人教版高一数学圆的方程经典例题解析卷[好打印24页]

合集下载

高一数学人教A版必修2练习4.1.1 圆的标准方程 Word版含解析

高一数学人教A版必修2练习4.1.1 圆的标准方程 Word版含解析

.圆的标准方程
.圆的标准方程:圆心为(,)、半径为的圆的标准方程为(-)+(-)=.
()圆心在原点,半径是的圆的标准方程为:+=.
()圆心在轴上,半径为,且过点(-,)的圆的标准方程为:(+)+=.
.点与圆的位置关系.
设点到圆心的距离为,圆的半径为,则点与圆的位置有如下表所示的对应关系:
圆(-)+(+)=的圆心为(,-),半径为.
►思考应用
下列几种特殊位置的圆的方程是什么?
.圆心是(-,),半径为的圆的方程为() .(-)+(+)=
.(-)+(+)=
.(+)+(-)=
.(+)+(-)=
解析:直接代入圆的标准方程可得..点(,)与圆+=的位置关系是()
.在圆外.在圆内
.在圆上.不确定
解析:+=+≥>,点在圆外.。

高中数学第四章圆与方程4.1.2圆的一般方程练习含解析新人教A版必修208192194

高中数学第四章圆与方程4.1.2圆的一般方程练习含解析新人教A版必修208192194

对应学生用书P83知识点一圆的一般方程高中数学第四章圆与方程4.1.2圆的一般方程练习含解析新人教A 版必修2081921941.若圆的方程是x 2+y 2-2x +10y +23=0,则该圆的圆心坐标和半径分别是( ) A .(-1,5), 3 B .(1,-5), 3 C .(-1,5),3 D .(1,-5),3 答案 B解析 解法一(化为标准方程):(x -1)2+(y +5)2=3; 解法二(利用一般方程):⎝ ⎛⎭⎪⎫-D2,-E 2为圆心,半径r =D 2+E 2-4F 2,-D 2=1,-E2=-5,r =3.2.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是( )A .a<1B .a>1C .-2<a<23 D .-2<a<0答案 A解析 当a 2+4a 2-4⎝ ⎛⎭⎪⎫54a 2+a -1>0时表示圆的方程,故-a +1>0,解得a<1.知识点二求圆的一般方程A .x 2+y 2+8x +6y =0 B .x 2+y 2-8x -6y =0 C .x 2+y 2+8x -6y =0D .x 2+y 2-8x +6y =0 答案 D解析 设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,因为A(0,0),B(1,1),C(4,2)三点在圆上,则⎩⎪⎨⎪⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得⎩⎪⎨⎪⎧D =-8,E =6,F =0,于是所求圆的一般方程是x2+y 2-8x +6y =0.4.当a 为任意实数时,直线(a -1)x -y +1=0恒过定点C ,则以C 为圆心,6为半径的圆的方程为( )A .x 2+y 2+4y +5=0 B .x 2+y 2+4y -5=0 C .x 2+y 2-2y -5=0 D .x 2+y 2-2y +5=0 答案 C解析 直线(a -1)x -y +1=0可化为(-x -y +1)+ax =0,由⎩⎪⎨⎪⎧-x -y +1=0,x =0,得C(0,1).∴圆的方程为x 2+(y -1)2=6, 即x 2+y 2-2y -5=0.知识点三轨迹问题5.已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,那么点P 的轨迹所包围的图形的面积等于( )A .π B.4π C.8π D.9π 答案 B解析 设点P 的坐标为(x ,y),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹是以(2,0)为圆心,2为半径的圆,故面积为π×22=4π.6.已知等腰三角形ABC 的顶点为A(3,20),一底角顶点为B(3,5),求另一底角顶点C 的轨迹方程.解 设另一底角顶点为C(x ,y),则由等腰三角形的性质可知|AC|=|AB|,即x -32+y -202=3-32+5-202,整理得(x -3)2+(y -20)2=225.当x =3时,A ,B ,C 三点共线,不符合题意,故舍去.综上可知,另一底角顶点C 的轨迹方程为(x -3)2+(y -20)2=225(x≠3).一、选择题1.方程x 2+y 2-2x +m =0表示一个圆,则m 的取值范围是 ( ) A .m <1 B .m <2 C .m≤12 D .m≤1答案 A解析 由圆的一般式方程可知(-2)2-4m >0,∴m<1. 2.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( ) A .-2或2 B .12或32 C .2或0 D .-2或0答案 C解析 将圆的一般方程化为圆的标准方程为(x -1)2+(y -2)2=5,所以圆心(1,2)到直线的距离d =|1-2+a|2=22,解得a =0或a =2.3.