2019-2020学年山东省青岛市局属四校九年级(上)期中数学试卷
山东省青岛市2019届九年级上学期数学期中考试试卷及参考答案

(1) 如图①,当∠ABC=45°时,求证:AD=DE;理由; (2) 如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由; (3) 当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示) 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19. 20. 21. 22. 23. 24. 25. 26.
27.
28. 29.
A . 5米 B . 6米 C . 8米 D . (3+ )米 9. 如图,⊙O△ABC的三条边所得的弦长相等,则下列说法正确的是( )
A . 点O是△ABC的内心 B . 点O是△ABC的外心 C . △ABC是正三角形 D . △ABC是等腰三角形 10. 关于x的一元二次方程x2﹣ x+sinα=0有两个相等的实数根,则锐角α等于( ) A . 15° B . 30° C . 45° D . 60° 11. 如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD= , ∠BCE=30°,则线段DE的长是 ( )
A . 4 B . 6 C . 4 ﹣2 D . 10﹣4
二、填空题
21. 计算: sin260°+cos260°﹣tan45°=________. 22. 一元二次方程(x﹣1)(x﹣2)=x﹣1的解是________. 23. 如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半 径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是 ________.
2019-2020学年九年级数学上学期期中原创卷B卷(山东)(全解全析)

中随机摸出一个球,摸到白球的概率是: .故选 D.
5
7.【答案】A 【解析】如图,连接 OA,∵桥拱半径 OC 为 5m,∴OA=5m,∵CD=8m,∴OD=8−5=3(m),∴
AD= OA2 OD2 52 32 4 (m),∴AB=2AD=2×4=8(m),故选 A.
8.【答案】D 【解析】二次函数 y=2(x–1)2+3.∵a=2>0,∴抛物线开口向上,顶点坐标为(1,3),对称轴是直线
(B,C)
(C,C)
由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种,
所以两个组恰好抽到同一个小区的概率为 3 = 1 .故选 C. 93
4.【答案】B
1
1
【解析】根据题意∠APB= ∠AOB,∵∠AOB=90°,∴∠APB=90°× =45°.故选 B.
2
2
5.【答案】C
14.【答案】5
【解析】由频率= 频数 ,可得抽取的学生总数是: 频数 = 80 =200 (人),所以喜欢篮球人数:
总数
频率 0.4
200×0.25=50(人),即 m=50;所以喜欢足球人数:200–80–50–50=20,所以频率 n= 20 =0.1,所以 200
mn=0.1×50=5.故答案为:5.
针旋转 60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC 是等边三角形,∴EC=BE=BC= 5 cm,故
答案为: 5 .
1
17.【答案】
6
【解析】∵随机同时抽取两张扑克牌的等可能情况是 12 种,牌面是 2 和 4 的情况是 2 种,∴随机同时
1
1
抽取两张扑克牌,牌面数字是 2 和 4 的概率为 .故答案为: .
2019-2020学年北师大版山东省青岛市四区联考九年级第一学期期中数学试卷含解析

2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10 个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75 .解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8 张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0 .解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F(1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB 于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有 4 种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1 种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98 种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97 种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93 种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有 6 种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11 种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35 种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P 作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。
2019_2020学年山东青岛初三上学期期中数学试卷(局属四校)-详解版

2019~2020学年⼭东⻘岛初三上学期期中数学试卷(局⼀、选择题(本⼤题共8⼩题,每⼩题3分,共24分)2. A.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】如图,在平⾏四边形,添加下列条件不能判定四边形是菱形的只有( ).C根据对⾓线互相垂直的平⾏四边形是菱形,可得到菱形,故错误;根据邻边相等的平⾏四边形是菱形,可得到菱形,故错误;根据对⾓线相等的平⾏四边形是矩形,可知不能判定其为菱形,故正确;∵⼜∵A.,【答案】【解析】⽅程的解是( ).D ,移项得提公因式得解得,故选.∴,∴,根据邻边相等的平⾏四边形是菱形,可得到菱形,故错误.故选 C .3. A.B.C.D.【答案】【解析】随着居⺠经济收⼊的不断提⾼以及汽⻋业的快速发展,家⽤汽⻋已越来越多地进⼊普通家庭,抽样调查显⽰,截⽌年底某市汽⻋拥有量为万辆.⼰知年底该市汽⻋拥有量为万辆,设年底⾄年底该市汽⻋拥有量的平均增⻓率为,根据题意列⽅程得().A 设年底⾄年底该市汽⻋拥有量的平均增⻓率为,根据题意,可列⽅程:.4. A.B.C.D.【答案】【解析】在数字,,,中任选两个组成⼀个两位数,这个两位数能被整除的概率为( ).A从个数中任意抽取两个组成两位数的所有可能有、、、、、、、、、、、共种,其中能被整除的数分别为、、、共种,所以根据概率的计算公式,可得.故选.事件可能出现的次数所有可能出现的次数5. A.B. C. D.【答案】如图,在中,,,,则的⻓是( ).A【解析】∵,∴,∴,∵,,∴,∵,∴,∴.故选.6. A. B. C. D.【答案】【解析】如图,把沿着的⽅向平移到的位置,它们重叠部分的⾯积是⾯积的⼀半,若,则移动的距离是( ).D ∵沿边平移到的位置,∴,∴,∴,∴,∵,∴,∴.7. A.B.C.D.【答案】⼀个菱形的边⻓为,⾯积为,则该菱形的两条对⾓线的⻓度之和为( ).C【解析】如图所⽰:∵四边形是菱形,∴,,,∵⾯积为,∴①,∵菱形的边⻓为,∴②,由①②两式可得:.∴,∴,即该菱形的两条对⾓线的⻓度之和为.故选.8. A.B. C. D.【答案】【解析】如图,点为正⽅形的中⼼,,平分交于点,延⻓到点,使,连结交的延⻓线于点,连结交于点,连结.则以下四个结论中,①,②,③,④,⑤.正确结论的个数为( ).D①∵,,,∴≌,∴,∵,,∴,∴,∵,,∴≌,∴,∵,∴是的中位线,∴,故①正确;②③∵点为正⽅形的中⼼,,,∴.由三⾓形中位线定理知,,,∴,故②错误,③正确;④∵四边形是正⽅形,是的平分线,∴,,,∵,∴≌,∴,∴,∵是的中位线,,∴是的垂直平分线,∴,∴,∴,∴,∵∴∴∴∵∴∵∴∴∴∴∴⑤正确.∴①③④⑤正确.故选.⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分)9.【答案】【解析】若⼀元⼆次⽅程 .∵⼀元⼆次⽅程,∴把,∴故答案为:10.【答案】【解析】∵,是⼀个直⾓三⾓形两条直⾓边的⻓,设斜边为∴即∵∴解得则直⾓三⾓形的斜边⻓为 故答案为:11.【答案】【解析】若点是线段的⻩⾦分割点( .∵点是线段∴∴设∴∴∴∴∴12.【答案】【解析】⼀个不透明的⼝袋⾥装有除颜⾊外都相同的个⽩球和若干个红球,在不允许将球倒出来数的前提下,⼩亮为估计⼝袋中红球的个数,采⽤了如下的⽅法:先把⼝袋中的球摇勻,再从⼝袋⾥随机摸出⼀球,记下颜⾊,然后把它放回⼝袋中,不断重复上述过程,⼩亮共摸了次,其中有次摸到⽩球,因此⼩亮估计⼝袋中的红球⼤约为 .∵⼩亮共摸了次,其中次摸到⽩球,则有次摸到红球,∴⽩球与红球的数量之⽐为,∵⽩球有个,∴红球有(个).13.【答案】【解析】经过三边都不相等的三⾓形的⼀个顶点的线段把三⾓形分成两个⼩三⾓形,如果其中⼀个是等腰三⾓形,另外⼀个三⾓形和原三⾓形相似,那么把这条线段定义为原三⾓形的“和谐分割线”.如图,线段是的“和谐分割线”,为等腰三⾓形,和相似,,则的度数为 .或∵,∴,∵是等腰三⾓形,∵,∴,即,①当时,,∴,②当时,,∴.14.如图,为了测量⼀棵树的⾼度,测量者在处⽴了⼀根⾼为的标杆,观测者从处可以看到杆顶,树顶在同⼀条直线上,若测得,,,则树⾼为.【答案】【解析】如图,过点作交于,交于,则,∴,∵,,∴,∵、都与底⾯垂直,∴.∴,∴,即,解得:,所以⼤树⾼:.15.如图,将⼀张⻓⽅形纸板的四个⾓上分别剪掉个⼩正⽅形和个⼩⻓⽅形(阴影部分即剪掉的部分),剩余的部分可以折成⼀个有盖的⻓⽅体盒⼦(纸板的厚度忽略不计).若⻓⽅形纸板边⻓分别为和,且折成的⻓⽅体盒⼦表⾯积是,此时⻓⽅体盒⼦的体积为 .【答案】【解析】设剪掉的⼩正⽅形的边⻓为,根据题意得:,整理得:,解这个⽅程得:,(不合题意,应舍去),当时,⻓⽅体盒⼦的体积为:.故此时⻓⽅体盒⼦的体积.16.【答案】【解析】如图,在平⾯直⾓坐标系中,矩形的两边、分别在轴和轴上,且,.在第⼆象限内,将矩形以原点为位似中⼼放⼤为原来的倍,得到矩形,再将矩形以原点为位似中⼼放⼤倍,得到矩形,以此类推,得到的矩形的对⾓线交点的坐标为 .xyO∵在第⼆象限内,将矩形以原点为位似中⼼放⼤为原来的倍,∴矩形与矩形是位似图形,点与点是对应点,∵,.∵点的坐标为,∴点的坐标为,∵将矩形以原点为位似中⼼放⼤倍,得到矩形…,∴,∴,∵矩形的对⾓线交点,即.三、作图题(本⼤题共1⼩题,共4分)17.【答案】【解析】⽤圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段和.求作:菱形,使菱形的边⻓为,其中⼀个内⾓等于.画图⻅解析.四、解答题(本⼤题共8⼩题,共68分)18.(1)(2)(1)(2)【答案】(1)【解析】⽤指定⽅法解⽅程:(配⽅法解).(公式法解).,.,.(2)或,..∵,∴⽅程有两个不相等的实根,∴,.即,.19.【答案】【解析】第⼀盒中有个⽩球、个红球,第⼆盒中有个⽩球、个红球,这些球除颜⾊外⽆其他差别.分别从每个盒中随机取出个球,求取出的个球中有个⽩球、个红球的概率.请通过列表格或画树状图说明理由.,画图⻅解析.列表法①②⽩⽩红⽩⽩⽩⽩⽩⽩红红红⽩红⽩红红红红⽩红⽩红红∴取出个⽩球,个红球概率为.20.如图,梯形中..且,,分别是,的中点.与相交于点.(1)(2)(1)(2)【答案】(1)(2)【解析】求证:.若,求.证明⻅解析..∵点、分别是、的中点且,∴.∵,∴四边形是平⾏四边形.∴.∴.∵,∴.∵,∴.∵,∴.∵,∴.21.(1)(2)(1)(2)【答案】⽅法⼀:(1)【解析】已知关于的⼀元⼆次⽅程有实数根.求的取值范围.如果⽅程的两个实数根为,,且,求的取值范围...根据题意得,解得.⽅法⼆:⽅法⼀:⽅法⼆:(2)根据题意得,,,.根据题意得,,⽽,所以,解得,⽽,所以的范围为.根据题意,,,,,,,,⼜∵,∴.22.(1)(2)(1)(2)【答案】(1)【解析】如图,四边形是正⽅形,点是边上⼀点,延⻓⾄使,连接.求证:.过点作,过点作,问四边形是什么特殊的四边形,并证明.证明⻅解析.四边形是正⽅形;证明⻅解析.∵四边形是正⽅形,(2)∴,,∴,在与中,∴≌∴.四边形是正⽅形,理由:∵,,∴四边形是平⾏四边形,∵≌,∴,∴四边形是菱形,∵,∴,∴四边形是正⽅形.23.(1)(2)(1)(2)【答案】(1)(2)【解析】某商店经销⼀种销售成本为每千克元的⽔产品,据市场分析,若每千克元销售,⼀个⽉能售出,销售单价每涨元,⽉销售量就减少,针对这种⽔产品情况,请解答以下问题:当销售单价定为每千克元时,计算销售量和⽉销售利润.商品想在⽉销售成本不超过元的情况下,使得⽉销售利润达到元,销售单价应为多少.千克,元.元.当销售单价定为每千克元时,⽉销量为(千克),所以⽉销售利润为:元.由于⽔产品不超过,定价为元,则,解得:,,当时,进货,符合题意,当时,进货,舍去.答:商品想在⽉销售成本不超过元的情况下,使得⽉销售利润达到元,销售单价应为元.24.(1)(2)【阅读资料】同学们,我们学过⽤配⽅法解⼀元⼆次⽅程,也可⽤配⽅法求代数式的最值.()求的最⼩值.解:,因⼤于等于,所以⼤于等于,即的最⼩值是,此时.()求的最⼤值.解:,因⼤于等于,所以⼩于等于,所以⼩于等于,即的最⼤值是,此时,.【探索发现】如图①,是⼀张直⾓三⾓形纸⽚,,,,⼩明想从中剪出⼀个以为内⾓且⾯积最⼤的矩形,经过多次操作发现,当沿着中位线、剪下时,所得的矩形的⾯积最⼤.下⾯给出了未写完的证明,请你阅读下⾯的证明并写出余下的证明部分,并求出矩形的最⼤⾯积与原三⾓形⾯积的⽐值.图解:在上任取点,作,,得到矩形.设,易证,则,,,,请你写出剩余部分.【拓展应⽤】矩形(3)(4)(1)(2)(3)(4)【答案】(1)【解析】如图②,在中,,边上的⾼,矩形的顶点、分别在边、上,顶点、在边上,则矩形⾯积的最⼤值为 .(⽤含,的代数式表⽰)图【灵活应⽤】如图③,有⼀块“缺⾓矩形”,,,,,⼩明从中剪出了⼀个⾯积最⼤的矩形(为所剪出矩形的内⾓),该矩形的⾯积为 .(直接写出答案)图【实际应⽤】如图④,现有⼀块四边形的⽊块余料,经测量,,,且,⽊匠徐师傅从这块余料中裁出了顶点、在边上且⾯积最⼤的矩形,该矩形的⾯积为 .(直接写出答案)图证明⻅解析;矩形的最⼤⾯积与原三⾓形⾯积的⽐值为.【探索发现】,矩形(2)(3)∵,∴,∴矩形的⾯积的最⼤值为.∵原三⾓形⾯积,故矩形的最⼤⾯积与原三⾓形⾯积的⽐值为:.【拓展应⽤】设,∵,∴,∴,∵,边上的⾼,∴,,∴,∴的最⼤值为:.则矩形⾯积的最⼤值为.故答案为:.【灵活应⽤】如图③,延⻓、交于点,延⻓、交于点,延⻓、交于点,取中点,的中点,图由题意知四边形是矩形,∵,,,,∴,,∴,,在和中,矩形(4)∵,∴≌,∴,同理≌,∴,∴,∵,∴中位线的两端点在线段和上,过点作于点.由【探索发现】知矩形的最⼤⾯积为.故答案为:.【实际应⽤】如图④,延⻓、交于点,过点作于点.图∵,∴,∵,∴,∵,设,则,∵,,∴,,∴,∵,∴,∴的中点在线段上,∵,∴的中点在线段上,∴中位线的两端点在线段、上,由【拓展应⽤】知,矩形的最⼤⾯积为,故答案为:.25.(1)(2)(3)(4)(1)(2)(3)(4)【答案】(1)(2)【解析】如图,在矩形中,,,为对⾓线.点从点出发,沿线段向点运动,点从点出发,沿线段向点运动,两点同时出发,速度都为每秒个单位⻓度,当点运动到时,两点都停⽌.设运动时间为秒.(备⽤图)是否存在某⼀时刻,使得?若存在,求出的值;若不存在,则说明理由.设四边形的⾯积为,求与之间的函数关系式.是否存在某⼀时刻,使得?若存在.求出的值;若不存在,则说明理由.是否存在某⼀时刻,使得?若存在,求出的值;若不存在,则说明理由.存在,..存在,.存在,.,.∵,∴∴..,,四边形矩形四边形。
2019-2020学年九年级数学上学期期中原创卷A卷(山东)(全解全析)

