函数与方程思想在不等式教学中的应用

合集下载

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计 ———以《从函数观点看一元二次方程和一元二次不等式》为例吕建林(江苏省南京市第一中学,210019)基金项目:南京市教育科学“十三五”规划2020年度立项课题“指向数学抽象的高中数学单元教学设计实证研究”(编号L/2020/471)研究成果. 单元是基于一定目标与主题所构成的教材与经验的模块、单位,单元设计可以认为是对一个学习阶段的教与学活动的整体规划,主要包含学习主题、学习目标、学习内容、学习过程、评价任务、学后反思等要素.单元设计一般遵循“分析(Analysis)、设计(Design)、开发(Development)、实施(Implementa tion)、评价(Evaluation)”的程序.《从函数观点看一元二次方程和一元二次不等式》是高中数学必修课程预备知识板块中的重要内容.本单元是在学生学习了一元一次方程、一元一次不等式、一次函数、二次函数的基础上,学习从函数的观点看一元二次方程和一元二次不等式,体会函数、方程、不等式的统一性,为今后应用函数的方法解决有关问题奠定知识技能和学习方法的基础.1 学习目标的制定和学习内容的确立制定学习目标,可使学习者明确学习要求,了解学习路径和方法.本单元学习目标(见表1)是从“三个一次”入手,感受用函数观点看待问题的方法;结合一元二次不等式的求解探索,体会“三个二次”的关系,学会用函数观点认识和解决一元二次方程和不等式问题.单元学习目标采用三维叙写的书写方式,呈现“知识与技能→过程与方法→习惯与素养”的发展路径.为落实学习目标,需要选定与之相匹配的学习内容.本单元学习内容(见图1)的选择与划分体现“观察—计算—研究”与“图像—代数—数形结合”的双向沟通,便于学生深度学习,自主建构.横向:呈现一次到二次、具体到一般的双重递进,便于学生类比迁移、拓展延伸.纵向:挖掘函数、方程、不等式三者的数形关联,便于学生数形结合,聚焦函数观点.表1 本单元学习目标课标要求学习目标用函数理解方程和不等式是数学的基本思想方法.本单元的学习,可以帮助学生用二次函数认识一元二次方程和一元二次不等式.通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性. 1、通过求解实际问题,知道函数零点即对应方程的根,会结合一元一次函数图像分析得出一元一次不等式的解集,感受用函数观点看待问题的方法.2、会从实际情境中抽象出一元二次不等式模型,能运用函数观点,结合图像发现一元二次函数的零点与一元二次方程根的关系,会通过代数方法求具体的一元二次不等式的解集,提高数学运算能力.3、会用一元二次函数图像求一元二次不等式的解集,体会数学的整体性,养成借助直观理解概念、进行逻辑推理的思维习惯.2 任务情境的设计和学习路径的规划学科素养往往体现在真实的问题解决之中.要让学生置身于真实、有意义的任务情境,在“真做事”的过程中用数学的眼光观察世界,体会求解一元二次不等式的真实需求,感受探求一般的一元二次不等式解法的必要性;用数学的思维思考世界,主动联系已有的“三个一次”的经验,将之运用于“三个二次”相关任务,体会函数的思想方法.生活中与一元二次不等式有关的问题很多,例如:为达成单元目标,笔者创设了设计房屋雨水槽的真实情境,从具体规格要求出发,衍生出三项任务,引发学生思考和探究.详见表2:表2 本单元任务情境和学习路径任务任务情境探索路径核心素养任务一设计符合底面积要求的、截面为矩形的雨水槽现实问题抽象为熟悉的数学问题雨水槽底面积要求→解一元一次不等式数学建模、数学抽象任务二对比截面分别为矩形和等腰梯形的雨水槽设计方案,并做出选择具体问题转化为未知的数学问题雨水槽造型选择→解具体的一元二次不等式数学抽象、数学运算、直观想象任务三探寻一般的一元二次不等式的解集特殊问题拓展为一般问题解具体的一元二次不等式→解一般的一元二次不等式数学抽象、直观想象、数学运算 学习任务可通过“情境—问题—问题解决—总结”的程序来落实.任务达成基于富有层次的活动驱动,应围绕任务设计独立探究或小组合作活动,并酌情穿插问答以支持学生学习.以任务二中的探究活动为例:【活动】雨季将至,为了提前做好房屋排水工作,某小区住户准备更换自家房屋的雨水槽.该住户测量了自家房檐的长度,购买了一块长380厘米,宽30厘米的长方形铝板来自制雨水槽.为了与屋檐下预留的雨水槽位置相匹配,雨水槽底面的面积不得超过5700平方厘米.