高一数学必修1知识点:基本初等函数-最新教学文档
必修一数学基本初等函数知识点

必修一数学基本初等函数知识点编辑短评提高数学考试成绩诀窍方法之一是,在考试前进行高水平高效率的复习和知识点总结,花时间去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。
下面提供必修一数学基本初等函数知识点给教师和学生,仅供学习参考!前言下载提示:经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
Download tips:Experience is the foundation of mathematics, problems are the heart of mathematics, thinking is the core of mathematics, development is the goal of mathematics, and methods of thinking are the soul of mathematics.必修一数学基本初等函数知识点一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质【第三章:第三章函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函数知识点总结第二章 基本初等函数一、指数函数(一)指数与指数幂的运算 1.根式的概念:负数没有偶次方根;0的任何次方根都是0=0。
注意:(1)na =(2)当 n a = ,当 n ,0||,0a a a a a ≥⎧==⎨-<⎩2.分数指数幂正数的正分数指数幂的意义,规定:0,,,1)m na a m n N n *=>∈>且正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)rsr s a a aa r s R +=>∈(2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r rra ab a b r R =>>∈注意:在化简过程中,偶数不能轻易约分;如122[(1]11≠ (二)指数函数及其性质1、指数函数的概念:一般地,函数xy a = 叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 20<a<1a>1定义域R , 值域(0,+∞)注意: 指数增长模型:y=N(1+p)指数型函数: y=ka 3 考点:(1)a b =N, 当b>0时,a,N 在1的同侧;当b<0时,a,N 在1的 异侧。
(2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。
掌握利用单调性比较幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。
(3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。
(4)分辨不同底的指数函数图象利用a 1=a ,用x=1去截图象得到对应的底数。
(5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式)说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式.2、两个重要对数:(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =⇔=对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数(2)log a a=1, log a 1=0 特别地, lg10=1, lg1=0 , lne=1, ln1=0(3) 对数恒等式:log Na a N = (二)对数的运算性质如果 a > 0,a ≠ 1,M > 0, N > 0 有:1、 log M N log log a a a M N ∙=+()两个正数的积的对数等于这两个正数的对数和 2 、N M N Ma a alog log log -= 两个正数的商的对数等于这两个正数的对数差 3 、log log n na a M n M =∈(R ) 一个正数的n 次方的对数等于这个正数的对数n倍说明:1) 简易语言表达:”积的对数=对数的和”…… 2) 有时可逆向运用公式3) 真数的取值必须是(0,+∞)4) 特别注意:N M MN a a a log log log ⋅≠ ()N M N M a a a log log log ±≠± 注意:换底公式()log lg log 0,1,0,1,0log lg c a c b bb a ac c b a a==>≠>≠>利用换底公式推导下面的结论 ①a b b a log 1log =②log log log log a b c a b c d d ∙∙=③log log m n a a nb b m=(二)对数函数1、对数函数的概念:函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:(1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
高一数学《基本初等函数》知识点总结

高一数学《基本初等函数》知识点总结一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.u负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,u0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式.两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.u指数式与对数式的互化幂值真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:1·+;2-;3.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.2对数函数对底数的限制:,且.2、对数函数的性质:a>1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga的图象只能是2.计算:①;②=;=;③=3.函数y=log的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使的的取值范围。
必修一_基本初等函数_知识点讲解

