1.1.1第1课时训练

合集下载

高中数学人教A版选择性必修第一册1.1.1空间向量及其线性运算 课时分层练习题含答案解析

高中数学人教A版选择性必修第一册1.1.1空间向量及其线性运算 课时分层练习题含答案解析

1.1.1 空间向量及其线性运算基础练习一、单选题1.下列命题中,假命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等 【答案】D【解析】A.向量是有向线段,不能比较大小.真命题.B.两向量相等:方向相同,模长相等.起点相同,则终点也相同.真命题.C.零向量:模长为0的向量.真命题.D.共线的单位向量是相等向量或相反向量. 假命题.. 2.在下列命题中:①若向量,a b 共线,则,a b 所在的直线平行;②若向量,a b 所在的直线是异面直线,则,a b 一定不共面; ③若三个向量,a b c ,两两共面,则,a b c ,三个向量一定也共面;④已知三个向量,a b c ,,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++. 其中正确命题的个数为( ) A .0 B .1C .2D .3【答案】A【解析】此题考查向量的知识点;对于①:根据两向量共线定义知道,两向量共线有可能两向量所在的直线重合,所以此命题错误;对于②:两个向量可以平移到一个平面内,所以此命题错误;对于③:若三个向量,,a b c 两两共面,这三个向量有可能不共面,所以此命题错误;对于④:根据空间向量的基本定理知道,这三个向量要不共面才可以,所以此命题错误 3.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++.其中正确命题的个数为( ) A .0 B .1C .2D .3【答案】A【解析】①若a 、b 共线,则a 、b 所在的直线平行或重合;所以①错;②因为向量是可以自由移动的量,因此即使a 、b 所在的直线是异面直线,a 、b 也可以共面;所以②错;③若a 、b 、c 三向量两两共面,因为两平面的关系不确定,因此a 、b 、c 三向量不一定共面;所以③错;④若三向量a 、b 、c 共面,若向量p 不在该平面内,则向量p 不能表示为p xa yb zc =++,所以④错.4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,且2OM MA =,BN NC =,则MN =( )A .221332a b c ++ B .111222a b c +-C .211322a b c -++ D .121232a b c -+ 【答案】C【解析】因为MN ON OM =-,又因为()()2211,3322a OM OA ON OB OC cb =+===+, 所以211322MN a b c =-++ 5.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++ B .1122a b c --+ C .1122a b c -+ D .1122-++a b c 【答案】D【解析】根据空间向量的线性运算可知11BM BB B M =+11112AA B D =+()1111112AA B A A D =++()112AA AB AD =+-+ 因为,AB a AD b ==,1AA c =,则()112AA AB AD +-+1122a b c =-++即1122BM a b c =-++,6.在下列条件中,使M 与A ,B ,C 一定共面的是( ) A .OM OA OB OC =-- B .111532OM OA OB OC =++C .0MA MB MC ++=D .0OM OA OB OC +++=【答案】C【解析】对于A 选项,由于11111--=-≠,所以不能得出,,,M A B C 共面. 对于B 选项,由于1111532++≠,所以不能得出,,,M A B C 共面. 对于C 选项,由于MA MB MC =--,则,,MA MB MC 为共面向量,所以,,,M A B C 共面. 对于D 选项,由0OM OA OB OC +++=得OM OA OB OC =---,而11131---=-≠,所以不能得出,,,M A B C 共面. 二、填空题7.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 【答案】18【解析】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++,31148t ++=,解得18t =.8.已知点M 在平面ABC 内,并且对空间任意一点O ,有1133OM xOA OB OC =++,则x =________. 【答案】13【解析】已知1133OM xOA OB OC =++且M ,A ,B ,C 四点共面, 则11133x ++= ,解得x=13三、解答题9.已知平行四边形ABCD 从平面AC 外一点O 引向量.,OE k OA OF k OB →→→→==,,OG k OC OH k OD →→→→==.求证:四点E ,F ,G ,H 共面【解析】∵,OE k OA OF k OB →→→→==;∴||OE OFk OA OB==; EF //AB ,且EF =|k |AB ;同理HG //DC ,且HG =|k |DC ,AB =DC ; ∴EF //HG ,且EF =HG ; ∴四边形EFGH 为平行四边形; ∴四点E ,F ,G ,H 共面.提升训练一、多选题 1.