六下《圆锥的体积》作业设计

合集下载

小学数学单元作业设计-苏教版六年级下册第二单元《圆柱与圆锥》

小学数学单元作业设计-苏教版六年级下册第二单元《圆柱与圆锥》

小学数学单元作业设计-苏教版六年级下册第二单元《圆柱与圆锥》小学数学单元作业设计一、单元信息单元所属模块:图形与几何—图形的认识—立体图形学科:数学年级:六年级学期:第二学期版本:苏教版单元组织方式:☑自然单元□重组单元课时信息:序号课时名称对应教材内容1 认识圆柱和圆锥第二单元例1(p9-10)2 圆柱的侧面积和表面积第二单元例2-3(p11-14)3 圆柱的体积第二单元例4(p15-19)4 圆锥的体积第二单元例5(p20-23)5 整理与复整理与复(p24-p26)二、单元分析一)课标要求义务教育数学课程标准(2011版)》在“学段目标”的“第二学段”中提出,学生需要探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征,体验简单图形的运动过程,能在方格纸上画出简单图形运动后的图形,了解确定物体位置的一些基本方法;掌握测量、识图和画图的基本方法;初步形成数感和空间观念,感受符号和几何直观的作用;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果;会独立思考,体会一些数学的基本思想。

义务教育数学课程标准(2011版)》在“课程内容”的“第二学段”中提出,学生需要通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图;结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。

二)教材分析1.知识网络本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学。

2.内容分析在本单元之前,学生已经探索了圆面积公式以及长方体、正方体特征和表面积、体积计算方法,为进一步探索圆柱和圆锥的特征,探索圆柱表面积的计算方法以及圆柱和圆锥的体积公式奠定了知识基础,同时也积累了探索的经验,掌握了研究的方法。

人教版六年级下册数学第三单元第2课时 圆锥的体积【教案】

人教版六年级下册数学第三单元第2课时 圆锥的体积【教案】

教学笔记第2课时圆锥的体积教学内容教科书P33~34例2、例3,完成教科书P35“练习六”中第4~7题。

教学目标1.掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2.经历“直觉猜想——实验探索——合作交流——得出结论——实践运用”的探索过程,理解圆锥体积的推导过程和学习的方法。

3.培养学生勇于探索的求知精神,让学生感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

教学重点圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点圆锥体积公式的推导。

教学准备课件,若干同样的圆柱形容器,若干与圆柱等底等高的圆锥形容器,少数不等底等高的圆锥形容器,沙子和水。

教学过程一、提出问题,导入新课师:求这堆沙子的体积就是求什么?【学情预设】学生会说出求圆锥的体积。

师:你有没有办法求出这个圆锥形沙堆的体积呢?【学情预设】预设1:转化成长方体。

预设2:转化成正方体。

预设3:转化成圆柱。

(可能还有学生说出圆锥体积的计算公式,教师可以问问他是怎么知道的。

)师:大家都想到了运用转化的方法来解决问题,但这样做似乎比较麻烦,想不想找到一种简单而又科学合理的方法计算出圆锥的体积呢?今天我们就来研究这个问题。

(板书课题:圆锥的体积) 【设计意图】以生活中的数学的形式导入,激发学生的好奇心和求知欲。

二、自主探究,推导圆锥体积的计算公式1.猜想。

师:你觉得圆锥的体积可能与哪种图形的体积有关?【学情预设】学生可能会说圆锥的体积与圆柱的体积有关,因为它们的底面都是圆形。

师:(举起等底等高的圆柱、圆锥教具,把圆锥套在透明的圆柱里)想一想它们的体积之间会有什么样的关系?【学情预设】学生猜测等底等高的圆柱的体积可能是圆锥的2倍、3倍、4倍或其他。