基本初等函数第一讲 幂函数1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.注意:y x α=中,前面的系数为1,且没有常数项2、幂函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =3、幂函数的性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.分数指数幂概念 有理指数幂运算性质(0,,)r s r s a a a a r s Q +=>∈;()(0,,)r s rs a a a r s Q =>∈(0,,*,1)a m n N n >∈>且 ()(0,0,)r r r ab a b a b r Q =>>∈第二讲 指数函数1、指数(1)n 次方根的定义若x n =a ,则称x 为a 的n 次方根,“n”是方根的记号.在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是0;正数的偶次方根是两个绝对值相等符号相反的数,0的偶次方根是0,负数没有偶次方根.(2)方根的性质①当n 为奇数时,n n a =a . ②当n 为偶数时,n n a =|a |=⎩⎨⎧<-≥).0(),0(a aa a(3)分数指数幂的意义①a nm =n m a (a >0,m 、n 都是正整数,n >1). ②an m -=nm a1=nma1(a >0,m 、n 都是正整数,n >1).2、指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .n mnm a a=nmn m nm aa a1==-000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量, 5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等, 不符合(01)x y a a a =>≠且的形式,所以不是指数函数.3、 指数函数的图像及其性质(1)底数互为倒数的两个指数函数的图象关于y 轴对称.(2)在[,]x a b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (3)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R;(4)对于指数函数()xf x a =(a >0且a ≠1),总有(1);f a =(5)当a >1时,若1x <2x ,则1()f x <2()f x ;第三讲 对数函数1、 对数(1)对数的概念一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =a 叫做对数的底数,N 叫做真数.如:24416,2log 16==则,读作2是以4为底,16的对数. 1242=,则41log 22=,读作12是以4为底2的对数. (2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0). (4)两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.2、对数函数的概念一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 3、对数函数的图象及其性质a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.。
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
数学必修一基本初等函数知识点

数学必修一基本初等函数知识点
1. 线性函数:y = kx + b(k和b为常数),其中k称为斜率,b称为截距。
2. 幂函数:y = x^n(n为常数),其中n可以是正整数、零、负整数。
3. 指数函数:y = a^x(a为正实数且a≠1)。
4. 对数函数:y = loga(x)(a为正实数且a≠1),其中x为正实数。
5. 三角函数(正弦函数、余弦函数、正切函数、余切函数等):y = sinx,y = cosx,y = tanx,y = cotx等。
6. 反三角函数(反正弦函数、反余弦函数、反正切函数、反余切函数等):y = arcsinx,y = arccosx,y = arctanx,y = arccotx等。
7. 绝对值函数:y = |x|。
8. 双曲函数(双曲正弦函数、双曲余弦函数、双曲正切函数等):y = sinh(x),y = cosh(x),y = tanh(x)等。
9. 分段函数:根据不同条件定义函数的不同表达式,例如:y = f(x) =
{ x+1, (x≤0)
{ x^2, (0<x≤1)
{ 2x-1, (x>1)
10. 复合函数:将一个函数的输出作为另一个函数的输入进行运算,例如:f(g(x))。
以上是数学必修一中较为基本的初等函数知识点,只覆盖了一部分内容。
学习初等函数的重点是掌握其基本性质、图像和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1知识点:基本初等函数
以下是查字典数学网为大家整理的关于《高一数学必修1知识点:基本初等函数》的文章,供大家学习参考!
基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中 1,且 *.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根可以合并成 ( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样
可以推广到有理数指数幂.
3.实数指数幂的运算性质
(1) ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和
1.
2、指数函数的图象和性质
a1
图象特征
函数性质
向x、y轴正负方向无限延伸
函数的定义域为R
图象关于原点和y轴不对称
非奇非偶函数
函数图象都在x轴上方
函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或 ;
(2)若,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数,总有 ;
(4)当时,若,则 ;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作: ( 底数,真数,对数式)
说明:1 注意底数的限制,且 ;
2 ;
3 注意对数的书写格式.
两个重要对数:
1 常用对数:以10为底的对数 ;
2 自然对数:以无理数为底的对数的对数 .
对数式与指数式的互化
对数式指数式
对数底数幂底数
对数指数
真数幂
(二)对数的运算性质
如果,且,,,那么:
1
2 - ;
3 .
注意:换底公式
( ,且 ; ,且 ; ).
利用换底公式推导下面的结论(1) ;(2) .
(二)对数函数
1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).
注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.
2 对数函数对底数的限制:,且 .
2、对数函数的性质:
a1
图象特征
函数性质
函数图象都在y轴右侧
函数的定义域为(0,+)
图象关于原点和y轴不对称
非奇非偶函数
向y轴正负方向无限延伸
函数的值域为R
函数图象都过定点(1,0)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0
(三)幂函数
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,
1);
(2) 时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 第三章函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1 (代数法)求方程的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.。