点P(4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点为Q(x 0,y 0),PQ 中点为M(x ,y),根据中点坐标公式,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为Q(x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化为(x -2)2+(y +1)2=1,故选A .4.圆x 2+y 2-2x -1=0关于直线2x -y +3=0对称的圆的方程是( ) A .(x +3)2+(y -2)2=12B .(x -3)2+(y +2)2=12C .(x +3)2+(y -2)2=2 D .(x -3)2+(y +2)2=2答案 C解析 已知圆的圆心为(1,0),半径等于2,圆心关于直线2x -y +3=0对称的点为(-3,2),此点即为对称圆的圆心,两圆的半径相等,故选C .5.与圆x 2+y 2-4x +6y +3=0同圆心,且过点(1,-1)的圆的方程是( ) A .x 2+y 2-4x +6y -8=0 B .x 2+y 2-4x +6y +8=0 C .x 2+y 2+4x -6y -8=0 D .x 2+y 2+4x -6y +8=0 答案 B解析 设所求圆的方程为x 2+y 2-4x +6y +m =0,由该圆过点(1,-1),得m =8,所以所求圆的方程为x 2+y 2-4x +6y +8=0.二、填空题6.已知圆C :x 2+y 2+2x +23y -5=0,则圆心坐标为________;此圆中过原点的弦最短时,该弦所在的直线方程为________.答案 (-1,-3) x +3y =0解析 将圆C 的方程化为标准方程为(x +1)2+(y +3)2=9,故圆心为C(-1,-3).因为k CO =3,所以所求直线的斜率为k =-33,直线的方程为y =-33x ,即x +3y =0. 7.已知点P 是圆C :x 2+y 2+4x +ay -5=0上任意一点,P 点关于直线2x +y -1=0的对称点也在圆C 上,则实数a =________.答案 -10解析 由题意知圆心⎝ ⎛⎭⎪⎫-2,-a 2应在直线2x +y -1=0上,代入解得a =-10,符合D2+E 2-4F>0的条件.8.若圆x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB=90°(其中C 为已知圆的圆心),则实数m 等于________.答案 -3解析 设A(0,y 1),B(0,y 2),在圆方程中令x =0得y 2+2y +m =0,y 1,y 2即为该方程的两根,由根与系数的关系及判别式得⎩⎪⎨⎪⎧Δ=4-4m>0,y 1+y 2=-2,y 1·y 2=m ,而∠ACB=90°,知C(2,-1),AC⊥BC,即得k AC ·k BC =-1,即y 1+1-2·y 2+1-2=-1,即y 1y 2+(y 1+y 2)+1=-4代入上面的结果得m -2+1=-4,∴m=-3,符合m<1的条件. 三、解答题9.试判断A(1,2),B(0,1),C(7,-6),D(4,3)四点是否在同一个圆上. 解 解法一:线段AB ,BC 的斜率分别是k AB =1,k BC =-1,得k AB ≠k BC ,则A ,B ,C 三点不共线,设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0.因为A ,B ,C 三点在圆上,所以⎩⎪⎨⎪⎧D +2E +F +5=0,E +F +1=0,7D -6E +F +85=0,解得⎩⎪⎨⎪⎧D =-8,E =4,F =-5,所以过A ,B ,C 三点的圆的方程为x 2+y 2-8x +4y -5=0,将点D的坐标(4,3)代入方程,得42+32-8×4+4×3-5=0,即点D 在圆上,故A ,B ,C ,D 四点在同一个圆上.解法二:因为k AB ·k BC =2-11-0×1+60-7=-1,所以AB⊥BC,所以AC 是过A ,B ,C 三点的圆的直径,|AC|=1-72+2+62=10,线段AC 的中点M 即为圆心M(4,-2).因为|DM|=4-42+3+22=5=12|AC|,所以点D 在圆M 上,所以A ,B ,C ,D 四点在同一个圆上.10.已知圆x 2+y 2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 中点为M(x ,y),由中点坐标公式可知,P 点坐标(2x -2,2y). 因为点P 在圆x 2+y 2=4上, 所以(2x -2)2+(2y)2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N(x ,y). 在Rt△PBQ 中,|PN|=|BN|, 设O 为坐标原点,连接ON ,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.。

