构建直角三角形,通过解直角三角形可得.正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.12.【答案】C【解析】解:①由抛物线与y轴的交点可知:c<0,故①正确;②由抛物线的开口方向可知:a>0,->0,∴b<0,∴abc>0,故②正确;③令x=1代入y=ax2+bx+c,∴y=a+b+c<0,故③错误;④由对称轴可知:-=,则2a+3b=0,故④正确⑤如图所示,当x=-2时,y>0.所以4a-2b+c>0,所以-8b+c>0.所以c-8b>0.故⑤正确;综上所述,正确的结论有4个.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换的熟练运用.13.【答案】-3【解析】解:把x=0代入方程(m-3)x2+x+m2-9=0得m2-9=0,解得m1=3,m2=-3,而m-3≠0,所以m的值为-3.故答案为-3.把x=0代入方程(m-3)x2+x+m2-9=0得m2-9=0,解得m1=3,m2=-3,然后根据一元二次方程的定义确定m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.14.【答案】(-2,3)【解析】解:∵点P关于x轴的对称点为P1(2,3),∴P(2,-3),∴点P关于原点的对称点P2的坐标是(-2,3),故答案为:(-2,3).首先根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得到P点坐标,再根据两个点关于原点对称时的坐标特点:它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y)即可得到答案.此题主要考查了关于x轴对称的点的坐标特征,以及两个点关于原点对称时的坐标特点,解决问题的关键是熟记坐标变换的特点.15.【答案】1120【解析】解:∵小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,∴他从中随机抽取1道,抽中综合题的概率是:=,故答案为:.由小明在一次班会中参与知识抢答活动,现有语文题4道,数学题5道,综合题11道,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】30【解析】解:∵∠CPB是△APC的外角,∴∠CPB=∠C+∠A;∵∠A=30°,∠CPB=70°,∴∠C=∠CPB-∠A=40°;∴∠B=∠C=30°;故答案为:30.欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠CPB的度数,即可由三角形的外角性质求出∠C的度数,由此得解.此题主要考查了圆周角定理的应用及三角形的外角性质.熟练掌握定理及性质是解题的关键.17.【答案】9【解析】解:∵PC是⊙O切线,∴根据切割线定理可得:CP2=BP•AP,且PC=6,PB=3,∴36=3(3+AB)∴AB=9故答案为:9由切割线定理可得CP2=BP•AP,即可求解.本题考查了切线的性质,切割线定理,熟练运用切割线定理是本题的关键.18.【答案】2-2【解析】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=-1,∴在Rt△DA′E中,DE==2-.故答案为:2-.利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.19.【答案】解:根据切线的性质得:∠PAC=90°,所以∠PAB=90°-∠BAC=90°-20°=70°,根据切线长定理得PA=PB,所以∠PAB=∠PBA=70°,所以∠P=180°-70°×2=40°.【解析】根据切线长定理得等腰△PAB,运用三角形内角和定理求解即可.此题主要考查了切线长定理和切线的性质,得出PA=PB是解题关键.20.【答案】解:设平均增长率为x,根据题意得:1200(1+x)2=1728,解得x1=0.2=20%,x2=-2.2(舍去).所以平均每年的增长率是20%.故这两年平均每年退耕还林的增长率是10%.【解析】可设这两年平均每年退耕还林的增长率为x,因为2016年退耕还林1200亩,计划2018年退耕还林1728亩,根据增长后的面积=增长前的面积×(1+增长率),则2018年的亩数是1200(1+x)2,即可列方程求出答案.本题考查了一元二次方程的应用.本题只需仔细分析题意,利用方程即可解决问题.读懂题意,找到等量关系准确的列出方程是解题的关键.21.【答案】解:(1)画树状图得:∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴P(两次取出的小球的标号相同)=416=14;(2)∵两次取出的小球的标号的和等于6的有3种情况,∴P(两次取出的小球的标号的和等于6)=316.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球的标号相同情况,再利用概率公式即可求得答案;(2)由(1)可求得两次取出的小球的标号的和等于6的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】(1)证明:如图,连接OA,∵CA=CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°-(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE=BC2−CE2=82−42=43,∴AB=2BE=83,∴弦AB的长为83.【解析】(1)连接OA,由=,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得BE=4,即可得出AB的长.本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.