2014年秋新人教版九年级数学上21.2降次──解一元二次方程巩固练习课件【倍速课时学练】
人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
新人教版九年级数学上册21.2降次--解一元二次方程(第六课时)

22.2降次--解一元二次方程(第六课时)(习题课)◆随堂检测1、关于x 的方程0232=+-x ax 是一元二次方程,则( )A 、0>aB 、0≠aC 、1=aD 、0≥a2、用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x3、方程x x x =-)1(的根是( )A 、2=xB 、2-=xC 、0,221=-=x xD 、0,221==x x4、已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是______________.5、用适当的方法解下列方程:(1)0672=+-x x ;(2))15(3)15(2-=-x x ; (3)0362=+-x x ;(4)22510x x --=.◆典例分析 解方程022=--x x .分析:本题是含有绝对值的方程,可以转化为一元二次方程求解.转化的方法可以不同,请同学们注意转化的技巧.解法一:分类讨论(1)当0≥x 时,原方程化为022=--x x ,解得:,21=x 12-=x (不合题意,舍去)(2)当0<x 时,原方程化为022=-+x x解得:21-=x ,12=x (不合题意,舍去)∴原方程的解为2,221-==x x .解法二:化归换元 原方程022=--x x 可化为220x x --=, 令y x =,则220y y --=(0y ≥),解得12,y =21y =-(舍去),当12y =时,2x =,∴2x =±,∴原方程的解为2,221-==x x .◆课下作业●拓展提高1、方程062=--x x 的解是__________________.2、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.3、12、写出一个两实数根符号相反的一元二次方程:_________________.4、当代数式532++x x 的值为7时,代数式2932-+x x 的值为( )A 、4B 、2C 、-2D 、-45、已知x 是一元二次方程2310x x +-=的实数根,求代数式235(2)362x x x x x -÷+---的值. 6、阅读材料,解答问题: 材料:为解方程222(1)5(1)40x x ---+=,我们可以视2(1)x -为一个整体.然后设21x y -=,原方程可化为2540y y -+=①.解得121,4y y ==.当11y =时,211x -=,即22x =,∴x =当24y =时,214x -=,即25x =,∴x =∴原方程的解为1234x x x x ===解答问题:(1)填空:在由原方程得到①的过程中利用_______法,达到了降次的目的,体现了_______的数学思想.(2)解方程4260x x --=. ●体验中考1、(2009年山西)请你写出一个有一根为1的一元二次方程: .2、(2009年湖北襄樊)如图,在ABCD Y 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A.4+.12+.2+ D.212+3、(2008年,凉山)已知反比例函数ab y x=,当0x >时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( ) A .有两个正根 B .有两个负根C .有一个正根一个负根D .没有实数根A DC EB(提示:本题综合了反比例函数和一元二次方程根与系数的关系两个重要的知识点,请认真思考,细心解答.)4、(2008年,齐齐哈尔)三角形的每条边的长都是方程2680x x --=的根,则三角形的周长是_________________.(点拨:本题综合考查了一元二次方程的解法和三角形的有关知识,特别要注意应用三角形任意两边之和大于第三边这个定理.)参考答案:◆随堂检测1、B. 依据一元二次方程的定义可得.2、C.3、D. 注意不能在等式两边同除以含有未知数的式子.本题用因式分解法好.4、2 依据一元二次方程根与系数的关系可得224x =∴方程的另一个根是22x =.5、解:(1)用因式分解法解0672=+-x x 得:121,6x x ==;(2)用因式分解法解)15(3)15(2-=-x x 得:1214,55x x ==;(3)用配方法解0362=+-x x 得:1233x x ==(4)用公式法解22510x x --=得:12x x ==. ◆课下作业●拓展提高1、123,2x x ==-. 选用因式分解法较好.2、2-或1 将1x =-代入方程2220x ax a +-=得:220a a +-=,解得122,1a a =-=.3、答案不唯一:如2230x x +-=.4、A. 当2357x x ++=时,即232x x +=,∴代数式223923(3)23224x x x x +-=+-=⨯-=.故选A.5、解:∵2310x x +-=,∴231x x +=. 化简:223539(2)3623(2)2x x x x x x x x x x ---÷+-=÷---- 3213(2)(3)(3)3(3)x x x x x x x x --=⨯=-+-+∵∵∴ 21113(3)313x x ===+⨯, ∴代数式235(2)362x x x x x -÷+---的值是13. 6、解:(1)换元法,转化. (2)设2x y =,原方程可化为260y y --=①.解得123,2y y ==-.当13y =时,即23x =,∴x =当22y =-时,22x =-无解.∴原方程的解为12x x =.●体验中考1、答案不唯一,如21x =2、A.解析:本题考查平行四边形及一元二次方程的有关知识,∵a 是一元二次方程2230x x +-=的根,∴1a =,∴AE=EB=EC=1,∴BC=2,∴ABCD Y 的周长为4+,故选A 。
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版

∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1
22 3
,x2
22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1
x1
, 3
x2
1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.