人教A版高一圆的一般方程精选试卷练习(含答案)7

人教A版高一圆的一般方程精选试卷练习(含答案)7

第1页 共8页 ◎ 第2页 共8页人教A 版高一圆的一般方程精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知圆C :x 2+y 2–2x =0,则圆心C 到坐标原点O 的距离是 ( )A .B .C .1D .2.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( ) A .x 2+y 2+x –3y –2=0 B .x 2+y 2+3x +y –2=0 C .x 2+y 2+x +3y =0D .x 2+y 2–x –3y =03.已知方程2220x y x y m ++-+=表示圆,则实数m 的取值范围是( )A .54m >B .54m >- C .54m <D .54m <- 4.四棱锥P -ABCD 中,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .球的一部分D .抛物线的一部分5.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于( ) A .8B .4C .22D .426.已知圆C :22(3)(4)1x y -+-=与圆M 关于x 轴对称,Q 为圆M 上的动点,当Q 到直线2y x =+的距离最小时,Q 的横坐标为( )A .222-B .222±C .232-D .232±7.若直线过圆的圆心,则的值为( )A .B .C .D .8.已知圆222220x y x y +-+-=的圆心为C,则圆心C 到直线3430x y --=的距离等于A .25B .52C .45D .549.圆x 2+y 2–2x +4y +1=0的圆心坐标是 A .(–1,–2) B .(1,2)C .(–1,2)D .(1,–2)10.圆x 2+y 2=4上的点到直线4x -3y +25=0的距离的最大值是( ) A .3B .5C .7D .911.若由方程x 2-y 2=0和x 2+(y -b )2=2所组成的方程组至多有两组不同的实数解,则实数b 的取值范围是( )A .b 2或b ≤-2B .b ≥2或b ≤-2C .-2≤b ≤2D .-2≤b 212.已知定点A (-1,0),B (1,0),动点P 满足直线P A ,PB 的斜率之积为-1,则动点P 满足的方程是( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .x 2+y 2=1(x ≠0)D .y 21x -(x ≠±1)13.方程222460x y x y ++--=表示的图形是( ) A .以(1,2)-11为半径的圆 B .以()1,2-为圆心,11为半径的圆C .以()1,2-为圆心,11为半径的圆D .以()1,2-11为半径的圆第3页 共8页 ◎ 第4页 共8页14.已知圆22x y 4+= ,直线l :y=x+b ,若圆22x y 4+= 上恰有3个点到直线l 的距离等于1,则b 的值为( ) A .- 1B .1C .-2或2D .2215.已知点A 是圆:上一点,点B 在直线l :上,则的最小值为A .B .C .D .316.已知圆2224200x y x y +-+-=,则22x y +的最小值为( ) A .10B .55-C .30105-D .517.圆22:22430C x y ax y ++--=的直径为19,则圆C 的圆心坐标可以是 A .()3,12-B .3(,1)2-C .(3,2)D .(3,2)-18.圆心为(2,3)-,且与y 轴相切的圆的方程是( ) A .224690x y x y ++-+= B .224640x y x y ++-+= C .224690x y x y +-++=D .224640x y x y +-++=19.圆22640x y x y +-+=的周长为( ) A .13π B .213π C .13πD .26π20.圆x 2+y 2-2x -6y +9=0关于直线x -y -1=0对称的曲线方程是( ) A .x 2+y 2+2x +6y +9=0 B .x 2+y 2-6x -2y +9=0 C .x 2+y 2-8x +15=0 D .x 2+y 2-8y -15=0评卷人得分二、填空题21.已知在直角坐标系xOy 中,(4,0)A ,3(0,)2B ,若点P 满足1OP =,PA 的中点为M ,则BM 的最大值为__________.22.