如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若1,,AB A b c a D AA ===,则下列等式正确的是( )A .1122BM a b c =-++B .11122A M a b =+ C .1122AM a b c =++ D .1AC a b c =++ 【答案】ABCD【分析】利用向量加法的三角形法则,平行四边形法则即可求答案. 【详解】()()11111112222BM BB B M AA AD AB c b a a b c =+=+-=+-=-++,故A 正确; ()111111111112222A M A C A D AB a b ==+=+,故B 正确; 111122AM AA A M c a b =+=++,故C 正确; 11AC AB BC CC a b c =++=++2.对空间任意一点O 和不共线三点A ,B ,C ,能得到P ,A ,B ,C 四点共面的是( ) A .OP OA OB OC =++ B .111333OP OA OB OC =++C .311488OP OA OB OC =++D .2OP OA OB OC =--【答案】BC【分析】方法一:根据向量共面定理可得存在唯一一组数,x y ,使得PA xPB yPC =+,可得1111x yOP OA OB OC x y x y x y =-+++-+-+-,根据选项依次列方程组求解可判断.方法二:根据共面定理的推论可得.【详解】方法一:若P ,A ,B ,C 四点共面,则存在唯一一组数,x y ,使得PA xPB yPC =+, 则()()OA OP x OB OP y OC OP -=-+-, 整理可得1111x yOP OA OB OC x y x y x y =-+++-+-+-,对A ,若OP OA OB OC =++,则1111111x y xx y yx y ⎧-=⎪+-⎪⎪=⎨+-⎪⎪=⎪+-⎩,方程组无解,不能得到P ,A ,B ,C 四点共面,故A 错误;对B ,若111333OP OA OB OC=++,则1113113113x y x x y y x y ⎧-=⎪+-⎪⎪=⎨+-⎪⎪=⎪+-⎩,解得1,1x y =-=-,符合,可以得到P ,A ,B ,C 四点共面,故B 正确;对C ,若311488OP OA OB OC =++,则1314118118x y x x y y x y ⎧-=⎪+-⎪⎪=⎨+-⎪⎪=⎪+-⎩,解得11,66x y =-=-,符合,可以得到P ,A ,B ,C 四点共面,故C 正确;对D ,若2OP OA OB OC =--,则1211111x y xx y yx y ⎧-=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,方程组无解,不能得到P ,A ,B ,C 四点共面,故D 错误. 故选:BC.方法二:根据共面定理的推论可得,若P ,A ,B ,C 四点共面,则对于空间中任意一点O ,有OP xOA yOB zOC =++uu u r uu r uu u r uuu r,且满足1x y z ++=,则由选项可得只有BC 满足.3.给出下列命题,其中为假命题的是( )A .若向量,,a b c 是空间一组基底,则,,23a b a c c b -+-也是空间的一组基底B .已知n ⊥平面α,m 为直线l 的一个方向向量,若n m ⊥、则直线l ∥面αC .若向量m 垂直于向量a 和b ,向量,(,)n a b R λμλμ=+∈且,0λμ≠,//m nD .已知空间的三个不共面向量,,OA OB OC ,若243OD OB OC OA +=-,则D 、A 、B 、C 四点共面【答案】BCD【分析】A 项,结合定义可判断正确;B 项,直线l 也可能在平面内α;C 项,m n ⊥;D 项,结合四点共线公式可判断错误【详解】对A ,若向量,,a b c 是空间一组基底,则由(),,,,,,,,0ma nb pb qc xa yc m n p q x y +++≠构成的向量均不共面,故,,23a b a c c b -+-也是空间的一组基底,A 正确; 对B,当直线l α⊂时,也满足题设条件,则B 错误;对C ,若向量m 垂直于向量a 和b ,向量,(,)n a b R λμλμ=+∈且,0λμ≠,则n 一定在由,a b 向量组成的平面内,则m n ⊥,故C 错误;对D ,因为空间的三个不共面向量,,OA OB OC ,若满足243OD OB OC OA +=-,则243OD OC OA OB =--,2431≠--,故D 、A 、B 、C 四点不共面,D 错误, 4.有下列命题,其中真命题的有( ) A .若//AB CD ,则A ,B ,C ,D 四点共线 B .若//AB AC ,则A ,B ,C 三点共线C .若12,e e 为不共线的非零向量, 1212214,510a e eb e e =-=-+,则a //bD .若向量123,,e e e 是三个不共面的向量,且满足等式k 11e +k 22e +k 33e =0,则k 1=k 2=k 3=0 【答案】BCD【分析】由向量平行,结合各点的位置关系判断A 、B 的正误;利用平面向量共线的判定可判断C 的正误;应用反证法,假设等量关系中系数不都为0,结合题设等量关系及向量共线的判定即可知D 的正误.【详解】根据共线向量的定义,若//AB CD ,则AB //CD 或A ,B ,C ,D 四点共线,故A 错; 由//AB AC 且AB 、AC 有公共点A ,故B 正确;由12122144()4510a e e e eb =-=--+=-,所以a //b ,故C 正确,若条件等量关系中系数不都为0,则k 11e +k 22e 与k 33e 不可能共线,显然与题设矛盾,故D 正确.。