人教版九年级上册21.2.3解一元二次方程---因式分解法 课件(共19张PPT)

2.课本P14 练习1.
结束寄语
配方法和公式法是解一元二次方程重要方法,要作为一种基本技 能来掌握.而某些方程可以用分解因式法简便快捷地求解.
于是得:2x+1=0,或 4x-3=0,
x1=-
1 2
,
x2=
3 4
.
2.一个数平方的2倍等于这个数的7倍,求这个数.
解:设这个数为x,根据题意,得:2x2=7x. 移项,得:2x2-7x=0. 因式分解,得:x(2x-7)=0.
于是得:x=0,或 2x-7=0.
x1
0,x2
7. 2
智慧探讨 二次三项式 ax2+bx+c (a≠0)的因式分解.
(3)x2 ( 3 5)x 15 0;(4)2(x 3)2 x x 3;
(5)x2 (3 2)x 18 0; (6)(x 1)2 3 x 1 2 0;
(7)(4x 2)2 x(2x 1);
(8)x2 12x 27 0;
(9)3x(x 2) 5(x 2);
(10)2(x 3)2 x2 9 .
参考答案:
1.x1
1 4
;x2
7. 5
2.x1
2 3
;x2
1.
3.x1
3 2
;x2
1. 2
4.x1 3;x2 9.
5.x1 0;x2 4.6.x1来自5;x21. 3
7.x1 1;x2 6.
8.x1 4 2;x2 2.
课下作业
1.用分解因式法解下列方程:
(1)x2 (5 2)x 5 2 0; (2)(3x 1)2 5 0;
a=1,b=-3,c=0.
b2 4ac 32 41 0 9>0.
x b b2 4ac 3 9 ,
数学:人教版九年级上 22.2 降次解一元二次方程(课件2)

三、自选商场
用适当的方法解下列一元二次方程 1、x(2x-7)=2x
因式分解法
2、x² +4x=3
配方法
3、x² -5x=-4
因式分解法或配方法
4、2x² -Leabharlann x-1=0公式法例2. 解方程
① (2m+3)2=2(4m+7)
② 2(x-2)2+5(x-2)-3=0
总结:方程中有括号时,应先用整体思想考虑有没有 简单方法,若看不出合适的方法时,则把它去括号并 整理为一般形式再选取合理的方法。 变1: 2(x-2)2+5(2-x)-3=0 变2: 2(2-x)2+5(2-x)-3=0 再变为: 2(x-2)2+5x-13=0 2(x-2)2+5x-10-3=0 2(x-2)2+5(x-2)-3=0
2 2
①将方程化成一般式, 并写出a,b,c
b 4ac 5 4 3 (2) ②求出b2-4ac的值
=49
(特别注意b2-4ac<0)
③代入求根公式
( 5 ) 49 5 7 x 2 3 6
1 x ,x 1 2 2 . 3
④写出方程的两个根
能力拓展
解关于x的方程: ① ②
( 其中 m 0 ) 6 m x 5 mx 6 0
22
x x 20
2
小结:
1、
ax2+c=0 ax2+bx=0
====> 直接开平方法
====> 因式分解法 因式分解法 ax2+bx+c=0 ====> 公式法(配方法) 2、公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法) 3、方程中有括号时,应先用整体思想考虑有没有简单 方法,若看不出合适的方法时,则把它去括号并整理为 一般形式再选取合理的方法。
2014年秋新人教版九年级上21.2.3因式分解法同步练习含答案

21.2降次--解一元二次方程(第四课时)21.2.3 因式分解法◆随堂检测1、下面一元二次方程的解法中,正确的是( )A .(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x 1=13,x 2=7B .(2-5x )+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x 1=25,x 2=35C .(x+2)2+4x=0,∴x 1=2,x 2=-2D .x 2=x 两边同除以x ,得x=1 2、x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______. 3、用因式分解法解方程:(1)2411x x =; (2)2(2)24x x -=-.点拨:用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积,另一边为0的形式.4、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长.◆典例分析方程2200920100x x +-=较大根为m ,方程2(2010)2009201110x x +⨯-=较小根为n ,求n m +的值.分析:本题中两个方程的系数都较大,用配方法和公式法都会遇到烦琐的运算,因此考虑到系数的特点,选用因式分解法最合适.