五年级 第2讲 余数的性质

合集下载

小学思维数学讲义:余数性质(二)-带详解

小学思维数学讲义:余数性质(二)-带详解

余数性质(二)1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

1.能够根据除法性质调整余数进行解题 2.能够利用余数性质进行相应估算 3.学会多位数的除法计算 4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.模块一、带余除法的估算问题例题精讲知识点拨教学目标5-5-2.带余除法(二)【例 1】修改31743的某一个数字,可以得到823的倍数。

问修改后的这个数是几?【考点】带余除法的估算问题【难度】3星【题型】解答【解析】本题采用试除法。

823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.【答案】33743【例 2】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】小学数学夏令营【解析】由48412÷=÷=,48412÷=知,一组是10或11人.同理可知48316÷=,4859.6知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【答案】10【例 3】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【考点】带余除法的估算问题【难度】3星【题型】解答【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数13(61)91为78583+=.【答案】83【例 4】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【考点】带余除法的估算问题【难度】3星【题型】解答【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【答案】99【例 5】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】圣彼得堡数学奥林匹克【解析】除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过++=,既然它们的和等于15,所以这三个余数分别就是2,5,8.所以该25815数加1后能被3,6,9整除,而[3,6,9]18=,设该数为a,则181=-,即a m18(1)17=-+(m为非零自然数),所以它除以18的余数只能为17.a m【答案】17模块二、多位数的余数问题【例 6】 2000"2"2222个除以13所得余数是_____.【考点】多位数的余数问题 【难度】3星 【题型】填空【解析】 方法一、我们发现222222整除13,2000÷6余2,所以答案为22÷13余9。

五年级数学知识点带余数的除法讲解

五年级数学知识点带余数的除法讲解

五年级数学知识点带余数的除法讲解如何把小学各门基础学科学好大致是专门多学生都发愁的问题,查字典数学网为大伙儿提供了带余数的除法讲解,期望同学们多多积存,不断进步!前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:163= 51,即16=53+1.现在,被除数除以除数显现了余数,我们称之为带余数的除法。

一样地,假如a是整数,b是整数(b0),那么一定有另外两个整数q和r,0r当r=0时,我们称a能被b整除。

当r0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b 的不完全商(亦简称为商).用带余除式又能够表示为ab=qr,0r例1 一个两位数去除251,得到的余数是41.求那个两位数。

分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

解:∵被除数除数=商余数,即被除数=除数商+余数,251=除数商+41,251-41=除数商,210=除数商。

∵210=2357,210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.因此除数是42或70.即要求的两位数是42或70。

例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?解:∵被除数=除数商+余数,即被除数=除数40+16。

由题意可知:被除数+除数=933-40-16=877,(除数40+16)+除数=877,除数41=877-16,除数=86141,除数=21,被除数=2140+16=856。

答:被除数是856,除数是21。

例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?解:十月份共有31天,每周共有7天,∵31=74+3,依照题意可知:有5天的星期数必定是星期四、星期五和星期六。

这年的10月1日是星期四。

例4 3月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(翌日),15日(第三天),)的第1993天是星期几?解:每周有7天,19937=284(周)5(天),从星期日往回数5天是星期二,因此第1993天必是星期二.例5 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程)一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。

2、余数的性质:(1)可加性:和的余数等于余数的和。

即:两数和除以m 的余数等于这两个数分别除以m 的余数和。

例:7÷3=2……1 5÷3=1……2,则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。

(2)可减性:差的余数等于余数的差。

即:两数差除以m 的余数等于这两个数分别除以m 的余数差。

例:17÷3=5……2 5÷3=1……2,则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。

(3)可乘性:积的余数等于余数的积。

即:两数积除以m 的余数等于这两个数分别除以m 的余数积。

例:64÷7=9……1 45÷7=6……3,则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。

二、同余式在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。

即:a 与b 同余于模m。

意思就是自然数a 和b 关于m 来说是余数相同的。

用同余式表达为:a≡b(modm).注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。

(余数的可减性)三、例题。

例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个?例2、(1)求多位数1234567891011…20102011除以9的余数?(2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几?(3)一个多位数1234567……979899,问除以11 的余数是多少?例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数?(2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和余数Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第2讲尾数和余数一、知识要点自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。

尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。

二、精讲精练【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几?(2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几?练习1:(1)61×61×61×……×61(2001个61相乘)积的尾数是几?(2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几?(3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少?【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几?练习2:(1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7)(2002个7相乘)的尾数是几?(2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几?【例题3】444……4(100个4)÷6,当商是整数时,余数是几?练习3:当商是整数时,余数各是几?(1)666……6(50个6)÷4(2)888……8(80个8)÷7(3)444……4(1000个4)÷74(4)111……1(1000个1)÷5【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。

人教版小学数学经典例题 带余除法 (含解析答案)

人教版小学数学经典例题   带余除法 (含解析答案)

1. 能够根据除法性质调整余数进行解题2. 能够利用余数性质进行相应估算3. 学会多位数的除法计算4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

知识点拨教学目标带余除法这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题精讲除法公式的应用【例 1】某数被13除,商是9,余数是8,则某数等于。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第2题,5分【解析】125【答案】125【例 2】一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