若点P (x ,y )在圆221010450x y x y ++++=上,则代数式222x xy yx-+的最大值是_____.23.已知圆()()()2:23221C x y M P -+-=-,点,,为圆外任意一点.过点P 作圆C 的一条切线,切点为N ,设点P 满足PM PN =时的轨迹为E ,若点A 在圆C 上运动,B 在轨迹E 上运动,则AB 的最小值为___________.24.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 25.在平面直角坐标系中,点O (0,0) A (2,4),,B (6,2),则三角形OAB 的外接圆方程是_______.26.已知⊙M :2240x x y -+=,则⊙M 的半径r=____________.27.已知点()2,0,(2,0)A B -,动点P 满足2PA PB =,则ABP ∆面积的最大值为_____________.28.已知P 为平面内一点,且(1,0),(1,0)A B -,若3PA PO =,2PB PO =,则点P 的横坐标等于________29.圆x 2+y 2–2x +4y =0的面积等于____________. 30.已知的三个顶点分别为,则的外接圆的方程是___________.31.直线210kx y k --+=与直线320x ky k +--=相交于点M ,则OM 长度的最小值为___________.32.已知圆O :224x +=及一点(1,0)P -,Q 在圆O 上运动一周,PQ 的中点M 形成轨迹C 的方程为__________.33.已知圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于A ,B 两点,若3AB ,则该圆的一般方程是__________.34.如果圆2:240C x y x y m ++++=上恰有两点到直线:10l x y ++=2m 的第5页 共8页 ◎ 第6页 共8页取值范围是__________.35.圆22:4430C x y x y +-+=的圆心到直线30x y +=的距离是__________.36.已知点M 为圆()()22:114C x y ++-=上任意一点,()2,5P 为圆外一点,则点P 与点M 间的距离的最小值为__________,最大值为__________.37.已知点(1,0),(1,0)A B -和圆22:(3)(4)4C x y -+-=上的动点P ,则22PA PB +的最大值为_________. 评卷人得分三、解答题38.求经过两点A (4,2),B (−1,3),且在两坐标轴上的四个截距之和为2的圆的方程. 39.已知A (3,7)、B (3,-1)、C (9,-1),求△ABC 的外接圆方程. 40.已知ABC ∆三个顶点是(0,5),(1,2),(3,4)A B C ---.(1)求BC 边的高AD 所在直线方程; (2)求ABC ∆外接圆的方程.41.在平面直角坐标系中,已知圆心C 在直线20x y -=上的圆C 经过点()4,0A ,但不经过坐标原点,并且直线430x y -=与圆C 相交所得的弦长为4. (1)求圆C 的一般方程;(2)若从点()4,1M -发出的光线经过x 轴反射,反射光线刚好通过圆C 的圆心,求反射光线所在的直线方程(用一般式表达).42.求过三点()()()0,5,1,2,3,4A B C ---的圆的方程.43.如图,已知矩形ABCD 四点坐标为A (0,-2),C (4,2),B (4,-2),D (0,2).(1)求对角线AC 所在直线的方程; (2)求矩形ABCD 外接圆的方程;(3)若动点P 为外接圆上一点,点(20)N -,为定点,问线段PN 中点的轨迹是什么,并求出该轨迹方程。

高一数学圆和方程试题答案及解析

高一数学圆和方程试题答案及解析

高一数学圆和方程试题答案及解析1.若P(x,y,z)到A(1,0,1),B(2,1,0)两点的距离相等,则x,y,z满足的关系式。

是-----------------------【答案】2x+2y-2z-3=0【解析】依题意可得,即,化简可得。

2.在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为----------------------【答案】(0,0,)【解析】解:由题意设C(0,0,z),∵C与点A(-4,1,7)和点B(3,5,-2)等距离,∴|AC|=|BC|,∴点C的坐标为(0,0,)3.已知点P在z轴上,且满足|PO|=1(O是坐标原点),则点P到点A(1,1,1)的距离是--------。