◆课下作业 ●拓展提高1、二次三项式x 2+20x+96分解因式的结果为________;如果令x 2+20x+96=0,那么它的两个根是_________.2、下列命题:①方程kx 2-x-2=0是一元二次方程;②x=1与方程x 2=1是同解方程;③方程x 2=x 与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3.其中正确的命题有( ) A .0个 B .1个 C .2个 D .3个 3、已知()(2)80x y x y +++-=,求x y +的值.点拨:将x y +看作一个整体,不妨设x y z +=,则求出z 的值即为x y +的值.4、我们知道2()()()x a b x ab x a x b -++=--,那么2()0x a b x ab -++=就可转化为()()0x a x b --=,请你用上面的方法解下列方程:(1)2340x x --=; (2)2760x x -+=; (3)2450x x +-=.5、已知22940a b -=,求代数式22a b a b b a ab+--的值.分析:要求22a b a b b a ab+--的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入即可.6、已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.●体验中考1、方程2x x =的解是( )A .1x =B .0x =C .11x =,20x =D .11x =-,20x =2、小华在解一元二次方程240x x -=时,只得出一个根是4x =,则被他漏掉的一个根是________. (提示:方程两边不能同除以含有未知数的式子,否则会失根的.)●挑战能力参考答案: ◆随堂检测1、B 用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.只有B 是正确的.2、x (x-5);(x-3)(2x-5).3、解:(1)移项,得:24110x x -=, 因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =. (2)移项,得2(2)240x x --+=,即2(2)2(2)0x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=, 于是,得20x -=或40x -=,∴12x =,24x =.4、解方程:2430x x -+=,得(3)(1)0x x --=,∴13x =,21x =. ∵三角形两边长分别为2和4,∴第三边只能是3.∴三角形周长为9. ◆课下作业 ●拓展提高1、(x+12)(x+8);x 1=-12,x 2=-8.2、A ①中方程当k=0时不是一元二次方程;②中x=1比方程x 2=1少一个解x=-1;③中方程x 2=x 比方程x=1多一个解x=0;④中由(x+1)(x-1)=3不能必然地得到x+1=3或x-1=3.因此没有正确的命题,故选A.3、解:设x y z +=,则方程可化为(2)80z z +-=,∴2280z z +-=,∴(4)(2)0z z +-=,∴14z =-,22z =.∴x y +的值是4-或2. 4、解(1)∵234(4)(1)x x x x --=-+,∴(4)(1)0x x -+=, ∴40x -=或10x +=,∴14x =,21x =-.(2)∵276(6)(1)x x x x -+=--,∴(6)(1)0x x --=, ∴60x -=或10x -=,∴16x =,21x =.(3)∵245(5)(1)x x x x +-=+-,∴(5)(1)0x x +-=, ∴50x +=或10x -=,∴15x =-,21x =.5、解:原式=22222a b a b bab a---=- ∵22940a b -=,∴(32)(32)0a b a b +-=, ∴320a b +=或320a b -=,∴23a b =-或23a b =, ∴当23a b =-时,原式=-223b b -=3;当23a b =时,原式=-3. 6、解:把1x =代入方程,得:a +b =40,又∵a b ≠,∴2222a b a b --=()()2()a b a b a b +--=2a b +=20.●体验中考1、C 先移项,得20x x -=,因式分解,得:(1)0x x -=,∴10x =,21x =. 故选C.2、0x = 将方程因式分解,得(4)0x x -=,∴10x =,24x =.∴被他漏掉的根是0x =.。
《降次——解一元二次方程》课件2(13张PPT)(人教新课标九年级上)

a2 2ab b2 (ab)2; a2 2ab b2 (ab)2.