2019-2020学年上学期期中原创卷A卷九年级数学·全解全析123456789101112C A BD A B A C C D B C 1.【答案】C【解析】A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.2.【答案】A【解析】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故选A.3.【答案】B【解析】A.“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C.“概率为0.0001的事件”是随机事件,选项错误;D.任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.4.【答案】D【解析】(x+4)(x–3)=0,x+4=0或x–3=0,所以x1=–4,x2=3.故选D.5.【答案】A【解析】把△AOB绕点O顺时针旋转得到△COD,旋转角是∠AOC或∠BOD.故选A.6.【答案】B【解析】∵OA=OB,∴∠BAO=∠ABO=40°,∴∠O=180°–40°–40°=100°,∴111005022C O∠=∠=⨯= .故选B.7.【答案】A【解析】仰卧起坐次数在15~20次的频率为:301012530---=0.1,故选A.8.【答案】C【解析】所有出现的情况如下,共有16种情况,积为奇数的有4种情况,积123411234224683369124481216所以在该游戏中甲获胜的概率是416=14.乙获胜的概率为1216=34.故选C .9.【答案】C【解析】由图象可知,0,0,0a b c <<>,则c Q a b ⎛⎫ ⎪⎝⎭,在第三象限.故选C .10.【答案】D【解析】当y =5时,则21520x =,解之得10x =(负值舍去),故选D .11.【答案】B【解析】如图,连接AD ,∵BC 为⊙A 的切线,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×2=4,∵∠EAF =80°,∴S 扇形AEF =2802360π⨯=89π,∴S 阴影=S △ABC –S 扇形AEF =4–89π,故选B .12.【答案】C【解析】∵二次函数y =ax 2+bx +c (a ≠0)的部分图象与x 轴交于点A (–1,0),与y 轴交于点B ,且对称轴为x =1,∴图象与x 轴的另一个交点为:(3,0),故当–1<x <3时,y >0;故①错误;一元二次方程ax 2+bx +c =0的两根为x 1=–1,x 2=3,②正确;当y <0时,x <–1或x >3;故③错误;抛物线上两点(x 1,y 1),(x 2,y 2).当x 1>x 2>2时,两点都在对称轴右侧,y 随x 的增大而减小,故y 1<y 2,故④错误.故选C .13.【答案】(–1,–2)【解析】点M (1,2)关于原点的对称点的坐标为(–1,–2).故答案为:(–1,–2).14.【答案】1【解析】∵方程x 2–x –2=0的两根分别为x 1、x 2,∴x 1+x 2=1.故答案为:1.15.【答案】y =x 2–2【解析】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1–3,即y =x 2–2.故答案为:y =x 2–2.16.【答案】25【解析】确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P =25.故答案为:25.17.【答案】132y y y >>【解析】26y x x c =-+可整理为()239y x c =-+-,根据函数解析式的特点可知当x =3时y 最小,函数图象关于x =3对称,图象开口向上,当x <3时,y 随x 的增大而减小,对比A 、B 横坐标都比3小,且–1<2,则12y y >,根据图象的对称性,横坐标距离对称轴x =3越远的点其y 值越大,则A 、B 、C 点横坐标离x =3的距离分别为:134-+=、231-=、33+-=41>>,则132y y y >>.故答案为:132y y y >>.18.【答案】2【解析】M (p ,q )在抛物线y =x 2–1上,故有q =p 2–1,即p 2–q =1;设A ,B 两点的横坐标分别为m 、n ;因为A 、B 两点的横坐标是关于x 的方程x 2–2px +q =0的两根,所以m +n =2p ,mn =q ;而弦AB 的长的等于|m –n |,故|m –n |2=(m +n )2–4mn =4p 2–4q =4(p 2–q )=4.∴|m –n |=2,故答案为:2.19.【解析】1()方程整理,得23110x x x ---=()(),因式分解,得[]1310x x x ---=()(),于是,得10x -=或230x -=,解得11x =,232x =;(3分)2()方程整理,得2310x x -+=,1a = ,3b =-,1c =,224341150b ac ∴=-=--⨯⨯=>(),43522b b ac x a -±∴==,即1352x +=,2352x =.(6分)20.【解析】(1)根据题意得:△=(–2)2–4(m –2)≥0,解得m ≤3;(3分)(2)根据题意得:x 1+x 2=2,x 1x 2=m –2,∴3x 1+3x 2–x 1x 2=6–(m –2)=–m +8,而m ≤3,所以当m =3时,3x 1+3x 2–x 1x 2的值最小,最小值为:–3+8=5.(6分)21.【解析】∵AB AC =,∴AB =AC ,∴△ABC 为等腰三角形(相等的弧所对的弦相等),(3分)∵∠ACB =60°,∴△ABC 为等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠COA (相等的弦所对的圆心角相等).(6分)22.【解析】(1)设这两年该校植树棵数的年平均增长率为x ,根据题意得:500(1+x )2=720,(4分)解得x 1=0.2=20%,x 2=–2.2(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(6分)(2)720×(1+20%)=864(棵).答:该校第四年植树864棵.(8分)23.【解析】(1)黄球个数:100.44⨯=(个),白球个数:()4232+÷=(个),红球个数:10424--=(个),即袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(3分)(2)设放入红球x 个,则()4100.7x x +=+⨯,解得10x =,即向袋中放入10个红球;(6分)(3)()20.11010P ==+摸出一个球是白球,即摸出一个球是白球的概率是0.1.(8分)24.【解析】(1)如图,△A 1B 1C 1为所作;(4分)(2)如图,△A2B2C2为所作,点C2的坐标为(–3,1);(7分)(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(–n,m).故答案为:(–3,1),(–n,m).(10分)25.【解析】(1)根据题意得,y=200+(80–x)×20=–20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=–20x+1800(60≤x≤80);(3分)(2)W=(x–60)y=(x–60)(–20x+1800)=–20x2+3000x–108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=–20x2+3000x–108000;(5分)(3)根据题意得,–20x+1800≥240,解得x≤78,∴76≤x≤78,W=–20x2+3000x–108000,对称轴为x=–30002(20)⨯-=75,∵a=–20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76–60)(–20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.(10分)26.【解析】(1)如图,连接OA,由题意得:AD=12AB=30,OD=r–18,(3分)在Rt△ADO中,由勾股定理得:r2=302+(r–18)2,解得r=34;(5分)(2)如图,连接OA ′,∵OE =OP –PE =30,(6分)在Rt △A ′EO 中,由勾股定理得:A ′E 2=A ′O 2–OE 2,即:A ′E 2=342–302,(8分)解得A ′E =16.∴A ′B ′=32.∵A ′B ′=32>30,∴不需要采取紧急措施.(12分)27.【解析】(1)∵抛物线与x 轴的交点A (–3,0),对称轴为直线x =–1,∴抛物线与x 的轴交点B 的坐标为(1,0),设抛物线解析式为y =a (x +3)(x –1),将点C (0,–3)代入,得:–3a =–3,解得a =1,则抛物线解析式为y =(x +3)(x –1)=x 2+2x –3;(4分)(2)设点P 的坐标为(a ,a 2+2a –3),则点P 到OC 的距离为|a |.∵S △POC =4S △BOC ,∴12•OC •|a |=12OC •OB ,即12×3×|a |=4×12×3×1,解得a =±4.当a =4时,点P 的坐标为(4,21);当a =–4时,点P 的坐标为(–4,5).∴点P 的坐标为(4,21)或(–4,5).(8分)(3)如图所示:设AC 的解析式为y =kx –3,将点A 的坐标代入得:–3k –3=0,解得k =–1,∴直线AC 的解析式为y =–x –3.设点D 的坐标为(x ,x 2+2x –3),则点Q 的坐标为(x ,–x –3).∴QD =–x –3–(x 2+2x –3)=–x –3–x 2–2x +3=–x 2–3x =–(x 2+3x +94–94)=–(x +32)2+94,∴当x =–32时,QD 有最大值,QD 的最大值为94.(12分)。