【答案】解:设每个房间每天的定价增加x元,宾馆所得利润为y元,根据题意,得y=(160+x−20)(50−x10)整理,得y=−110x2+36x+7000其中0≤x≤500,且x是10的倍数当x=−b2a=−362×(−110)=180∴房价定为160+180=340时,宾馆利润最大∴y最大值=4ac−b24a=4×(−110)×7000−3624×(−110)=10240故房价定为340元时,宾馆利润最大,一天的最大利润为10240元【解析】可以设每个房间每天的定价增加x元,宾馆所得利润为y元,则可列方程:,进行求解即可此题考查的是二次函数与一元二次方程的应用,根据题意列出方程,要求最值问题,即可转化为求二次函数的顶点问题.此题求最值也可用配方法进行求解.24.【答案】解:(1)由图象得,B(4,0),C(5,-3)把B(4,0),C(5,-3)代入y=ax2+bx+2中得,16a+4b+2=025a+5b+2=−3,解得,a=−12b=32所以抛物线的解析式为,y=-12x2+32x+2∴h=-b2a=32,k=4ac−b24a=258∴顶点坐标为(32,258).(2)令-12x2+32x+2=0解得,x1=-1,x2=4∴图象与x轴的另一个交点为(-1,0),并依题意画图象.(3)通过观察图象,当-1<x<4时,y>0.【解析】(1)根据题意和图象得到A(0,2)、B(4,0)、C(5,-3),并将B、C两点坐标代入y=ax2+bx+2求得a=-,b=,从而易写出函数解析式的一般式为y=-x2+ x+2,进而利用顶点坐标公式(-,)直接写出顶点坐标.(2)令-x2+x+2=0即可求得抛物线与x轴的另一个交点为(-1,0),然后用光滑的曲线将(0,2)和(-1,0)连接即可;(3)观察图象,当y>0时,抛物线的图象在x轴上方,这一段图象对应的x轴的取值在-1到4之间,所以直接写出-1<x<4即可.本题考查了利用待定系数法求二次函数解析式的基本方法,同时也考查了根据抛物线解析式画图象的能力和观察抛物线确定自变量取值范围的能力.25.【答案】解:(1)连接DA,如图1,∵点C是OA的中点,DC⊥OA,∴AD=DO,∵OA=OD,∴OA=OD=AD,∴△AOD是等边三角形,∴∠AOD=60°;(2)连接AD,如图2,∵PD与⊙O相切,∴PD⊥DO,∵AE∥PD,∴AE⊥OD,∵△AOD是等边三角形,∴∠DAO=60°,∴∠FAO=30°,∴FO=12AO=2,AF=42−22=23,∴AE=2AF=43.【解析】(1)证明△AOD是等边三角形,进而求出∠AOD的度数;(2)根据切线的性质求得PD⊥OD,然后根据AE∥PD,求得AE⊥OD,进而求得∠FAO=30°,利用勾股定理即可得出答案.本题考查了切线的性质,30°角的直角三角形的性质等,熟练掌握性质和定理是解题的关键.。
天津市河北区2016届九年级数学上学期期末考试试题(含解析)新人教版

XX市XX区2021届九年级数学上学期期末考试试题一、选择题〔共10 小题,每题 3 分,总分值30 分〕1.在反比例函数y=上的一个点是〔〕A.〔 1, 2〕 B.〔 1, 3〕C.〔 2, 6〕D.〔 0, 0〕2.如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO扩大到原来的 2 倍,得到△A′ B′ O.假设点 A 的坐标是〔 1, 2〕,那么点 A′的坐标是〔〕A.〔 2, 4〕 B.〔﹣ 1,﹣ 2〕C.〔﹣ 2,﹣ 4〕D.〔﹣ 2,﹣ 1〕3.一只小狗在如图的方砖上走来走去,最终停在白色方砖上的概率是〔〕A.B.C.D.4.如图, D, E 分别为 AB, AC的中点,那么S△ADE:S 四边形DBCE=〔〕A.1:3 B. 1:4 C.1:9 D.1: 165.假设函数y=的图象在其所在的每一个象限内,函数值y 随自变量x 的增大而增大,那么 m的取值X围是〔〕A. m< 2 B. m< 0 C . m> 2 D . m> 06.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.6.如图,点 D 在△ ABC的边 AC上,要判断△ ADC与△ ABC相似,添加一个条件,不正确的是〔〕A.∠ ABD=∠ CB.∠ ADB=∠ ABC C. CB2=CD?CAD. AB2=AD?AC7.一个扇形的弧长为5π,面积是15π,那么该扇形的圆心角是〔〕A.120°B.150°C.210°D.240°8.一个不透明的袋中装有大小一样的2 个红球和 2 个绿球,如果先从袋中摸出1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有个绿球和1 个红球的概率是〔〕A.B.C.D.9.在△ ABC和△ A1B1C1中,以下四个命题:(1〕假设 AB=A1B1, AC=A1C1,∠ A=∠ A1,那么△ ABC≌△ A1B1C1;(2〕假设 AB=A1B1, AC=A1C1,∠ B=∠ B1,那么△ ABC≌△ A1B1C1;(3〕假设∠ A=∠ A1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1;(4〕假设 AC: A1C1=CB: C1B1,∠ C=∠ C1,那么△ ABC∽△ A1B1C1.其中真命题的个数为〔〕A.4 个B.3个C.2 个D.1 个10.如图,菱形OABC的顶点 C 的坐标为〔 1,〕,顶点A在x轴的正半轴上,反比例函数y=〔x>0〕的图象经过顶点B,那么 k 的值为〔〕A.2+B. 3+C.2D .3二、填空题〔共8 小题,每题3 分,总分值 24 分〕11.抛物线y=x 2﹣ 4x﹣2 的顶点坐标是.。
2016~2017学年天津河东区初三上学期期末数学试卷(解析)

C. (2, −1)
D. (2, 1)
4. 从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是( ).