师:我们的猜测到底对不对呢?下面请大家一起来验证吧!2.探究验证。

(1)开展实验收集数据。

师:圆柱与圆锥的体积之间有什么关系呢?我们一起来做实验。

北师大版六年级下数学同步教案-圆锥的体积

北师大版六年级下数学同步教案-圆锥的体积

北师大版六年级下数学同步教案圆锥的体积一、教学目标1. 知识与技能:使学生掌握圆锥体积公式,能正确计算圆锥体积,理解圆锥体积与圆柱体积的关系。

2. 过程与方法:培养学生观察、分析、归纳和解决问题的能力,提高学生的空间想象力。

3. 情感、态度和价值观:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。

二、教学内容1. 圆锥的定义及特征2. 圆锥体积公式的推导3. 圆锥体积与圆柱体积的关系4. 圆锥体积的计算及应用三、教学重点与难点1. 教学重点:圆锥体积公式的推导和应用。

2. 教学难点:理解圆锥体积与圆柱体积的关系,正确计算圆锥体积。

四、教具与学具准备1. 教具:圆锥模型、圆柱模型、沙子、尺子、计算器。

2. 学具:圆锥体积计算练习题、圆锥体积与圆柱体积关系探究题。

五、教学过程1. 导入:通过实物展示,引导学生关注圆锥的特征,激发学生学习兴趣。

2. 新课:讲解圆锥的定义及特征,引导学生发现圆锥体积与圆柱体积的关系。

3. 探究:分组讨论,推导圆锥体积公式。

4. 应用:布置练习题,指导学生运用圆锥体积公式解决实际问题。

六、板书设计1. 圆锥的定义及特征2. 圆锥体积公式的推导3. 圆锥体积与圆柱体积的关系4. 圆锥体积的计算及应用七、作业设计1. 基础题:计算给定圆锥的体积。

2. 提高题:探究圆锥体积与圆柱体积的关系,举例说明。

3. 拓展题:运用圆锥体积公式解决实际问题。

八、课后反思1. 教学效果:本节课学生掌握了圆锥体积公式,能正确计算圆锥体积,理解圆锥体积与圆柱体积的关系。

2. 教学方法:通过实物展示、分组讨论、练习题等多种教学方法,激发学生学习兴趣,提高学生的动手操作能力和解决问题的能力。

3. 改进措施:在今后的教学中,加强对圆锥体积公式的推导过程的讲解,引导学生深入理解圆锥体积与圆柱体积的关系,提高学生的空间想象力。

同时,注重培养学生的实际应用能力,将数学知识与生活实际相结合。

重点关注的细节:圆锥体积公式的推导圆锥体积公式的推导是本节课的核心内容,也是学生理解圆锥体积与圆柱体积关系的关键。

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)

人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。

本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。

为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。

学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。

因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。

但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。

你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

北师大版六年级第二学期《圆柱与圆锥》单元作业设计

北师大版六年级第二学期《圆柱与圆锥》单元作业设计

小学数学单元作业设计一、单元信息二、单元分析(-)课标要求通过观察、操作,认识圆柱和圆锥,认识圆柱的展开图。

结合具体情境,探索并掌握圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。

《义务教育数学课程标准》中对第二学段有明确要求:“初步形成数感和空间观念,感受符号和几何直观的作用。

”“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。

”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。

”(二)教材分析1 .知识网络2 .内容分析本单元的主要内容有:面的旋转、圆柱的表面积和体积、圆锥的体积。

圆柱和圆锥是人们在生产和生活中经常遇到的几何体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

本单元加强了与现实生活的联系,加强了对图形特征、计算方法的探索,加强了在操作中对空间与图形问题的思考,使学生在经历观察、操作、推理、想象的过程中认识并掌握圆柱、圆锥的特征及体积的计算方法,进一步发展空间观念。

(H)学情分析本单元的教学对象是六年级毕业班的学生,在知识系统上已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形,对于圆柱和圆锥,学生已经能够直观辨认,但在学习过程中还存在以下困难:1、平面图形经过旋转成几何体,是从“静态”到“动态”的转化;对圆柱、圆锥侧面的认识,是学生从“整体辨识”到“局部刻画特征”的又一个提升。