---------------【答案】或【解析】因为点在轴上,且,所以点坐标为。

当点坐标为时,;当点坐标为时,。

4.点是圆内不为圆心的一点,则直线与该圆的位置关系是( )A.相切B.相交C.相离D.相切或相交【答案】C【解析】由条件得:根据点到直线距离公式得圆心到直线的距离为故选C5.若圆上有且仅有两个点到直线4x+3y=11的距离等于1,则半径R的取值范围是().A.R>1B.R<3C.1<R<3D.R≠2【答案】C【解析】依题意可得,直线与圆可能相交,相切或相离。

若直线与圆相离,则圆上的点到直线的最小距离应小于1,即圆心到直线的距离,从而有,解得。

若直线与圆相切,则。

若直线与圆相交,则圆上的点到直线的最小距离应小于1,即圆心到直线的距离,从而有,解得。

综上可得,故选C6. 过P (-2,4)及Q (3,-1)两点,且在X 轴上截得的弦长为6的圆方程是 【答案】(x -1)2+(y -2)2=13或(x -3)2+(y -4)2=25 【解析】设圆心坐标为半径为。

因为圆在轴上截得的弦长为6,所以圆心到轴的距离为,即,所以。

因为圆经过点,所以,解得或。

最新高中数学圆的方程经典例题与解析

最新高中数学圆的方程经典例题与解析

精品文档高中数学圆的方程经典例题与解析0?yA(1,4))4P(2,3B(,2)与且圆心在直线、例1 求过两点上的圆的标准方程并判断点圆的关系.P与圆的分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆位置关系,只须看点外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.(待定系数法)解法一:222r??b)x(?a)?(y.设圆的标准方程为222r?(x?a)y?0?y0?b.上,故∴圆的方程为∵圆心在.22?r(1?a)?16??)A(1,4)B(3,2∴两点.、又∵该圆过?22?r?)?4(3?a?22220??1)?y(x20r?1a??,解之得:.所以所求圆的方程为.(直接求出圆心坐标和半径)解法二:)4(1,A)23,B(lCAB又因为两点,所以圆心因为圆过的垂直平分线、必在线段上,2?41k???),3(2llABAB的方程,故的中点为,故的垂直平分线的斜率为1,又AB31?01?x?2x?y?y?3?即为:.0?y)0C(?1,上,故圆心坐标为又知圆心在直线2222204?1)?r?AC?(1?20?1)??y(x故所求圆的方程为∴半径..22r??251)?4PCd??(2?)P(2,4)C0?1,(.又点到圆心的距离为P∴点在圆外.都围绕着求圆的圆心和半径这两个关键的量,说明:本题利用两种方法求解了圆的方程,若将点换成直然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,线又该如何来判定直线与圆的位置关系呢???22,P244y?O:x?O,求过点相切的切线.已知圆例2与圆????,4P24?x?y?k2OPT∵点上,∴切线的直线方程可设为不在圆解: ?2k?43?k2?r?d解得根据∴42k1?3???42x?y?3x?4y?10?0所以即4精品文档.精品文档因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条2x?切线为.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.解决(也要本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于02ry?x?yxyx、.还可以运用此时没有漏解.,求出切点坐标的值来解决,注意漏解)0000224?x?y0?3x?y?23得的劣弧所对的圆心角为例3截圆、直线2222r?d?AB?3?d是等边三角,从而△解:依题意得,弦心距OAB,故弦长??AOB?.形,故截得的劣弧所对的圆心角为3229)?(y?3(x?3)?011??4y?3x的点有几个?4例圆上到直线的距离为1ll、借助图形直观求解.或先求出直线的方程,从代数计算中寻找解答.分析:2122),3(O39?3)?(x?3)?(y3r?,半径的圆心为.圆解法一:111?4?33?3?3d???2O011??4y?3x d,则的距离为设圆心.到直线12243?lO0?11?3x?4y与圆有两个交1同侧,与直线的直线如图,在圆心平行且距离为11点,这两个交点符合题意.12??d?3?r又.0??11x?4y3∴与直线平行的圆的切线的两个切点中有一个切点也符合题意.3个.∴符合题意的点共有011??4y?3x的直线和圆的解法二:符合题意的点是平行于直线,且与之距离为1m?11??1d0m?4yx3??,,则交点.设所求直线为2243?m??6m?5??16m?11?,也即∴,或,即l:3x?4y?6?0l:3x?4y?16?0.,或2122lldd:y?3O9)?()?(x3?设圆、、的圆心到直线的距离为,则12121精品文档.精品文档163?3?6?3?4?3?3?4?31?3?d?d?.,212222443??3llOOOO有两个公共点.即符与圆相切,与圆相交,与圆∴有一个公共点;与211111 3个.合题意的点共说明:对于本题,若不留心,则易发生以下误解:11?3?4?33?3??d?2O011?4y?3x?d设圆心的距离为到直线,则.1224?3O03x?4?y?11的点有两个.∴圆距离为到110?11?y3x?4drd?,只能说明此直是圆心到直线的距离,显然,上述误解中的线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.因此到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,一般根据圆与题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.22220y??4y??x?y2x?0x条。