经市场调查,雨水槽横截面的造型一般有两种.方案一:矩形;方案二:底角为53°的倒置等腰梯形,上不封顶.当地气象台预计,今年雨季的降雨量大约会比往年增加5%.为保证排水量,物业要求雨水槽的横截面积不得小于100平方厘米.住户根据屋檐特点,希望雨水槽深度尽可能小,请帮他选择一个设计方案.(铝板厚度忽略不计)活动过程中,教师可提出以下问题,为学生提供学习支架:【问题1】针对“雨水槽的横截面积不得小于100平方厘米”的要求,在方案一中,你能列出对应的关系式并进行求解吗?方案二呢?【问题2】借鉴任务一中对一元一次不等式求解的研究过程和结论,你能进一步求解问题1吗?学生可将问题1中的一元二次不等式转化成两个一次不等式联立的不等式组解决.问题2则启发学生联系“三个一次”的研究经验,用函数观点分析求解,完成探究任务.3 评价任务的设计和素养水平的考察每项学习任务都可以成为评价的工具.在一段学习活动结束时,也应设计一些练习检测,进行及时的、有针对性的测评,便于学生了解自己的学习状况,便于教师了解学生学会与否,为开展下一步的教学活动提供证据,从而落实“学—教—评一致”的设计要求.为检测学习目标2的达成情况,笔者选择了一个判定交通事故责任人的问题,考察学生能否从实际情境中抽象出一元二次不等式模型,会不会求解一元二次不等式,分析不等式解集并说明结论,检测相关素养的发展水平.详见表3:表3 问题及核心素养考查说明问题及指向解答与说明核心素养水平 汽车刹车距离与其行驶速度有关.在一条限速30km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不妙,同时刹车,但还是发生了碰擦.事发后交警现场测得甲车的刹车距离略超过8m,乙车的刹车距离略超过6m,又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间有如下关系:S甲=0.01x2+0.2x,S乙=0.005x2+0.05x.问:应负超速行驶主要责任的是谁?(检测表1中学习目标2) 由题意,对于甲车,有0.01x2+0.2x>8,即x2+20x-800>0,解得x>20或x<-40(不符合实际意义,舍去),这表明甲车的车速超过20km/h.但根据题意刹车距离略超过8m,由此估计甲车车速不会超过限速30km/h.对于乙车,有0.005x2+0.05x>6,即x2+10x-1200>0,解得x>30,或x<-40(不符合实际意义,舍去),这表明乙车的车速超过30km/h,即超过规定限速,乙应负主要责任. 1.数学抽象(水平一):能从熟悉的汽车刹车情境中抽象出求解一元二次不等式问题;2.数学运算(水平一):会解简单的一元二次不等式,能用解集情况说明是否超速;3.逻辑推理(水平一):明确“主要责任”的问题内涵,有条理地表达观点.4 基于课程标准的单元教学设计反思基于新课程标准的教学有三大基本特征:素养为本的单元设计、真实情境的深度学习、问题解决的进阶测试.4.1 真实的任务情境有利于素养目标达成课程标准凝练了学科核心素养,明确了学生学习该学科课程后应达成的正确价值观念、必备品格和关键能力.崔允誋教授指出,关键能力即“能做事”,必备品格即“习惯做正确的事”,价值观念即“坚持把事做正确”.从具体的“做事”,能看出一个人的素养.改变高分低能、只会解题的现状,从让学生在真实情境中面对问题、思考和解决问题开始.(下转第51页)4 拉近现实联系,构建情趣飞扬的统计课堂随着大数据时代的来临和社会信息化水平的不断提高,无论是在学习、工作还是在生活中,人们都越来越离不开数据信息.统计必将在未来生活中发挥更多的作用,掌握统计知识、具备数据分析能力已成为每一位公民必备的基本素养.这样的发展趋势对教育教学提出了全新的挑战.而我们每一位小学数学教师,必然要直面统计教学的进一步发展,因为“生活已经先于数学课程,将统计推到了学生的面前”.因此,拉近统计与现实生活的联系,进一步构建情趣飞扬的统计课堂,培养学生获得数据、解释数据的能力,已成了必然的教学趋势.在寻找“生活中的平均数”学习环节,笔者借助互联网工具,收集了2019年两会中的统计数据,制作了简单的小视频《2018全民对账单》,通过呈现“网购花费”“收寄快递件数”“流量数”“收入结余金额”“国内旅游次数”“图书拥有量”“用水量”等与学生紧密联系的生活中的平均数,呈现了利用“互联网+”获得大数据的方式.