青岛市局属四校2019-2020学年九年级(上)期中数学试卷

2019-2020学年九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠23.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.94.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.66.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.328.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为cm3.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为.三.解答题(共72分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为.(直接写出答案)25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.。
2019青岛版初三数学上学期期中测试卷(含答案解析)精品教育.doc

青岛版2019初三数学上学期期中测试卷(含答案解析)青岛版2019初三数学上学期期中测试卷(含答案解析) 一、选择题(每小题3分,共60分)1.方程的解是( ).A.2 B.-2或1 C.-1 D.2或-12. 用配方法解方程 ,则配方正确的是()A. B. C. D.3、在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是()(A) (B) (C) (D)(第3题) (第4题)4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对5.如图在Rt ABC中, C=90o,AC=BC,点D在AC上, CBD=30o,则的值是()(A)(B)(C) -1 (D)不能确定6.在 ABC中, B=45o, C=60o,BC边上的高AD=3,则BC的长为()(A)3+3 (B)3+ (C)2+ (D) +7.如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,则圆柱B的体积为()A.24πcm3B. 36πcm3C. 36cm3D. 40cm38.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A.17cm B.4cm C.15cm D.3cm9.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为和,则与的函数图象大致是()10.下列语句中不正确的有:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧.()A.1个B.2个 C.3个D.4个11.如图4,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于()A.42 ° B.28° C.21° D.20°12.如图,将半径为的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长为()A、 B、 C、 D、13. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x -2 0 1y 3 p 0A.1 B.-1 C.3 D.-314.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<415 . 已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A. y3<y1<y2 B. y1<y2<y3 C. y2<y1<y3 D. y3<y2<y116. 若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B. 0或2 C. 2或﹣2 D. 0,2或﹣217.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()18.已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数的图象可能是()A. B C D .19. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大20. 若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=.A.3 B.﹣3 C.9 D.﹣9青岛版201初三数学上学期期中测试卷(含答案解析)参考答案:一.选择题答案题号 1 2 3 4 5 6 7 8 9 10答案题号 11 12 13 14 15 16 17 18 19 20答案二.填空题(每小题3分)21.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.22.函数y= 与y=x-2图象交点的横坐标分别为a,b,则的值为_______________.23.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x 上的概率为。
最新2019-2020年度青岛版九年级数学上学期期中考试模拟测试题及答案解析-精编试题

九年级数学青岛版期中试卷(时间120分钟,满分120分)一.选择题(共15小题)1.(2014•凉山州)如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:2.(2014•安徽名校一模)如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对B.3对C.4对D.5对(2)(3)(4)(5)3.(2014•本溪)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC 相交于点F,AB=9,BD=3,则CF等于()A.1B.2C.3D.44.(2013•北京)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m 5.(2014•武汉)已知,如图,E(﹣4,2),F(﹣1,﹣1)以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.(﹣2,1)B.(2,﹣1)C.2,﹣1)或(﹣2,1)D.(﹣2,1)或(2,﹣1)6.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()2-1-c-n-j-yA.B.C.D.(6)(8)(9)(10)7.(2014•天津)cos60°的值等于()A.B.C.D.8.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米9.(2014•兰州)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.A E=BE B.=C.O E=DE D.∠DBC=90°10.(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°11.(2014•高青县模拟)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.(11)(13)(14)(17)12.(2014•白银)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断13.(2013•保定)如图⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∠ACB=90°,则∠EDF的度数为()A.25°B.30°C.45°D.60°14.(2014•泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2 15.(2014•天津)正六边形的边心距为,则该正六边形的边长是()A.B.2C.3D.2二.填空题(共8小题)16.