高中数学圆的方程 经典例题(含详细解析)

高中数学圆的方程  经典例题(含详细解析)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。

人教版高一数学圆的方程经典例题解析卷[好打印24页]

人教版高一数学圆的方程经典例题解析卷[好打印24页]

人教版高一数学圆的方程经典例题例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?典型例题三例 3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.典型例题四例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.典型例题七GO B NMyAx图C A ’例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.典型例题九典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.典型例题十一例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.典型例题十三例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.典型例题十七例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.典型例题十九例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.人教版高一数学圆的方程经典例题参考答案解析例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(O ,半径3=r .设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解: 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.典型例题三例 3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?典型例题四例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k . 典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.典型例题七G O B NM yAx图C A ’例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.分析、略解:观察动画演示,分析思路.根据对称关系,首先求出点A 的对称点A '的坐标为()33--,, 其次设过A '的圆C 的切线方程为()33-+=x k y根据r d =,即求出圆C 的切线的斜率为34=k 或43=k 进一步求出反射光线所在的直线的方程为0334=+-y x 或0343=--y x最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为0334=++y x 或0343=-+y x光路的距离为M A ',可由勾股定理求得7222=-'='CM C A MA .说明:本题亦可把圆对称到x 轴下方,再求解.典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH , 则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.典型例题九例9 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅OQ OP k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为xy,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出OQ OP k k ⋅的值,从而使问题得以解决. 解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即12211-=⋅x yx y ,也即:02121=+y y x x . ①另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=.将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立,∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m .由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅OQ OP k k .得 127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.典型例题十一例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52ba d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52ba d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b .又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.解:运用圆的参数方程,设P 的坐标为()θθsin 1cos +,, [)πθ20,∈ 即θcos =x ,θsin 1+=y , ∵0≥++m y x 恒成立 ∴()y x m +-≥恒成立即()θθsin 1cos ++-≥m 恒成立∴只需m 大于等于()θθsin 1cos ++-的最大值.令()()14sin 21sin cos sin 1cos -⎪⎭⎫⎝⎛+-=-+-=++-=πθθθθθu u 的最大值为12-∴12-≥m说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换.另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值.分析:利用两点间距离公式求解或数形结合求解. 解法一:设P 是圆⎩⎨⎧==θθsin 2,cos 2y x 上任一点,则)sin 2,cos 2(θθP .所以22)sin 24()cos 23(θθ-+-=PAθθsin 16cos 12425--+=)43arctan ()sin(2029=+-=ϕϕθ.因为R ∈θ,所以R ∈+ϕθ,因此当1)sin(-=+ϕθ时,72029=+=最大值PA . 当1)sin(=+ϕθ时,32029=-=最小值PA .解法二:将圆⎩⎨⎧==θθsin 2,cos 2y x 代入普通方程得422=+y x .如图所示可得,A P 1、A P 2分别是圆上的点到)4,3(A 的距离的最小值和最大值.易知:31=A P,72=A P .说明:(1)在圆的参数方程⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)中,),(b a A 为圆心,)0(>r r 为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用)sin ,cos (θθr r 来表示半径为r 的圆上的任一点.(2)圆的参数方程也是解决某些代数问题的一个重要工具.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AMOM =+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+.又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ①βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③ 联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解.典型例题十七例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决. 解法一:设圆122=+y x 上任一点)sin ,(cos θθP 则有θcos =x ,θsin =y )2,0[πθ∈∴1cos 2sin +-=θθu ,∴2sin cos -=+θθu u∴)2(sin cos +-=-u u θθ.即2)sin(12+=-+u u ϕθ(u =ϕtan ) ∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u 解之得:43-≤u . 分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d . ∴1122≤++u u 解得:43-≤u . 另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理:由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u , 此方程有实根,故0)34)(1(4)42(2222≥+++-+=∆u u u u u , 解之得:43-≤u . 说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+min )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x uy x 得:0)1(2222=++-u y u y∵0≥∆且228)1(4u u -+=∆,∴0)12(42≥++-u u .即0)122≤--u u ,∴2121+≤≤-u , ∴21min -=u ,即21)(min -=+y x又0≥++m y x 恒成立即m y x -≥+恒成立. ∴m y x -≥-=+21)(min 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈∴θcos =x ,θsin 1+=y∵0≥++m y x 恒成立∴0sin 1cos ≥+++m θθ即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu ∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.典型例题十九例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值. (2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值. 分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x . 可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数). 则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1. 所以6143221=++=d . 4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数. 则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-. 此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x .所以y x 2-的最大值为52+-,最小值为52--.(法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值.由11222=++--=kk k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-. 令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m . 所以y x 2-的最大值为52+-,最小值为52--. 典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费 即:2222)5()5(3y x a y x a +-≤++.∵0>a , ∴2222)5()5(3y x y x +-≤++ 化简整理得:222)415()425(≤++y x ∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货. 说明:实际应用题要明确题意,建议数学模型.。