第1章 1.1.1 算法的概念 课时达标训练

第1章 1.1.1   算法的概念 课时达标训练

1.1.1 算法的概念课时达标训练一、基础过关1.下面四种叙述能称为算法的是 ( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米答案 B解析 算法是解决一类问题的程序或步骤,A 、C 、D 均不符合.2.下列关于算法的描述正确的是 ( )A .算法与求解一个问题的方法相同B .算法只能解决一个问题,不能重复使用C .算法过程要一步一步执行,每步执行的操作必须确切D .有的算法执行完后,可能无结果答案 C解析 算法与求解一个问题的方法既有区别又有联系,故A 不对;算法能重复使用,故B 不对;每个算法执行后必须有结果,故D 不对;由算法的有序性和确定性可知C正确.3.下列可以看成算法的是 ( )A .学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B .今天餐厅的饭真好吃C .这道数学题难做D .方程2x 2-x +1=0无实数根答案 A解析 由于A 是学习数学的一个步骤,所以是算法.4.下列所给问题中,不可以设计一个算法求解的是 ( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性答案 D解析 A 、B 、C 选项中的问题都可以设计算法解决,D 选项中的问题由于x 在R 上取值无穷尽,所以不能设计一个算法求解.5.计算下列各式中S 的值,能设计算法求解的是 ( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N *) A .①② B .①③ C .②③ D .①②③答案 B解析 因为算法的步骤是有限的,所以②不能设计算法求解.6.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3.第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.答案 (1)求分段函数y =⎩⎪⎨⎪⎧2x -1(x ≤1)x 2+3(x >1)的函数值 (2)1 7.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.解 算法如下:第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .二、能力提升8.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法答案 B解析 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.9.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是 ( )A .质数B .奇数C .偶数D .约数答案 A解析 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.10.请说出下面算法要解决的问题________.第一步,输入三个数,并分别用a 、b 、c 表示;第二步,比较a 与b 的大小,如果a <b ,则交换a 与b 的值;第三步,比较a 与c 的大小,如果a <c ,则交换a 与c 的值;第四步,比较b 与c 的大小,如果b <c ,则交换b 与c 的值;第五步,输出a 、b 、c .答案 输入三个数a ,b ,c ,并按从大到小顺序输出.解析 第一步是给a 、b 、c 赋值.第二步运行后a >b .第三步运行后a >c .第四步运行后b >c ,∴a >b >c .第五步运行后,显示a 、b 、c 的值,且从大到小排列.11.试设计一个求一般的一元二次方程ax 2+bx +c =0的根的算法.解 第一步,计算Δ=b 2-4ac .第二步,若Δ<0,则执行第三步,否则执行第四步.第三步,输出方程无实根.第四步,计算并输出方程根x 1,2=-b ±b 2-4ac 2a. 12.在某次田径比赛中,男子100米A 组有8位选手参加预赛,成绩(单位:秒)依次为9.88,10.57,10.63,9.90,9.85,9.98,10.21,10.86.请设计一个算法,在这些成绩中找出不超过9.90秒的成绩.解 算法如下:第一步,设计数变量n =1.第二步,输入一个成绩x ,判断x 与9.90的大小.若x >9.90,则执行第三步;若x ≤9.90,输出x ,并执行第三步.第三步,使计数变量n 的值增加1后仍记为n .第四步,判断计数变量n 与成绩个数8的大小.若n ≤8,则返回执行第二步;若n >8,则算法结束.三、探究与拓展13.写出求1+12+13+…+1100的一个算法. 解 第一步:使S =1;第二步:使I =2;第三步:使n =1I; 第四步:使S =S +n ;第五步:使I =I +1;第六步:如果I ≤100,则返回第三步,否则输出S .。