在轻松愉悦的背景音乐中,孩子们不由自主地将各类“大数据”与自己本人以及家庭的生活数据相联系,他们的惊呼此起彼伏———“我的国内旅游次数超过了平均数量”“我的图书拥有量还不够,今年要加油多阅读”“我家的用水量比较少,我们是节约家庭”“我妈妈的网购花费远远超出了,真是太浪费了”……就是在这样尝试比较、解释数据的过程中,孩子们感受到了统计的作用,也在不知不觉中培养了生活的情趣.在后续学习环节中,笔者进一步引入“人均淡水资源”“中国儿童身高均值”等互联网数据,让学生在具体的情境中,继续通过对大数据的分析,进一步感受平均数在生活中的作用,思索平均数的统计意义与价值,体验用数学解决实际问题的学习乐趣和健康生活的积极情趣,真正创设了关注人的发展的生本课堂.总之,在“统计与概率”领域教学中,我们要立足发展学生的数据分析素养这一出发点,让学生经历统计的全过程,创设有效的统计情境,凸显统计教学的概念特点,感受统计与现实生活的联系,培养学生的生长兴趣、生性智趣、生命理趣和生活情趣,构建和谐宽松、智慧理性的“四趣”统计课堂檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸.(上接第37页) 从单元学习目标的确立到学习过程设计,再到检测与评价,都要体现“做事”的要求.价值观念、必备品格不是标签,也不能成为标签.让学生经历真实的“做事”,让素养在“做事”中发展、在“做事”时显现,素养目标就不会成为只说不做的标签.4.2 教学设计要努力创设真实任务情境数学来源于生产生活实践,良好的任务情境有利于让学生深入与自身经验相关的问题探究过程.本单元将“雨水槽设计”情境融入单元学习过程,学生从中发现数学问题,运用数学知识尝试解决,并产生用函数观点研究一元二次不等式解集的兴趣,获得用数形结合方法解一元二次不等式的能力,感受函数、方程、不等式的整体性,发展数学抽象、直观想象、数学运算等素养.教师应主动拓宽自身知识疆域,积极推进研学、社会实践活动,努力创设“真实的任务”,让学生有机会真正“做事”,帮助学生实现自主建构和社会建构.4.3 核心素养水平要在真实任务中评价杨向东教授指出,要站在素养发展的角度,而不仅仅是知识的角度,进行测评设计.练习与测评要指向本单元的核心知识、方法、能力与素养,力求检测学生相关核心素养的发展水平.每个学习目标都应有相应的评价任务,每个练习与测评都必须指向有关的学习目标,一个目标也可以通过多个问题来检测.真实情境中解决问题的能力就是素养.除了传统的纸笔测试题以外,应设计基于真实情境的评价任务,记录过程数据、开展表现评价,更全面地评估学生的发展状况.学习过程中也应适时嵌入评价任务,便于及时了解学习效果,及时发现并弥补缺漏,保障后续学习的顺利开展.参考文献:[1]钟启泉.学会“单元设计”[N].中国教育报,2015-06-12(09):1.[2]加涅等.王小明等,译.教学设计原理[M].5版.上海:华东师范大学出版社,2007:21-35.[3]中华人民共和国教育部.普遍高中数学课程标准[S].北京:人民教育出版社,2018.。

一元二次函数、方程和不等式——基本不等式

一元二次函数、方程和不等式——基本不等式

一元二次函数、方程和不等式一、教材分析:相等关系和不等关系是数学中最基本的数量关系,可以利用相等关系、不等关系构建方程、不等式,再通过方程、不等式解决数学内外的各种问题.《一元二次函数、方程和不等式》这一章内容是安排在“集合”之后,“函数”之前.本章有“等式性质与不等式性质”、“基本不等式”、“二次函数与一元二次方程、不等式”三节内容。

通过学生易于接受的“等式性质与不等式性质”进入本章节的学习,继而借助前面不等式的性质的学习,引出“基本不等式”,再以二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.同时,此部分内容又培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想.二、学情分析:学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题.但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.三、章节学习目标:学习目标核心素养1.通过具体实例体会不等式在现实生活中的应用.数学建模2.掌握比较法的解题步骤.数学运算3.理解不等式的性质及证明.逻辑推理4.从数与形的角度体会基本不等式的证明方法.直观想象5.