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解### 高中圆的方程基础练习题及讲解#### 练习题一题目:已知圆心在原点的圆的方程为 \(x^2 + y^2 = r^2\),求半径为3的圆的方程。

解答:将 \(r = 3\) 代入圆的标准方程,我们得到:\[ x^2 + y^2 = 3^2 \]\[ x^2 + y^2 = 9 \]这就是半径为3的圆的方程。

#### 练习题二题目:圆 \(x^2 + y^2 + 6x - 8y + 20 = 0\) 与直线 \(x + y - 1 = 0\) 相切。

求圆的半径。

解答:首先,将圆的方程化为标准形式:\[ (x + 3)^2 + (y - 4)^2 = r^2 \]\[ x^2 + 6x + y^2 - 8y + 20 = r^2 \]\[ x^2 + y^2 + 6x - 8y = r^2 - 20 \]由于圆与直线相切,圆心到直线的距离等于圆的半径。

圆心坐标为\((-3, 4)\),直线方程可以写成 \(y = -x + 1\)。

使用点到直线距离公式:\[ \text{距离} = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]将距离等于半径代入:\[ r = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]\[ r = \frac{1}{\sqrt{2}} \]#### 练习题三题目:已知圆 \(x^2 + y^2 = 1\) 与直线 \(y = x + b\) 相切,求\(b\) 的值。