【考点】除法公式的应用【难度】1星【题型】填空【关键词】希望杯,四年级,复赛,第3题【解析】因为最大的三位数为999,999362727÷=,所以满足题意的三位数最大为:36278980⨯+=【答案】980。

余数性质及同余定理(B级)

余数性质及同余定理(B级)

余数性质及同余定理知识框架一、余除法的定及性1.定:一般地,若是 a 是整数, b 是整数( b≠0) ,若有 a÷b=q⋯⋯ r ,也就是 a=b×q+ r ,0≤r< b;我称上面的除法算式一个余除法算式。

里:(1)当 r 0 :我称 a 可以被 b 整除, q 称 a 除以 b 的商或完好商(2)当 r 0 :我称 a 不可以被 b 整除, q 称 a 除以 b 的商或不完好商一个圆满的余除法解模型 : 如是一堆,共有 a 本,个 a 就可以理解被除数,在要求依照 b 本一捆打包,那么 b 就是除数的角色,打包后共打包了 c 捆,那么个 c 就是商,最后节余 d 本,个 d 就是余数。

个能学生清楚的理解余除法算式中 4 个量的关系。

并且可以看出余数必然要比除数小。

2.余数的性⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵ 余数小于除数.二、余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a,b 分除以 c 的余数之和,或个和除以 c 的余数。

比方: 23,16 除以 5 的余数分是 3 和 1,所以 23+16= 39 除以 5 的余数等于4,即两个余数的和3+1.当余数的和比除数大,所求的余数等于余数之和再除以 c 的余数。

比方: 23,19 除以 5 的余数分是 3 和 4,所以 23+19= 42 除以 5 的余数等于3+4=7 除以 5 的余数22.余数的加法定理a 与b 的差除以c 的余数,等于a,b 分除以 c 的余数之差。

比方: 23, 16 除以 5 的余数分是 3 和 1,所以 23- 16=7 除以 5 的余数等于2,两个余数差3- 1=2.当余数的差不减,上除数再减。

比方: 23,14 除以 5 的余数分是 3 和 4, 23- 14= 9 除以 5 的余数等于4,两个余数差3+ 5-4= 43.余数的乘法定理a 与b 的乘除以c 的余数,等于a,b 分除以 c 的余数的,也许个除以 c 所得的余数。

数论

数论
5.六位数□2008□能同时被 9 和 11 整除.这个六位数是多少?
6.请从 1,2,3,4,5,6,7 这 7 个数字中选出 5 个组成一个五位数,使它是 99 的倍数.这个五位 数最大是多少?
五年级上册第 2 讲 数论问题第 01 讲
7.小悦写了一个两位数 59,冬冬写了一个两位数 89,他们让阿奇写一个一位数放在 59 与 89 之间拼 成一个五位数 59□89 ,使得这个五位数能被 7 整除.请问:阿奇写的数是多少?
质数与合数
知识概述
掌握质数与合数的概念.熟悉常用的质数,并掌握质数的判定方法.熟练掌握短除法分解质因数;利 用分解质因数的方法解决相关的整数问题;学会计算乘积末尾 0 的个数.
理解质数与合数的概念.熟悉常用的质数,并掌握质数的判定方法.掌握分解质因数的方法,并学会 运用分解质因数的方法解决相关的整数问题;学会计算乘积末尾零的个数.
10. 把从 1 开始的若干个连续的自然数 1,2,3, ,乘到一起.已知这个乘积的末尾 13 位恰好都
是 0.请问:在相乘时最后出现的自然数最小应该是多少?
11. 168 乘以一个大于 0 的整数后正好是一个平方数.乘的这个整数至少是多少?所得乘积又是多少 的平方?
12. (1)60 乘以一个三位数后,正好得到一个平方数.这个三位数至少是多少? (2)72 乘以一个三位数后,正好得到一个立方数.这样的三位数一共有多少个?
五年级中册第 4 讲 数论问题第 04 讲
9. 123123 123 除以 99 的余数是多少?
123个123
10. 把 63 个苹果,90 个桔子,130 个梨平均分给一些同学,最后一共剩下 25 个水果没有分出去.请 问:剩下个数最多的水果剩下多少个?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固6
号码分别为101、126、173、193的4个运动员进行乒乓球比赛,规定每 两人比赛的盘数是他们号码的和被3除所得的余数.那么比赛盘数最多 的运动员打了多少盘?
第2讲 余数的性质
例题1
(876543 2018 123456) 9 的余数是多少?
巩固1
(654321 2018 345678) 9 的余数是多少?
例题2
求24611356047 11的余数.
巩固2
求 478 296351除以17的余数.
例题3
22018 除以7的余数是多少?
巩固3
3100 除以13的余数是多少?
例题4
201820182018 2018+1 的结果除以10的余数是多少? 2018个2018
巩固4
222......2 1 的结果除以5的余数是多少?
999个2
ห้องสมุดไป่ตู้
例题5
22018与 20172 的差除以9的余数是多少?
巩固5
22017 与 20172 的差除以9的余数是多少?
例题6
在2015、2016、2017、2018、2019中,若其中一个数或几个数的和被4除余1, 则将这几个数归为一组.这样的数组共有多少个?(不考虑数的顺序)
相关文档
最新文档