高中化 专题1 化家眼中的物质世界 1.1.1 物质的分类与转化课时作业 苏教1

高中化 专题1 化家眼中的物质世界 1.1.1 物质的分类与转化课时作业 苏教1

专题1 化学家眼中的物质世界1.1.1 物质的分类与转化[对点训练]知识点1 物质的分类1.国家质检部门检出人们端午节包粽子的“返青粽叶”多以硫酸铜为添加剂,长期食用有害健康,请问硫酸铜是一种()A.有机物 B.盐C.碱 D.酸【解析】符合盐的概念。

【答案】 B2.对下列物质分类全部正确的是()①纯碱②食盐水③石灰水④NaOH⑤液态氧⑥KClO3A.碱——①④ B.纯净物——③④⑤C.盐——①⑥ D.混合物-—②⑤【解析】①纯碱是Na2CO3,是盐类,属纯净物;②食盐水是NaCl的水溶液,属混合物;③石灰水是Ca(OH)2的水溶液,属混合物;④NaOH是碱类,属纯净物;⑤液态氧是单质,属纯净物;⑥KClO3是盐类,属纯净物.【答案】 C3.某中学化学兴趣小组的同学对一瓶气体进行分析,只含有氧元素,那么这瓶气体()A.一定是单质B.一定是化合物C.可能是单质,也可能是混合物D.一定是氧气【解析】只含有氧元素,说明一定不是化合物,而只由氧元素组成的物质有O2和O3,故瓶内气体可能是单质,也可能是混合物。

【答案】 C4.下列物质属于混合物的是( )①水银②空气③氯酸钾④五氧化二磷⑤糖水⑥硫粉⑦氨气⑧盐酸A.①②⑤⑦ B.①②⑤⑧C.②⑤⑧ D.②③⑤【解析】盐酸是氯化氢气体的水溶液,属于混合物;空气、糖水也都是混合物。

【答案】 C5.下列物质属于钠盐的是( )A.Na2O B.NaOHC.NaHSO4 D.Na2O2【解析】A、D是氧化物;B是碱;C是钠盐.【答案】 C6.下列关于混合物的叙述中正确的是( )A.混合物的组成是固定的B.混合物具有一定的熔、沸点C.混合物各成分不能保持自己原来的化学性质D.混合物各成分间没有发生化学反应【解析】混合物中各成分保持自己原有的化学性质,所以没有固定的熔、沸点,组成也是可以变化的,但相互之间不反应。

【答案】 D7.现有下列10种物质:①H2O ②空气③Mg④CaO⑤H2SO4⑥Ca(OH)2⑦CuSO4·5H2O ⑧碘酒⑨C2H5OH ⑩NaHCO3。

高中数学第一章 1.1.1 第一课时 集合的含义优秀课件

高中数学第一章  1.1.1  第一课时 集合的含义优秀课件

3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.

第1章1.1.1第一课时知能优化训练

第1章1.1.1第一课时知能优化训练

1.下列各组对象中不能构成集合的是()A.水浒书业的全体员工B.《优化方案》的所有书刊C.2010年考入清华大学的全体学生D.美国NBA的篮球明星2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3 D.43.集合A={一条边长为1,一个角为40°的等腰三角形}中有元素()A.2个B.3个C.4个D.无数个4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.1.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对6.若所有形如a+2b(a∈Q、b∈Q)的数组成集合M,对于x=13-52,y=3+2π,则有()A.x∈M,y∈M B.x∈M,y∉MC.x∉M,y∈M D.x∉M,y∉M7.已知①5∈R;②13∈Q;③0={0};④0∉N;⑤π∈Q;⑥-3∈Z.其中正确的个数为________.8.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的取值是________.9.若a,b∈R,且a≠0,b≠0,则|a|a+|b|b的可能取值组成的集合中元素的个数为________.10.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.11.集合A是由形如m+3n(m∈Z,n∈Z)的数构成的,试判断12-3是不是集合A 中的元素?12.已知M={2,a,b},N={2a,2,b2},且M=N,试求a与b的值.。