注重基本不等式的变形,求最值的关键是“拼”“凑”“拆”数学运算6.熟练掌握用基本不等式证明不等式.逻辑推理7.体会从实际情境中抽象出一元二次不等式的过程.数学抽象8.通过函数图像了解一元二次不等式与相应函数、方程的联系.直观形象9.会解一元二次不等式,能够利用一元二次不等式解决一些实际问题.数学运算、数学建模2.2基本不等式(2课时)教学目标:1.理解基本不等式的内容及其证明,能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题.2.能够整理并建立不等式的知识链.3.通过运用基本不等式解答实际问题,提高用数学手段解答现实生活中的问题的能力和意识.教学重难点:重点:基本不等式的内容及其证明;应用基本不等式求解最值.难点:基本不等式的理解与证明;运用基本不等式解答实际问题;不等式知识链的建立.教学过程:一导入(温故而知新):回顾旧知:重要不等式: 2+ 2≥2 (a,b∈R)当且仅当 = 时,等号成立.问题1:当 、 都是正数时,如果对重要不等式中的 、 进行开方运算,那么你会得到什么结论呢?利用旧知探索新知,便于提高学生的学习自信,利于培养学生知识迁移、探索的能力.公式辨析:1.已知 , ∈ ,且 >0,则下列结论恒成立的是()A. 2+ 2>2B.2 ≤ +B.1 +1 >2 D. + ≥22.已知x>−1,求 2+7 +10 +1的最小值.不等式的“一正,二定,三相等”.四数学生活化:例3.(1)用篱笆围一个面积为100 2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)有一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?例4.某工厂要建造一个长方体形无盖贮水池,其容积为4800 3,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池使总造价最低?最低总造价是多少?解决实际生活中的问题,把数学生活化,增强学生学习数学的兴趣.培养阅读理解能力,知识的灵活应用能力.五课堂小结:给出小结框架,让学生自己总结.(主要从两个方面进行总结:知识+能力)培养学生总结的能力.将知识进行内化,形成知识链.六课后作业:以书后练习和习题册为主.回归教材,吃透书本.七板书设计:标题知识点例题演算八教学反思:主要从以下几点进行反思:1.学生对新知的接受情况;2.课堂的实施情况;及时进行反思,不断反思,不断进步.3.教师的教学方法,学生的学习方法;4.教学内容的设置.。

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)一、解答题1.作出函数y=-x+5的图象,观察图象回答下列问题:(1)x___________时,-x+5≤0;(2)x___________时,-x+5≥0;(3)x___________时,-x+5<2;(4)x___________时,-x+5>3.2.若正比例函数2m -21)x -(2m y =中,y 随x 的增大而减小,求这个正比例函数.3.已知3x+y=2,当y 取何值时,-1<x ≤2?4.【2008·浙江台州】在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①___________;②___________;③___________;④___________;(2)如果点C 的坐标为(1,3),那么不等式11b x k b kx +≥+的解集是_________ .5.已知y+5与3x+4成正比例,当x=1时,y=2. (1)求y 与x 的函数关系式;(2)求当x=-1时的函数值;(3)如果y 的取值范围是0≤y ≤5,求x 的取值范围.6.已知一次函数y=(6+3m)x+(n-4)求:(1)m 为何值时,y 随x 的增大而减小;(2)m 、n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方?(3)m 、n 分别为何值时,函数图象经过原点?7.一次函数y=-3x+12与x 轴的交点坐标是多少,当函数值大于0时,x 的取值范围是多少,当函数值小于0时,x 的取值范围是多少?8.