(2014•阜新)已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF 的周长是_________.17.(2014•黔南州)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为_________.2·1·c·n·j·y18.(2014•海南)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE= _________.(18) (20) (21) (23) 19.(2014•太原二模)如图,平面直角坐标系中,点A,B的坐标分别为(6,0),(4,﹣6),△A′B′O△ABO是以原点O为位似中心的位似图形,且△A′B′O与△ABO 的位似比为1:2,则B′的坐标为_________.20.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C= _________.21.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.22.(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_________.23.(2014•成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= _________度.三.解答题(共5小题)24.(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.25.(2014•柳州)如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.(1)求证:△ABE∽△ADC;(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.26.(2014•天水)根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M距羲皇大道l(直线)的距离MN为30米(如图所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度.(2)通过计算判断此车是否超速.27.(2014•内江)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)28.(2014•新疆)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.参考答案一.选择题(共15小题)1.D.2.C.3.B.4.B.5.C.6.D.7.A.8.D.9.C.10.C.11.B.12.A.13.C.14.A.15.B.二.填空题(共8小题)16.12 .17..18.5.19.(2,﹣3)或(﹣2,3).20.75°.21.3+.22.10或8 .23.40三.解答题(共5小题)24.证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.25.证明:(1)∵∠BAC的角平分线AD,∴∠BAE=∠CAD,∵∠B=∠D,∴△ABE∽△ADC;(2)∵∠BAD=∠CAD,∴=,∵OD为半径,∴DO⊥BC,∵F为OD的中点,∴OB=BD,OC=CD,∵OB=OC,∴OB=BD=CD=OC,∴四边形OBDC是菱形.26.解:(1)在Rt△AMN中,MN=30,∠AMN=60°,∴AN=MN•tan∠AMN=30.在Rt△BMN中,∵∠BMN=45°,∴BN=MN=30.∴AB=AN+BN=(30+30)米;(2)∵此车从A点行驶到B点所用时间为6秒,∴此车的速度为:(30+30)÷6=5+5≈13.66,∵60千米/时≈16.66米/秒,∴13.66<16.66∴不会超速.27.解:∵∠BCF=90°,∠CBF=45°,∴BC=CF,∵∠CAF=30°,∴tan30°====,解得:CF=400+400≈400(1.7+1)=1080(米).答:竖直高度CF约为1080米.28.(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年山东省青岛市局属四校九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A 、B 、C 、D 四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.(3分)方程2x x =的解是( ) A .1x =B .0x =C .11x =-,20x =D .11x =,20x =2.(3分)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC =C .AC BD =D .12∠=∠3.(3分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x ,根据题意列方程得( ) A .210(1)16.9x += B .10(12)16.9x += C .210(1)16.9x -=D .10(12)16.9x -=4.(3分)在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为( ) A .13B .14C .16 D .185.(3分)如图,在ABC △中,//DE BC ,3BD AD =,12BC =,则DE 的长是( )A .3B .4C .5D .66.(3分)如图,把ABC △沿着BC 的方向平移到DEF △的位置,它们重叠部分的面积是ABC △面积的一半,若3BC =,则ABC △移动的距离是( )A .32B .33C .62D .632-7.(3分)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8B .12C .16D .328.(3分)如图,点O 为正方形ABCD 的中心,1AD =,BE 平分DBC ∠交DC 于点E ,延长BC 到点F ,使BD BF =,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①//OH BF ;②:2:1OG GH =;③212GH -=;④2CHF EBC ∠=∠;⑤2CH HE HB =.正确结论的个数为( )A .1B .2C .3D .4二、填空题(本题满分24分,共有8道小题,每小题3分)9.(3分)若一元二次方程220190ax bx --=有一个根为1x =-,则a b += . 10.(3分)若一个直角三角形两条直角边的长分别是a ,b ,满足2222()(1)12a b a b +++=,则这个直角三角形的斜边长为 .11.(3分)若点C 是线段AB 的黄金分割点()AC BC >,8AB cm =,则AC = . 12.(3分)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为 个.13.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC △的“和谐分割线”, ACD △为等腰三角形,CBD △和ABC △相似,46A ∠=︒,则ACB ∠的度数为 .14.(3分)如图,为了测量一棵树CD 的高度,测量者在B 处立了一根高为2.5m 的标杆,观测者从E 处可以看到杆顶A ,树顶C 在同一条直线上,若测得7BD m =,3FB m =,1.6EF m =,则树高为 m .15.(3分)如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm 和30cm ,且折成的长方体盒子表面积是2950cm ,此时长方体盒子的体积为 3cm .16.(3分)如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且2OA =,1OC =.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111AOC B ,再将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ⋯,以此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .三、作图题(本题满分4分)17.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和α∠.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于α∠.