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4
最新人教版试题
课题:任意角
[课时安排]
1 课时
[教学目标]
1.理解任意大小的角正角、 负角和零角, 掌握终边相同的角、
象限角、区间角、终边在坐标轴上的角 .
2.从数形结合的角度认识角
3.培养学生用运动变化的观点分析问题,提高学生用换元、
转化、数形结合等数学思想方法解决问题的能力
[教学重点]
理解概念,掌握终边相同角的表示法 .
A. 30° B . 30°
C
. 630° D . 630°
3. 把 1485°转化为 α + k· 360°( 0°≤ α < 360° , k∈ Z)的形式是( )
A . 45o 4×360°
B
C. 45o 5× 360°
D
o
. 45 4× 360°
o
.315 5× 360°
4. 下列结论中正确的是 ( )
方向旋转形成的角;
零角:射线没有任何旋转形成的角;
负角:按
方向旋转形成的角。
(3)象限角与坐标轴上的角:
B 终边
始边
O 顶点
A
使角 的顶点与原点重合,始边与 x 轴正半轴重合,终边落第几象限,则
称为
;终边落在坐标轴上的角称为

2. 与角 终边相同的角为
k 360
k z) ,连同角 可构成一个集
合 S ,即
部编本试题,欢迎下载!
最新人教版试题
(4) 第四象限 . 探究 2. 写出与角
45 的终边相同的角的集合 S,并写出 S 中适合不等式
360
720 的元素 β .
【当堂训练】 1. 与 405°角终边相同的角是( )
A. k ·360°- 45° ( k Z )