2、对于圆柱和圆锥体积的学习,由于空间想象能力有限,学生往往不能讲圆锥(或圆锥)的底面半径(或直径)及圆柱(或圆锥)的高分辨清楚,特别是圆柱的体积等于和它等底等高的圆锥的3倍,在计算时学生可能经常出现错误。

三、单元学习与作业目标1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。

2、结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱和圆锥体积的计算方法,并能解决简单的实际问题。

苏教版数学六年级下册《圆锥的体积》说课稿及反思(共三篇)

苏教版数学六年级下册《圆锥的体积》说课稿及反思(共三篇)

《圆锥的体积》说课稿及反思(一)一、说教材圆锥的体积。

(教材第20~23页)圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。

圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。

二、说教学目标1.引导学生探索并初步掌握圆锥的体积计算方法和推导过程。

2.指导学生学会应用公式计算圆锥的体积并解决一些实际问题。

3.提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

4.培养学生的合作意识和探究意识。

5.使学生获得成功的体验,体验数学与生活的联系。

三、说教学重难点重点:进一步掌握圆锥体积的计算方法。

难点:根据不同的条件计算圆锥的体积。

四、说教学过程板块一、情境导入师:同学们,前面我们学习了圆柱的体积计算公式,是什么呢?生:圆柱的体积=底面积×高,用字母表示是V=Sh。

师:你想知道圆锥的体积怎样计算吗?猜一猜,圆锥的体积大小会与什么有关呢?学生可能会说:·圆锥的体积应该与圆锥的底面积有关。

·圆锥的体积可能跟圆锥的高有关。

……师:圆锥的体积计算公式究竟是什么呢?让我们一起来探究吧!【设计意图:简明扼要的复习,为新课教学做好充分的知识铺垫】板块二、探究新知1. 圆锥体积计算公式的推导。

师:下面的圆柱和圆锥的底面积相等,高相等。

(课件出示:教材第20页例5)你能估计出这个圆锥的体积是圆柱体积的几分之几吗?生:可能这个圆锥的体积是圆柱体积的1吧!3师:你有什么办法来验证自己的估计呢?生:我们可以准备好底面积相等,高相等的圆柱形容器和圆锥形容器;然后用圆锥形容器装满沙子,再倒入圆柱形容器里,看是否3次能装满。

如果3次能正好装满,就说明圆锥的体积是等底等高的圆柱体积的1。

3师:这个方法可以吗?生:可以。

师:那就按这种方法以小组为单位,进行实验吧!学生进行小组活动;教师巡视了解情况。

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的体积作业设计
中心小学
六年三班
徐伟
《圆锥的体积》作业
学校:班级:姓名:
一、填空
1、一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的(),圆柱的体积是圆锥体积的()。

2、一个圆柱的体积是15立方厘米,与它等底等高的圆锥的体积是()立方厘米。

3、一个圆锥的体积是7.2立方米,与它等底等高的圆柱的体积是()立方米。

4、圆锥的底面半径是6厘米,高是20厘米,它的体积是()立方米。

5.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米。

6、等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是()立方分米,圆锥的体积是()立方分米。

二、判断
1。

()
1.圆锥的体积是等于圆柱体积的
3
2。

()
2、圆锥的体积比与它等底等高的圆柱体积小
3
3、一个圆锥的底面半径扩大3倍,它的体积也扩大3倍。

()
4、一个正方体和一个圆锥的底面积和高都相等,这个正方体体积是圆锥体积的3倍。

()
三、求下列各圆锥的体积。

1、 r=4厘米,h=21厘米
2、d=6分米,h=8分米
三、应用题
1、一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?
2、把一个横截面为正方形的长方体,削成一个最大的圆锥体,已知圆锥体的底面周长6.28厘米,高5厘米,长方体的体积是多少?。

相关文档
最新文档