A. 2
3
B. 1
2
C. 1
3
答案 A 解 析 画树状图为:
D. 5
6
共有6种等可能的结果数,其中组成的数是偶数的结果数为4,
所以组成的数是偶数的概率= 4 = 2 .
6
3
5.
如图,在半径为5cm的⊙O中,弦AB
列结论:
① ; a − b + c > 0
2/11 ② ; 3a + b = 0 8/1 ③ ; 2
b = 4a(c − n)
201 ④一元二次方程ax2 + bx + c = n − 1有两个不相等的实数根. 其中正确结论的个数是( ).
y x
O
A. 1
B. 2
∴该二次函数的开口方向是向上. 又∵该二次函数的图象的顶点坐标是(m, −1), ∴当x ⩽ m 时,y随x的增大而减小.
而已知中当x ⩽ 3时,y随x的增大而减小,
∴x ⩽ 3, ∴ , x − m ⩽ 0 ∴m ⩾ 3 .
11. 如图,⊙O的半径为4,点P 是⊙O外的一点,P O = 10,点A是⊙O上的一个动点,连接P A,直线l垂直平分P A,当直线l
A.
∘ 20
B.
∘ 25
C.
∘ 30
答案 C
解析
由旋转的性质得: , , ′
′
∘
∠C AB = ∠C AB = 70
′ AB = AB
∴ . ′
′
∠AB B = ∠ABB
∵ , ′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年天津市五区县九年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把每小题的答案填在下表中。
1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚均匀的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段可以组成一个三角形2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.124.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0 C.﹣1 D.25.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.与x轴有两个交点 D.顶点坐标是(1,2)6.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定7.“天津市明天降水概率是10%”,对此消息下列说法正确的是()A.天津市明天将有10%的地区降水B.天津市明天将有10%的时间降水C.天津市明天降水的可能性较小D.天津市明天肯定不降水8.边长为a的正六边形的内切圆的半径为()A.2a B.a C. D.9.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠010.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点出发,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是()A.甲先回到A B.乙先回到A C.同时回到A D.无法确定11.学校组织足球比赛,赛制为单循环形式(2015秋•天津期末)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上。
13.如果我们把太阳看作一个圆,把地平线看作一条直线,太阳在升起离开地平线后,太阳和地平线的位置关系是.14.将二次函数y=x2﹣5向上平移3个单位,则平移后的二次函数解析式为.15.点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.16.如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB 重合(粘连部分忽略不计)则圆锥形纸帽的高是.17.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.18.如图,直径AB、CD所夹锐角为60°,点P为上的一个动点(不与点B、C重合),PM、PN分别垂直于CD、AB,垂足分别为点M、N.若⊙O的半径为2cm,则在点P移动过程中,MN的长是否有变化(填“是”或“否”),若有变化,写出MN的长度范围;若无变化,写出MN的长度:cm.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程。
19.用适当的方法解下列方程(1)x2﹣5=6x;(2)2(x﹣3)=3x(x﹣3)20.如图,△ABC是等边三角形,D是BC的中点,△ABD经过旋转后达到△ACE的位置,请你思考并回答下列问题:(1)旋转中心是点;(2)AB旋转到了位置,AD旋转到了的位置,因为AB旋转了度,所以旋转角是度,∠BAD的对应角是,∠B的对应角是;(3)BD的对应边是.21.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.22.在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.23.用总长为60m的篱笆围成一矩形场地,矩形面积S随矩形一边长l的变化而变化.(1)矩形另一边长为(用含l的代数式表示),S与l的函数关系式为,其中自变量l的取值范围是;(2)场地面积S有无最大值?若有最大值,请求出S的最大值;若S没有最大值,请说明理由.24.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC∥DE交BD于点G (1)求证:BD平分弦AC;(2)若弦AD=5cm,AC=8cm,求⊙O的半径.25.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当﹣≤x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.2015-2016学年天津市五区县九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把每小题的答案填在下表中。