四、解答题(本大题共8道小题,满分68分)18.(8分)用指定方法解方程:(1)2+-=(配方法解)2430x x(2)2-=-(公式法解)x x58219.(6分)第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.(6分)如图梯形ABCD 中,//AB CD ,且2AB CD =,E ,F 分别是AB ,BC 的中点,EF 与BD 相交于点M(1)求证:EDM FBM △∽△; (2)若9DB =,求BM .21.(6分)已知关于x 的一元二次方程26(21)0x x m -++=有实数根. (1)求m 的取值范围;(2)如果方程的两个实数根为1x ,2x ,且1212220x x x x ++,求m 的取值范围.22.(8分)如图,四边形ABCD 是正方形,点E 是边AB 上一点,延长AD 至F 使DF BE =,连接CF .(1)求证:BCE DCF ∠=∠;(2)过点E 作//EG CF ,过点F 作//FG CE ,问四边形CEGF 是什么特殊的四边形,并证明.23.(10分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg ,销售单价每涨2元,月销售量就减少20kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.(12分)【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值. (1)求241619x x ++的最小值.解:222416194161634(2)3x x x x x ++=+++=++因2(2)x +大于等于0,所以241619x x ++大于等于3,即241619x x ++的最小值是3.此时,2x =-(2)求22m m --+的最大值解:222211192()2()2()4424m m m m m m m --+=-++=-++-+=-++ 因21()2m +大于等于0,所以21()2m -+小于等于0,所以219()24m -++小于等于94,即22m m --+的最大值是94,此时,12m =-. 【探索发现】如图①,是一张直角三角形纸片,90B ∠=︒,8AB =,6BC =,小明想从中剪出一个以B∠为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC 上任取点E ,作ED BC ⊥,EF AB ⊥,得到矩形BDEF .设EF x = 易证AEF ACB △∽△,则AF AE EF AB AC BC ==,8106AF AE x ==,45,33AF x AE x ==,2448833BDEFS EF BF x x x x ⎛⎫=⋅=-=-⋯ ⎪⎝⎭矩形请你写出剩余部分 【拓展应用】如图②,在ABC △中,BC a =,BC 边上的高AD h =,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 【灵活应用】如图③,有一块“缺角矩形” ABCDE ,32AB =,40BC =,20AE =,16CD =,小明从中剪出了一个面积最大的矩形(B ∠为所剪出矩形的内角),该矩形的面积为 .(直接写出答案) 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量70AB cm =,108BC cm =,76CD cm =,且60B C ∠=∠=︒,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,该矩形的面积为 .(直接写出答案)25.(12分)如图,在矩形ABCD 中,4AB =,3BC =,BD 为对角线.点P 从点B 出发,沿线段BA 向点A 运动,点Q 从点D 出发,沿线段DB 向点B 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到A 时,两点都停止.设运动时间为t 秒.(1)是否存在某一时刻t ,使得//PQ AD ?若存在,求出t 的值;若不存在,说明理由. (2)设四边形BPQC 的面积为S ,求S 与t 之间的函数关系式.(3)是否存在某一时刻t ,使得:9:20ABCD BPQC S S =矩形四边形?若存在,求出t 的值;若不存在,则说明理由.(4)是否存在某一时刻t ,使得PQ CQ ⊥?若存在,求出t 的值;若不存在,则说明理由.2019-2020学年山东省青岛市局属四校九年级(上)期中数学试卷参考答案一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A 、B 、C 、D 四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.(3分)方程2x x =的解是( ) A .1x =B .0x =C .11x =-,20x =D .11x =,20x =【解答】解:2x x =, 移项得20x x -=, 提公因式得(1)0x x -=, 解得11x =,20x =. 故选:D .2.(3分)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC =C .AC BD =D .12∠=∠【解答】解:A 、正确.对角线垂直的平行四边形是菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选:C .3.(3分)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x ,根据题意列方程得( )A .210(1)16.9x +=B .10(12)16.9x +=C .210(1)16.9x -=D .10(12)16.9x -=【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x , 根据题意,可列方程:210(1)16.9x +=, 故选:A .4.(3分)在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为( ) A .13B .14C .16 D .18【解答】解:可以得到的所有两位数为:12,13,14,23,24,34,43,42,41,32,31,21,共有12个.其中能被3整除的有4个, 所以两位数能被3整除的概率是41123=, 故选:A .5.(3分)如图,在ABC △中,//DE BC ,3BD AD =,12BC =,则DE 的长是( )A .3B .4C .5D .6【解答】解:3BD AD =, :1:3AD BD ∴=, :1:4AD AB ∴=, //DE BC ,ADE ABC ∴△∽△,∴14DE AD BC AB ==, 12BC =, 3DE ∴=,故选:A .6.(3分)如图,把ABC △沿着BC 的方向平移到DEF ∆的位置,它们重叠部分的面积是ABC △面积的一半,若3BC =,则ABC △移动的距离是( )A 3B 3C 6D 63【解答】解:ABC △沿BC 边平移到DEF △的位置,//AB DE ∴,ABC HEC ∴△∽△,∴21()2HECABC S EC S BC ==△△,:2EC BC ∴= 3BC =,6EC ∴=63BE BC EC ∴=-=.故选:D .7.(3分)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为() A .8 B .12 C .16 D .32【解答】解:如图所示:四边形ABCD 是菱形,12AO CO AC ∴==,12DO BO BD ==,AC BD ⊥,面积为28, ∴12282AC BD OD AO ==①菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++=+=.8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16.故选:C .8.(3分)如图,点O 为正方形ABCD 的中心,1AD =,BE 平分DBC ∠交DC 于点E ,延长BC 到点F ,使BD BF =,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中:①//OH BF ;②:2:1OG GH =;③212GH -=;④2CHF EBC ∠=∠;⑤2CH HE HB =.