2023-2024高中数学人教A版赢在微点选择性必修二1.1.1第1课时空间向量及其线性运算 有答案

2023-2024高中数学人教A版赢在微点选择性必修二1.1.1第1课时空间向量及其线性运算 有答案

1.1.1 空间向量及其线性运算 第1课时 空间向量及其线性运算学习目标 1.经历由平面向量推广到空间向量的过程,了解空间向量的概念.2.经历由平面向量的运算及其运算律推广到空间向量的过程.3.掌握空间向量的线性运算. 一、空间向量的有关概念 知识梳理1.在空间,把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模. 空间向量用字母a ,b ,c ,…表示,也用有向线段表示,有向线段的长度表示空间向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB →,其模记为|a |或|AB →|. 2.几类特殊的空间向量名称 定义及表示零向量 规定长度为0的向量叫做零向量,记为0单位向量 模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记为-a 共线向量 如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:零向量与任意向量平行,即对于任意向量a ,都有0∥a相等向量 方向相同且模相等的向量叫做相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量注意点:(1)平面向量是一种特殊的空间向量.(2)两个向量相等的充要条件为长度相等,方向相同. (3)向量不能比较大小.(4)向量共线不具备传递性(非零向量除外).例1 下列关于空间向量的说法中正确的是( ) A .单位向量都相等B .若|a |=|b |,则a ,b 的长度相等而方向相同或相反C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同 答案 D解析 A 中,单位向量长度相等,方向不确定; B 中,|a |=|b |只能说明a ,b 的长度相等而方向不确定; C 中,向量不能比较大小.反思感悟 空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念. 跟踪训练1 (多选)下列说法错误的是( ) A .任意两个空间向量的模能比较大小B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等 答案 BCD解析 对于选项A ,向量的模即向量的长度,是一个数量,所以任意两个向量的模可以比较大小;对于选项B ,其终点构成一个球面; 对于选项C ,零向量不能用有向线段表示;对于选项D ,两个向量不相等,它们的模可以相等. 二、空间向量的加减运算问题 空间中的任意两个向量是否共面?为什么?提示 共面,任意两个空间向量都可以平移到同一个平面内,因此空间中向量的加减运算与平面中一致. 知识梳理加法运算三角形法则语言叙述首尾顺次相接,首指向尾为和图形叙述平行四边形法则语言叙述共起点的两边为邻边作平行四边形,共起点对角线为和图形叙述减法运算 三角形 法则 语言叙述共起点,连终点,方向指向被减向量图形叙述加法运算交换律 a +b =b +a 结合律(a +b )+c =a +(b +c )注意点:(1)求向量和时,可以首尾相接,也可共起点;求向量差时,可以共起点. (2)三角形法则、平行四边形法则在空间向量中也适用.例2 (1)(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是( )A.A 1D 1——→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1——→C.AD →-AB →-DD 1—→D.B 1D 1——→-A 1A —→+DD 1—→(2)对于空间中的非零向量AB →,BC →,AC →,其中一定不成立的是( ) A.AB →+BC →=AC → B.AB →-AC →=BC → C .|AB →|+|BC →|=|AC →| D .|AB →|-|AC →|=|BC →| 反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2 如图,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简以下式子,并在图中标出化简结果. (1)AB →+BC →-DC →;(2)AB →-DG →-CE →.三、空间向量的数乘运算 知识梳理定义与平面向量一样,实数λ与空间向量a 的乘积λa 仍然是一个向量,称为空间向量的数乘 几何意义λ>0λa 与向量a 的方向相同 λa 的长度是a 的长度的|λ|倍λ<0 λa 与向量a 的方向相反 λ=0 λa =0,其方向是任意的 运算律结合律λ(μa )=(λμ)a 分配律(λ+μ)a =λa +μa , λ(a +b )=λa +λb注意点:(1)当λ=0或a =0时,λa =0.(2)λ的正负影响着向量λa 的方向,λ的绝对值的大小影响着λa 的长度. (3)向量λa 与向量a 一定是共线向量.例3 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N —→;(3)MP →. 解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→=a +c +12AB →=a +12b +c .(2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 延伸探究1.例3的条件不变,试用a ,b ,c 表示向量PN →.2.若把例3中“P 是C 1D 1的中点”改为“P 在线段C 1D 1上,且C 1P PD 1=12”,其他条件不变,跟踪训练3 已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,求下列各题中x ,y 的值. (1)OQ →=PQ →+xPC →+yP A →;(2)P A →=xPO →+yPQ →+PD →.1.(多选)下列命题中,真命题是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.化简PM →-PN →+MN →所得的结果是( ) A .PM → B .NP → C .0D .MN →3.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形D .矩形4.在四棱锥P -ABCD 中,底面ABCD 是正方形,E 为PD 的中点,若P A →=a ,PB →=b ,PC →=c ,则BE →=________.课时对点练1.下列说法中正确的是( )A .空间中共线的向量必在同一条直线上B .AB →=CD →的充要条件是A 与C 重合,B 与D 重合 C .数乘运算中,λ既决定大小,又决定方向 D .在四边形ABCD 中,一定有AB →+AD →=AC →2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=33.如图,在四棱柱的上底面ABCD 中,AB →=DC →,则下列向量相等的是( )A .AD →与CB → B .OA →与OC → C .AC →与DB →D .DO →与OB →4.如图,在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1—→=c ,则A 1B —→等于( )A .a +b -cB .a -b +cC .b -a -cD .b -a +c5.如图,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M ,N 分别为OA ,BC 的中点,则MN →等于( )A .12a -12b +12cB .-12a +12b +12cC .12a +12b -23cD .12a +12b -12c6.(多选)已知平行六面体ABCD -A ′B ′C ′D ′,则下列四式中正确的有( ) A .AB →-CB →=AC → B .AC ′——→=AB →+B ′C ′———→+CC ′——→ C .AA ′——→=CC ′——→ D .AB →+BB ′——→+BC →+C ′C ——→=AC ′——→7.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________.8.在正方体ABCD -A 1B 1C 1D 1中,点M 是AA 1的中点,已知AB →=a ,AD →=b ,AA 1—→=c ,用a ,b ,c 表示CM →,则CM →=________. 9.如图,已知正方体ABCD -A 1B 1C 1D 1. (1)化简AB →+CC 1—→+B 1D 1——→;(2)若AA 1—→+x +BC →+C 1D ——→+D 1A 1——→=0,则x 可以是图中有向线段所示向量中的哪一个?(至少写出两个)10.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AB → C .AC → D .BA →12.如图,在平行六面体ABCD -A ′B ′C ′D ′中,AC 与BD 的交点为O ,点M 在BC ′上,且BM =2MC ′,则OM →等于( )A .-12AB →+76AD →+23AA ′——→ B .-12AB →+56AD →+13AA ′——→C .12AB →+16AD →+23AA ′——→ D .12AB →-16AD →+13AA ′——→13.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________________.14.如图,在四面体ABCD 中,E ,G 分别是CD ,BE 的中点,若记AB →=a ,AD →=b ,AC →=c ,则AG →=________.15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.16.如图,在空间四边形SABC 中,AC ,BS 为其对角线,O 为△ABC 的重心. (1)求证:OA →+OB →+OC →=0; (2)化简:SA →+12AB →-32CO →-SC →.。