填一填
12
1
(1) x2 2x _____ (x ___)2 (2) x2 8x _____ (x___)2
42
4
(3) y2 5y _____ ( y ___)2
解: 3x2 2x 3
x2 2 x 1 3
x2 2 x (1)2 1 (1)2
33
3
(x 1)2 10 39
x 1 10 33
x 1 10 3
x1
1 3
10
,
x2
1 3
10
---移项 ---化二次项系数为1 ---配方 ---变形
---求解
两边加9?加其他数行吗? 像上面那样,通过配成完全平方形式来解一
元二次方程的方法 叫做配方法.
例 解下列方程
(1)4x2 12x 1 0
(2)3x2 2x 3 0
(3)2 x2 1 3x
(1) 4x2 12 x 1 0
解: x2 3x 1 0
4
x2 3x 1 4
---定解
用配方法解下列方程:
(1)2x2 x 6 (2)4x2 3x 1 x 2
答案:
(1) x1
3 2
,
x2
1 2
(2) x1
x2
1 2
谢谢!
P38 2(3)、(4)
2
(4) y2 1 y ____ ( y___)2
(5) 2
5
2
人教版数学九上21.2《解一元二次方程》(配方法)ppt课件

3.你能总结出来用这种方法解一元二次方程的 步骤吗?
21.2 解一元二次方程
3.你能总结出来用这种方法解一元二次方程的 步骤吗? (1)把常数项移到方程右边; (2)方程两边同除以二次项系数,化二次项 系数为1; (3)方程两边都加上一次项系数一半的平方 ; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方 求出方程的解,如果右边是负数,则一元二次 方程无解.
,配方后的方程可以是A( )
A.(x-1)2=4
B.(x+1)2=4
C.(x-1)2=16
D.(x+1)2=16
2.一个小球以15 m/s的初速度向上竖直弹出
,它在空中的高度h(m)与时间t(s)满足关系式h
=15t-5t2,当小球的高度为10 m时,t为C( )
A.1 s
B.2 s
C.1 s或2 s
21.2 解一元二次方程
1.用配方法解一元二次方程x2-4x=5时
,此方程可变形D为( ) A.(x+2)2=1
B.(x-2)2=
1
C.(x+2)2=9
D D.(x-2)2=9
2.下列配方有错误的是(
)
A.x2-2x-3=0化为(x-1)2=4
B.x2+6x+8=0化为(x+3)2=1
C.x2-4x-1=0化为(x-2)2=5
用配方法解二次项系数不是1的一元二次方程,首先方 程两边都除以二次项系数,将方程化为二次项系数是1 的类型.
21.2 解一元二次方程
1.通过配成__完___全__平__方__形__式___来解一元二次方程的方法叫
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 解:两边都除以3,得 x x 1 0. 3
2
移项,得 配方,得
8 x x 1. 3
2
8 4 4 2 x x 1 . 3 3 3
4 5 x . 3 3
2 2
2
2
倍 速 课 时 学 练
即
所以
( 3 ) ( x - 2 ) ( x - 3 ) = 12
解: 原方程变形化为一般式为 x2 -5x - 6 = 0. 分解因式 ( x - 6 ) ( x + 1 ) = 0. x - 6 =0 或 x + 1 = 0,
倍 速 课 时 学 练
x1 = 6 , x2 = -1.
试一试
选择恰当的方法解下列方程: ( 1 ) x ( 5x + 4 ) = 5 x + 4 ; (2)
是整个挂图面积的72%,那么金边的宽应该是多少?
提示:设金边的宽是x cm. 根据题意,得
( 90 + x )( 40 + x ) ×72%=90×40.
倍 速 课 时 学 练
金边的宽应该是10 cm.
3. 某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25 m)另三 边用木栏围成,木栏长40 m.
即 倍 速 课 时 学 练
3 5 x . 2 4
3 5 x . 2 2
2
2
3 5 所以 x 2 2 3 5 x1 2
3 5 x , 2 2 x2 3 5 . 2
2 3 3 x 8x 3 0
大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,
那么门的宽度(两扇门的和)为几尺.