正确结论的个数为( )A .1B .2C .3D .4【解答】解:①BD BF =,BE 平分DBC ∠,DH HF ∴=,BH DF ⊥,OD OB =,OH ∴是DBF △的中位线,//OH BF ∴;故①正确;②③点O 为正方形ABCD 的中心,1AD =,BD BF =,2BD BF ∴==由三角形中位线定理知,1122OG BC ==,11(21)22GH CF ==-, :1:(21)OG GH ∴=, 故②错误,③正确;④90BCE BHD ∠=∠=︒,BEC DEH ∠=∠,EBC EDH ∴∠=∠,OH 是DBF △的中位线,DH HF ∴=, 又CD BF ⊥,DH CH ∴=,CDH DCH ∴∠=∠,2CHF DCH CDH EBC ∴∠=∠+∠=∠.故④正确;⑤ECH CBH ∠=∠,CHE CHB ∠=∠,HEC HCB ∴△∽△,::CH HB HE CH ∴=,即2CH HE HB =,故⑤正确.故选:D .二、填空题(本题满分24分,共有8道小题,每小题3分)9.(3分)若一元二次方程220190ax bx --=有一个根为1x =-,则a b += .【解答】解:把1x =-代入一元二次方程220190ax bx --=得2019a b +-,所以2019a b +=.故答案为2019.10.(3分)若一个直角三角形两条直角边的长分别是a ,b ,满足2222()(1)12a b a b +++=,则这个直角三角形的斜边长为 .【解答】解:a ,b 是一个直角三角形两条直角边的长设斜边为c ,2222()(1)12a b a b ∴+++=,根据勾股定理得:22(1)120c c +-=即22(3)(4)0c c -+=,240c +≠,230c ∴-=,解得c c =(舍去).故答案为:3 11.(3分)若点C 是线段AB 的黄金分割点()AC BC >,8AB cm =,则AC = .【解答】解:设AC 的长为xcm ,根据黄金分割定义可知:AC BC AB AC=即2AC AB BC =, 28(8)x x =-28640x x +-=,解得14(51)x =-,24(51)x =-+(不符合题意,舍去).所以AC 的长为4(51)cm -.故答案为4(51)cm -.12.(3分)一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为 个.【解答】解:小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球, ∴白球与红球的数量之比为1:4,白球有10个,∴红球有41040⨯=(个).故答案为:40.13.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”, ACD △为等腰三角形,CBD △和ABC △相似,46A ∠=︒,则ACB ∠的度数为 .【解答】解:CBD ABC △∽△,46BCD A ∴∠=∠=︒,ACD △是等腰三角形,ADC BCD ∠>∠,ADC A ∴∠>∠,即AC CD ≠,①当AC AD =时,1(18046)672ACD ADC ∠=∠=︒-︒=︒, 6746113ACB ∴∠=︒+︒=︒,②当DA DC =时,46ACD A ∠=∠=︒,464692ACB ∴∠=︒+︒=︒,故答案为113︒或92︒.14.(3分)如图,为了测量一棵树CD 的高度,测量者在B 处立了一根高为2.5m 的标杆,观测者从E 处可以看到杆顶A ,树顶C 在同一条直线上,若测得7BD m =,3FB m =,1.6EF m =,则树高为 m .【解答】解:作EH CD ⊥于H ,交AB 于G ,如图,则3EG BF m ==,7GH BD m ==, 1.6GB HD EF m ===,所以 2.5 1.60.9()AG AB GB m =-=-=,//AG CH ,EAG ECH ∴△∽△,∴AG EG CH EH =,即0.9310CH =, 解得:3CH =,4.6()CD CH DH m ∴=+=.故答案为:4.6.15.(3分)如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm 和30cm ,且折成的长方体盒子表面积是2950cm ,此时长方体盒子的体积为 3cm .【解答】解:设剪掉的小正方形的边长为xcm ,根据题意,得:222023040950x x +⨯=⨯-,2201250x x +-=,解这个方程得:15x =,225x =-(不合题意,应舍去),当5x =时,长方体盒子的体积为:3(302)(20)5(3025)(205)1500()x x x cm --=⨯-⨯⨯-=, 答:此时长方体盒子的体积31500cm故答案为:1500.16.(3分)如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且2OA =,1OC =.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111AOC B ,再将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ⋯,以此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .【解答】解:在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍, ∴矩形111AOC B 与矩形AOCB 是位似图形,点B 与点1B 是对应点,2OA =,1OC =.点B 的坐标为(2,1)-,∴点1B 的坐标为3(22-⨯,31)2⨯, 将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ⋯, 233(222B ∴-⨯⨯,331)22⨯⨯, 3(22n n n B ∴-⨯,31)2nn ⨯, 矩形n n n A OC B 的对角线交点31(222n n -⨯⨯,311)22n n ⨯⨯,即3(2n n -,13)2nn +, 故答案为:3(2n n -,13)2nn +. 三、作图题(本题满分4分)17.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a 和α∠.求作:菱形ABCD ,使菱形ABCD 的边长为a ,其中一个内角等于α∠.【解答】解:如图菱形ABCD 即为所求.四、解答题(本大题共8道小题,满分68分)18.(8分)用指定方法解方程:(1)22430x x +-=(配方法解)(2)2582x x -=-(公式法解)【解答】解:(1)22430x x +-=,2322x x ∴+=, 25(1)2x ∴+=, 101x ∴+=, 101x ∴=-(2)2582x x -=-,5a ∴=,8b =-,2c =,∴6445224∆=-⨯⨯=,8244610x ±∴=; 19.(6分)第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.【解答】解:列表如下:白 红 红 白(白,白) (红,白) (红,白) 白 (白,白) (红,白) (红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中取出的2个球中有1个白球、1个红球的情况有5种,所以P(取出的2个球中有1个白球、1个红球)59 =.20.(6分)如图梯形ABCD中,//AB CD,且2AB CD=,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:EDM FBM△∽△;(2)若9DB=,求BM.【解答】(1)证明:2AB CD=,点E是AB的中点,DC EB∴=.又//AB CD,∴四边形BCDE为平行四边形.//ED BC∴.EDB FBM∴∠=∠.又DME BMF∠=∠,EDM FBM∴△∽△.(2)解:由F为BC的中点,得到2BC FB=,又四边形DCBE为平行四边形,得到DE BC=,则2DE FB=,即:1:2FB DE=,FBM∴△与EDM△的相似比为1:2,即:2:1DM MB=,又9BD=,设2DM k=,MB k=,所以29BD BM MD k k=+=+=,解得3k=,则3BM=.21.(6分)已知关于x 的一元二次方程26(21)0x x m -++=有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为1x ,2x ,且1212220x x x x ++,求m 的取值范围.【解答】解:(1)根据题意得2(6)4(21)0m ∆=--+, 解得4m ;(2)根据题意得126x x +=,1221x x m =+,而1212220x x x x ++,所以2(21)620m ++,解得3m ,而4m ,所以m 的范围为34m .22.(8分)如图,四边形ABCD 是正方形,点E 是边AB 上一点,延长AD 至F 使DF BE =,连接CF .