高中数学 第一章 集合与常用逻辑用语 1.1.1 第1课时 集合课后提升训练(含解析)新人教B版必修

高中数学 第一章 集合与常用逻辑用语 1.1.1 第1课时 集合课后提升训练(含解析)新人教B版必修

第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法第1课时集合课后篇巩固提升基础达标练1.(多选题)下列语句不能确定一个集合的是()A.充分小的负数全体B.爱好飞机的一些人C.某班本学期视力较差的同学D.某校某班某一天的所有课程2.已知集合A为大于√5的数构成的集合,则下列说法正确的是()A.2∈A,且3∈AB.2∈A,且3∉AC.2∉A,且3∈AD.2∉A,且3∉A3.以方程x2-5x+6=0和方程x2-x-2=0的解为元素构成集合M,则M中元素的个数为()A.1B.2C.3D.4.方程x2-5x+6=0的解为x=2或x=3;方程x2-x-2=0的解为x=-1或x=2.所以M中有3个元素,分别是-1,2,3.故选C.4.已知集合A是由0,m,m2-3m+2三个元素构成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0或2或3,知m=2或m2-3m+2=2,解得m=2或m=0或m=3.经检验,当m=0或m=2时,不满足集合A中元素的互异性;当m=3时,满足题意.综上可知,m=3.5.一个书架上有九个不同种类的书各5本,那么由这个书架上的书组成的集合中含有个元素.6.设a,b是非零实数,则|a|a +|b|b可能取的值构成的集合中的元素有,所有元素的和为.a与b的正负分类讨论求解,有四种情况: 当a>0,b<0时,原式=0;当a>0,b>0时,原式=2;当a<0,b>0时,原式=0;当a<0,b<0时,原式=-2.2,0,207.判断下列语句是否正确,并说明理由.(1)某学校高一(8)班比较漂亮的女生能构成一个集合;(2)由1,32,64,|-12|,0.5构成的集合有5个元素;(3)将小于100的自然数,按从小到大的顺序排列和按从大到小的顺序排列分别得到两个不同的集合.错误.因为“漂亮”是个模糊的概念,因此不满足集合中元素的确定性.(2)错误.因为32=64,|-12|=0.5,根据集合中元素的互异性知,由1,32,64,|-12|,0.5构成的集合只有3个元素:1,32,0.5.(3)错误.根据集合中元素的无序性可知,小于100的自然数无论按什么顺序排列,构成的集合都是同一个集合.能力提升练1.(2020某某高一月考)已知x∈R,由x,-x,|x|,√x2,-√x33所组成的集合最多含有元素的个数是() A.2 B.3 C.4 D.5x,-x,|x|,√x2=|x|,-√x33=-x中,至多有2个不同的实数,所以组成的集合最多含有元素的个数是2.2.(多选题)已知集合A中有3个元素2,4,6,且当a∈A时,6-a∈A,则a可能为()A.2B.4C.6D.2或4或6A中含有3个元素2,4,6,且当a∈A时,6-a∈A,当a=2∈A时,6-a=4∈A,则a=2;当a=4∈A时,6-a=2∈A,则a=4;当a=6∈A时,6-a=0∉A.综上所述,故a=2或4.3.(多选题)设a,b,c为非零实数,代数式a|a|+b|b|+c|c|+abc|abc|的值所组成的集合是M,则下列判断正确的是()A.-4∈MB.0∈MC.4∈MD.以上都不正确a,b,c为非零实数,所以a>0,b>0,c>0时,a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4;当a,b,c中有一个小于0时,不妨设a<0,b>0,c>0,此时a|a|+b|b|+c|c|+abc|abc|=-1+1+1-1=0;当a,b,c中有一个大于0时,不妨设a<0,b<0,c>0,此时a|a|+b|b|+c|c|+abc|abc|=-1-1+1+1=0;当a<0,b<0,c<0时,此时a|a|+b|b|+c|c|+abc|abc|=-1-1-1-1=-4.4.(2020某某高一期中)已知集合M中有3个元素1,m+1,m2+4,如果5∈M且-2∉M,那么m=.