1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚均匀的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段可以组成一个三角形【考点】可能性的大小.【分析】根据可能性的大小分别对每一项进行判断即可.【解答】解:A、买一张电影票,座位号不一定是奇数,故本选项错误;B、投掷一枚均匀的硬币,正面不一定朝上,故本选项错误;C、从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性是,故本选项正确;D、三条任意长的线段不一定组成一个三角形,故本选项错误;故选C.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.12【考点】圆的认识.【分析】根据圆中最长的弦为直径求解.【解答】解:因为圆中最长的弦为直径,所以弦长L≤10.故选D.【点评】圆的弦长的取值范围0<L≤10.4.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;代数式求值.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m代入原方程即可求m2﹣m的值.【解答】解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1;故选A.【点评】此题应注意把m2﹣m当成一个整体.利用了整体的思想.5.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.与x轴有两个交点 D.顶点坐标是(1,2)【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x﹣)2+,顶点坐标是(﹣,),对称轴是直线x=﹣,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.6.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径)即可得到结论.【解答】解:∵OP=7>5,∴点P与⊙O的位置关系是点在圆外.故选C.【点评】本题考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.7.“天津市明天降水概率是10%”,对此消息下列说法正确的是()A.天津市明天将有10%的地区降水B.天津市明天将有10%的时间降水C.天津市明天降水的可能性较小D.天津市明天肯定不降水【考点】概率的意义.【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:“天津市明天降水概率是10%”,正确的意思是:天津市明天降水的机会是10%,明天降水的可能性较小.故选C.【点评】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.8.边长为a的正六边形的内切圆的半径为()A.2a B.a C. D.【考点】正多边形和圆.【分析】解答本题主要分析出正多边形的内切圆的半径,即为每个边长为a的正三角形的高,从而构造直角三角形即可解.【解答】解:边长为a的正六边形可以分成六个边长为a的正三角形,而正多边形的内切圆的半径即为每个边长为a的正三角形的高,所以正多边形的内切圆的半径等于.故选C.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,误选B.9.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.10.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点出发,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是()A.甲先回到A B.乙先回到A C.同时回到A D.无法确定【考点】圆心角、弧、弦的关系.【分析】分别计算两个不同的路径后比较即可得到答案.【解答】解:设圆的半径为r,则甲行走的路程为2πr,如图,连接AB,作OD⊥AB交⊙O于点D,连接AD,BD,∵A、B、C三等分圆周,∴∠ADB=2∠ADO=120°,AD=OD=BD=r,∴弧AB的长==∴乙所走的路程为:=2πr,∴两人所走的路程相等.故选C.【点评】本题考查了圆周角、弦、弧、圆心角之间的关系,解题的关键是设出圆的半径,分别求得两人所走的路程比较即可得到答案.11.学校组织足球比赛,赛制为单循环形式(2015秋•天津期末)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的顶点坐标可对②进行判断;由顶点坐标得到抛物线的对称轴为直线x=﹣3,则根据二次函数的性质可对③进行判断;根据抛物线的对称性得到抛物线y=ax2+bx+c上的点(﹣1,﹣4)的对称点为(﹣5,﹣4),则可对④进行判断.【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即b2>4ac,所以①正确;∵抛物线的顶点坐标为(﹣3,﹣6),即x=﹣3时,函数有最小值,∴ax2+bx+c≥﹣6,所以②正确;∵抛物线的对称轴为直线x=﹣3,而点(﹣2,m),(﹣5,n)在抛物线上,∴m<n,所以③错误;∵抛物线y=ax2+bx+c经过点(﹣1,﹣4),而抛物线的对称轴为直线x=﹣3,∴点(﹣1,﹣4)关于直线x=﹣3的对称点(﹣5,﹣4)在抛物线上,∴关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上。