(1)求证:BCE DCF ∠=∠;(2)过点E 作//EG CF ,过点F 作//FG CE ,问四边形CEGF 是什么特殊的四边形,并证明.【解答】(1)证明:四边形ABCD 是正方形, 90B ADC BCD ∴∠=∠=∠=︒,BC CD =,90B CDF ∴∠=∠=︒,在BCE △与DCF △中BE DF B CDF BC DC =⎧⎪∠=∠⎨⎪=⎩,()BCE DCF SAS ∴△≌△,BCE DCF ∴∠=∠;(2)解:四边形CEGF 是正方形,理由://EG CF ,//FG CE ,∴四边形CEGF 是平行四边形,BCE DCF △≌△,CE CF ∴=,∴四边形CEGF 是菱形,BCE DCF ∠=∠,90ECF BCD ∴∠=∠=︒,∴四边形CEGF 是正方形.23.(10分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg ,销售单价每涨2元,月销售量就减少20kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【解答】解:(1)当销售单价定为每千克56元时,月销售量为:500(5650)10440--⨯=(千克),所以月销售利润为:(5640)4407040-⨯=元;(2)由于水产品不超过1000040250kg ÷=,定价为x 元,则(40)[50010(50)]8000x x ---=,解得:180x =,260x =.当180x =时,进货50010(8050)200250kg kg --=<,符合题意,当260x =时,进货50010(6050)400250kg kg --=>,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.24.(12分)【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求241619x x ++的最小值.解:222416194161634(2)3x x x x x ++=+++=++因2(2)x +大于等于0,所以241619x x ++大于等于3,即241619x x ++的最小值是3.此时,2x =-(2)求22m m --+的最大值 解:222211192()2()2()4424m m m m m m m --+=-++=-++-+=-++ 因21()2m +大于等于0,所以21()2m -+小于等于0,所以219()24m -++小于等于94,即22m m --+的最大值是94,此时,12m =-. 【探索发现】如图①,是一张直角三角形纸片,90B ∠=︒,8AB =,6BC =,小明想从中剪出一个以B ∠为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC 上任取点E ,作ED BC ⊥,EF AB ⊥,得到矩形BDEF .设EF x =易证AEF ACB △∽△,则AF AE EF AB AC BC ==,8106AF AE x ==,45,33AF x AE x ==,2448833BDEF S EF BF x x x x ⎛⎫=⋅=-=-⋯ ⎪⎝⎭矩形 请你写出剩余部分【拓展应用】如图②,在ABC △中,BC a =,BC 边上的高AD h =,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示)【灵活应用】如图③,有一块“缺角矩形” ABCDE ,32AB =,40BC =,20AE =,16CD =,小明从中剪出了一个面积最大的矩形(B ∠为所剪出矩形的内角),该矩形的面积为 .(直接写出答案) 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量70AB cm =,108BC cm =,76CD cm =,且60B C ∠=∠=︒,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,该矩形的面积为 .(直接写出答案) 【解答】解:【探索发现】2244488(3)12333BDEF S EF BF x x x x x ⎛⎫=⋅=-=-=--+ ⎪⎝⎭矩形, 24(3)03x --, ∴24=(3)12123BDEF S EF BF x =⋅--+矩形,∴矩形BDEF 的面积的最大值为12. 【拓展应用】设PN b =, //PN BC ,APN ABC ∴△∽△,∴AE PN AD BC=, BC a =,BC 边上的高AD h =,∴h PQ b h a -=,ah bh PQ a-=, 222()244abh hb h h a ah ah S b PQ b bh b a a a -∴===-+=--+ S ∴的最大值为:4ah ; 则矩形PQMN 面积的最大值为4ah ; 故答案为:4ah .【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD 交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,32AB =,40BC=,20AE=,16CD=,20EH∴=、16DH=,AE EH∴=、CD DH=,在AEF△和HED△中,FAE DHEAE AHAEF HED∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF HED ASA∴△≌△,16AF DH∴==,同理CDG HDE△≌△,20CG HE∴==,242AB AFBI+∴==,2432BI=<,∴中位线IK的两端点在线段AB和DE上,过点K作KL BC⊥于点L,由【探索发现】知矩形的最大面积为1111(4020)(3216)7202222BG BF⨯=⨯+⨯+=,故答案为720.【实际应用】如图④,延长BA、CD交于点E,过点E作EH BC⊥于点H,60B C ∠=∠=︒,EB EC ∴=,EH BC ⊥,BH HC ∴=,tan 603EHHC =︒=设CH BH x ==,则3EH x =,1082BC BH CH x =+==,54x =,54BH CH ∴==,543EH ==2108EB EC BH ∴==,70AB =,38AE ∴=,BE ∴的中点Q 在线段AB 上,76CD =,CE ∴的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上,由【拓展应用】知,矩形PQMN 的最大面积为2111085431458344BC EH cm =⨯⨯, 故答案为214583cm .25.(12分)如图,在矩形ABCD 中,4AB =,3BC =,BD 为对角线.点P 从点B 出发,沿线段BA 向点A 运动,点Q 从点D 出发,沿线段DB 向点B 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到A 时,两点都停止.设运动时间为t 秒.(1)是否存在某一时刻t ,使得//PQ AD ?若存在,求出t 的值;若不存在,说明理由.(2)设四边形BPQC 的面积为S ,求S 与t 之间的函数关系式.(3)是否存在某一时刻t ,使得:9:20ABCD BPQC S S =矩形四边形?若存在,求出t 的值;若不存在,则说明理由.(4)是否存在某一时刻t ,使得PQ CQ ⊥?若存在,求出t 的值;若不存在,则说明理由.【解答】解:(1)四边形ABCD 是矩形,90A ∴∠=︒,4AB =,3AD BC ==, 2222345BD AB AD ∴=+=+=,由题意BP t =,DQ t =,//PQ AD ,∴BP BQ BA BD =, ∴545t t -=, 209t ∴=, ∴满足条件的t 的值为209.(2)作OE AB ⊥于E ,OF BC ⊥于F .//QE AD ,∴QE BQ AD DB =, ∴535QE t -=, 3(5)5QE t ∴=-, //QF CD , ∴QF BQ CD BD =, ∴545QF t -=, 4(5)5QF t ∴=-, 211131433(5)3(5)62225251010PBQ BCQ S S S PB QE BC QF t t t t t ∴=+=+=-+⨯⨯-=-++△△.(3)由题意:233(6):129:201010t t -++=, 整理得:220t t --=,解得2t =或1-(舍弃), ∴满足条件的t 的值为2.(4)如图1中,作OE AB ⊥于E ,OF BC ⊥于F . 当PQ QC ⊥时,QEP QFC △∽△,则EQ PE QF CF=, ∴34(5)(5)5543(5)3(5)55t t t t t ---=---, 解得169t =, ∴满足条件的t 的值为169.。