解答:由于圆与直线相切,圆心到直线的距离等于圆的半径,即1。

圆心坐标为 \((0, 0)\),直线方程可以写成 \(x - y + b = 0\)。

使用点到直线距离公式:\[ 1 = \frac{|0 - 0 + b|}{\sqrt{1^2 + (-1)^2}} \]\[ 1 = \frac{|b|}{\sqrt{2}} \]解得:\[ b = \pm \sqrt{2} \]#### 练习题四题目:求圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 的圆心坐标和半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高一数学圆的方程经典例题例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?典型例题三例 3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.图例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.例9 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.人教版高一数学圆的方程经典例题参考答案解析例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解: 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.典型例题三例 3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?典型例题四例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k . 典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k图所以 ()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.典型例题七例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程. (2)光线自A 到切点所经过的路程.分析、略解:观察动画演示,分析思路.根据对称关系, 首先求出点A 的对称点A '的坐标为()33--,, 其次设过A '的圆C 的切线方程为()33-+=x k y根据r d =,即求出圆C 的切线的斜率为34=k 或43=k 进一步求出反射光线所在的直线的方程为0334=+-y x 或0343=--y x最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为0334=++y x 或0343=-+y x光路的距离为M A ',可由勾股定理求得7222=-'='CM C A MA .说明:本题亦可把圆对称到x 轴下方,再求解.典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH , 则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.典型例题九例9 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅OQ OP k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为xy,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出OQ OP k k ⋅的值,从而使问题得以解决. 解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即12211-=⋅x yx y ,也即:02121=+y y x x . ①另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=.将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立,∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m .由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅OQ OP k k .得 127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.典型例题十一例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52ba d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b ba∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52ba d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b .又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.解:运用圆的参数方程,设P 的坐标为()θθsin 1cos +,, [)πθ20,∈ 即θcos =x ,θsin 1+=y , ∵0≥++m y x 恒成立 ∴()y x m +-≥恒成立即()θθsin 1cos ++-≥m 恒成立∴只需m 大于等于()θθsin 1cos ++-的最大值.令()()14sin 21sin cos sin 1cos -⎪⎭⎫⎝⎛+-=-+-=++-=πθθθθθuu 的最大值为12-∴12-≥m说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换.另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值.分析:利用两点间距离公式求解或数形结合求解. 解法一:设P 是圆⎩⎨⎧==θθsin 2,cos 2y x 上任一点,则)sin 2,cos 2(θθP .所以22)sin 24()cos 23(θθ-+-=PAθθsin 16cos 12425--+=)43arctan ()sin(2029=+-=ϕϕθ.因为R ∈θ,所以R ∈+ϕθ,因此当1)sin(-=+ϕθ时,72029=+=最大值PA . 当1)sin(=+ϕθ时,32029=-=最小值PA .解法二:将圆⎩⎨⎧==θθsin 2,cos 2y x 代入普通方程得422=+y x .如图所示可得,A P 1、A P 2分别是圆上的点到)4,3(A 的距离的最小值和最大值.易知:31=A P ,72=A P .说明:(1)在圆的参数方程⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)中,),(b a A 为圆心,)0(>r r 为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用)sin ,cos (θθr r 来表示半径为r 的圆上的任一点.(2)圆的参数方程也是解决某些代数问题的一个重要工具.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AM OM=+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ①βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③ 联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解.典型例题十七例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决. 解法一:设圆122=+y x 上任一点)sin ,(cos θθP 则有θcos =x ,θsin =y )2,0[πθ∈∴1cos 2sin +-=θθu ,∴2sin cos -=+θθu u∴)2(sin cos +-=-u u θθ.即2)sin(12+=-+u u ϕθ(u =ϕtan )∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u 解之得:43-≤u .分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d .∴1122≤++u u 解得:43-≤u .另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理: 由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u , 此方程有实根,故0)34)(1(4)42(2222≥+++-+=∆u u u u u ,解之得:43-≤u .说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+m in )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x u y x 得:0)1(2222=++-u y u y∵0≥∆且228)1(4u u -+=∆, ∴0)12(42≥++-u u .即0)122≤--u u ,∴2121+≤≤-u , ∴21m in -=u ,即21)(m in -=+y x 又0≥++m y x 恒成立即m y x -≥+恒成立. ∴m y x -≥-=+21)(m in 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.典型例题十九例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决. 解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026m ax =+=d ,161026m in =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36m ax =d .16m in =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ,得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t .所以433max +=t ,433min -=t .即12--x y 的最大值为433+,最小值为433-.此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值.由11222=++--=kk k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-.令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=md ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费即:2222)5()5(3y x a y x a +-≤++. ∵0>a ,∴2222)5()5(3y x y x +-≤++化简整理得:222)415()425(≤++y x∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线.圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.。

相关文档
最新文档