倍 速 课 时 学 练
提示:设单门的宽度是x米,根据勾股定理,得 x2 =1+ ( x - 0.1 )2 门的宽度为10尺1寸.
2. 在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽 度相同的金色纸边,制成一幅挂图,如果要求风景画的面积
x2 2 5x 2 0;
4 x1 = 1 , x2 = 5
倍 速 课 时 学 练
( 3 ) 5x2=9 x + 2. x1 = 2 , x2 =
x1 5 3, x2 5 3
1 5
建立方程模型解决实际问题
问门广几何.”
1. 《九章算术》“勾股”章有一题:今有开门去阃(kun)一尺,不合二寸,
用因式分解法解下列方程
( 1 ) 5x2=4x
解: 原方程可变形为 5x2 -4x = 0. x ( 5x -4 ) = 0. 倍 速 课 时 学 练 x = 0 或 5x-4 = 0,
4 x1 0, x2 . 5
( 2 ) x - 2= x ( x - 2 )
解: 原方程可变形为 x - 2 - x ( x - 2 ) = 0. ( x - 2 ) ( 1- x ) = 0. 倍 速 课 时 学 练 x - 2 =0 或 1- x = 0, x1 = 2 , x2 = 1.
7 121 7 11 x . 2 1 2
即 x1 = 9 , x2 = -2.
(2) 2x2-9x + 8 = 0
解: 这里a = 2, b = -9 , c =8. ∵ b2 -4ac = (-9 )2 -4×2×8 = 17 > 0, 由公式得 倍 速 课 时 学 练
9 17 x . 4
当b2-4ac<0时,方程没有实数根.
4. 将实际问题转化为一元二次方程模 型,用来解决实际问题.
倍 速 课 时 学 练
用配方法解下列方程
(1) x2 + 6x = 1
6 6 2 x 6x 1 . 2 2
2 2
解:配方,得
即 倍 速 课 时 学 练
2. 解一元二次方程的方法
求一元二次方程解的过程叫做解一元二次方程.
转 化
思 想
降 次
配方法
转化为一元一次方程
通过配方
ax2+bx+c=0(a≠0)
(mx+n)2=p(p≥0);
倍 速 课 时 学 练
方 法
b b2 4ac 2 (b 4ac 0) ; 公式法(通用法) x 2a 通过分解 2+bx+c=0(a≠0) ax (x-m)(x-n)=0. 因式分解法
21.2 解一元二次方程
巩固练习
1.一元二次方程的概念:
只含有一个未知数并且未知数的最高次数是2的整式方 程,叫做一元二次方程.
一元二次方程的一般式为 ax2+bx+c=0(a≠0).
倍 速 课 时 学 练
其中ax2叫做一元二次方程的二次项,a叫做二次项
系数,bx为一次项,b 是一次项的系数,c是常数项.
x 3
2
10.
所以
x 3 10, 或x 3 10.
x1 3 10, x2 3 10.
( 2 ) x2-3x + 1 = 0 解:移项,得 x2-3x = -1
2 2
3 3 2 配方,得 x 3x 1 . 2 2
x1 9 17 9 17 , x2 . 4 4
即
(3) 9x2 +6x + 1 = 0
解: 这里a = 9, b = 6 , c =1. ∵ b2 -4ac = 62 -4×9×1 = 0, 由公式得 倍 速 课 时 学 练 即
6 0 x 18
1 x1 x2 . 3
3. 一元二次方程: ax2+bx+c = 0 (a≠0) 根的情况
当b2-4ac>0时,方程有两个不相等的实数根为
b b2 4ac x1 , 2a
b b 2 4ac x2 . 2a
当b2-4ac=0时,方程有两个相等的实数根为
倍 速 课 时 学 练
b x1 x2 . 2a
x
4 5 4 5 , 或x , 3 3 3 3 1 x1 , x2 3. 3
用公式法解下列方程
(1) x2-7x-18 = 0 解: 这里a = 1, b = -7 , c = -18. ∵ b2 -4ac = (-7 )2 -4×1×(-18) = 121 > 0, 倍 速 课 时 学 练