∈M且-2∉M,所以若m+1=5,解得m=4,若m2+4=5,解得m=±1,经检验均符合题意,所以m 的值为4或1或-1.或1或-15.已知集合A中含有3个元素a,0,-1,集合B中含有3个元素c+b,1a+b,1,且A=B,则a=,b=,c=.A=B,又∵1a+b≠0,∴a=1,c+b=0,1a+b=-1,∴b=-2,c=2.-226.设P ,Q 为两个数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P+Q 中的元素是a+b ,其中a ∈P ,b ∈Q ,求P+Q 中元素的个数.a=0时,由b ∈Q 可得a+b 的值为1,2,6;当a=2时,由b ∈Q 可得a+b 的值为3,4,8;当a=5时,由b ∈Q 可得a+b 的值为6,7,11.由集合元素的互异性可知,P+Q 中的元素为1,2,3,4,6,7,8,11,共8个.素养培优练已知集合S 满足:若a ∈S ,则11-a ∈S.请解答下列问题: (1)若2∈S ,则S 中必有另外两个元素,求出这两个元素;(2)证明:若a ∈S ,则1-1a ∈S ;(3)在集合S 中,元素能否只有一个?若能,把它求出来;若不能,请说明理由.2∈S ,所以11-2=-1∈S ,所以11-(-1)=12∈S ,所以11-12=2∈S. 所以集合S 中另外的两个元素为-1和12.,可知a ≠1且a ≠0,由11-a ∈S ,得11-11-a ∈S , 即11-11-a =1-a 1-a -1=1-1a∈S. 所以若a ∈S ,则1-1a ∈S.S 中的元素不可能只有一个.理由如下:令a=11-a,即a 2-a+1=0. 因为Δ=(-1)2-4<0,所以此方程无实数解,所以a ≠11-a .因此集合S 中不可能只有一个元素.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 1.1 1.1.1 第1课时
(时间:20分钟 总分:30分)
一、选择题(每小题5分,共10分)
1.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( )
A .2个
B .3个
C .4个
D .无数个 【答案】C
【解析】分两种情况:(1)当腰长为1时,底角为40°或顶角为40°;(2)当底边长为1时,底角为40°或顶角为40°.所以共有4个三角形.
2.已知集合A 含有三个元素2,4,6且当a ∈A ,有
6-a ∈A ,则a 为( )
A .2
B .2或4
C .4
D .0 【答案】B
【解析】当a =2时,6-a =4∈A ;
当a =4时,6-a =2∈A ;
当a =6时,6-a =0∉A ,所以a =2或a =4.
二、填空题(每小题5分,共10分)
3.已知集合A ={1,m +1},则实数m 满足的条件是______.
【答案】m ≠0
4.当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,所有孤立元素组成的集合称之为“孤星集”,则集合A ={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.
【答案】{5}
三、解答题(本小题10分)
5.对于a ,b ∈N +,现规定:
a *
b =⎩⎪⎨⎪⎧
a +
b (a 与b 的奇偶性相同),a ×b (a 与b 的奇偶性不同). 集合M ={(a ,b )|a *b =36,a ,b ∈N +}.
(1)用列举法表示a,b奇偶性不同时的集合M;
(2)当a与b的奇偶性相同时集合M中共有多少个元素?
【解析】(1)当a,b奇偶性不同时,a*b=a×b=36,则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.
(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b奇偶性相同时这样的元素共有35个.。

相关文档
最新文档