【2007·山东日照】某水产品市场管理部门规划建造面积为24002m 的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为282m ,月租费为400元;每间B 种类型的店面的平均面积为202m ,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知,A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?9.用作图象的方法解方程组⎩⎨⎧==-12y -x 1y -x .10.作出函数y=-4x+2的图象,并回答下列问题:(1)x 取什么值时,y 大于-2?(2)x 取什么值时,y 小于-2?(3)x 取什么值时,y 等于0?11.已知2-2x y x 5y 21+=+=,.当x 取何值时,21y y ≥?12.作出函数12x 512-y +=的图象,观察图象并回答下列问题: (1)x 取何值时,y>0?(2)x 取何值时,y=0?(3)x 取何值时,y<0?13.利用图象求出二元一次方程2x-y=2的两个整数解.二、应用题14.【2008·四川广安】“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?15.某辆汽车油箱中原有汽油100L,汽车每行驶50km耗油9L.设汽车行驶路程为xkm时,油箱剩余油量为yL.(1)求y与x之间的函数关系式.(2)汽车行驶多少千米时,油箱剩余油量不足55L?16.某校计划购买若干台微机,现从两家商场了解到同一型号的微机每台报价均为a元,甲商场经理说:“第一台按原价收费,其余每台优惠25%”,乙商场经理说:“每台优惠20%”.(1)分别写出两家商场收费的函数关系式;(2)试讨论该校到哪家商场买微机较优惠.17.如图,L1表示某机床公司一天的销售收入1y与机床销售量x之间的函数关y与机床销售量x之间的函数关系.系,L2表示该公司一天的销售成本2(1)1y关于x的函数关系式是______________,2y关于x的函数关系式是______________;(2)求出一天的销售利润y关于销售量x之间的函数关系式(销售利润=销售收入-销售成本);(3)要使一天的销售利润不低于3万元,则一天的销售量应是多少?18.【2008·湖南益阳】乘坐益阳市某种出租汽车.当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.19.【2008·浙江衢州】1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/千克.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(总毛利润=销售总收入-库存处理费)?(2)设椪柑销售价格定为x(0<x≤2)元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?20.文具商场画夹每个定价20元,水彩每盒5元. 为了促销,商场制定了两种办法:一种是买一个画夹送一盒水彩;另一种是画夹和水彩一律按九折付款. 小王需购画夹4个,水彩若干盒(不少于4盒),哪种方法对他来说更优惠?21.【2005·云南(课改实验区)】某单位团支部组织青年团员参加登山比赛.比赛奖次所设等级分为:一等奖1人,二等奖4人,三等奖5人.团支部要求一等奖奖品单价比二等奖奖品单价高15元,二等奖奖品单价比三等奖奖品单价高15元.设一等奖奖品的单价为x(元),团支部购买奖品总金额为y(元).(1)求y与x的函数关系式(即函数表达式);(2)因为团支部活动经费有限,购买奖品的总金额应限制在:500≤y≤600.在这种情况下,请根据备选奖品表提出购买一、二、三等奖奖品有哪几种方案?然后本着尽可能节约资金的原则,选出最佳方案,并求出这时全部奖品所需总金额是多少?备选奖品及单价如下表(单价:元)备选奖品足球篮球排球羽毛球拍乒乓球拍旱冰鞋运动衫象棋围棋单价(元) 84 79 74 69 64 59 54 49 4422.某移动通讯公司开设两种通讯业务:“全球通”用户先交25元月租费,5元来电显示费,然后每通话1分钟,再付话费0.20元;“乡情卡”不交月租费,而交5元来电显示费,每通话1分钟,付话费0.3元.若一个月通话x分钟,两种方式的费用分别为1y和2y元.(1)写出1y,2y与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯业务的费用相同;(3)某人估计一个月内通话400分钟,应选择哪种通讯业务合算.23.聊城市委、市政府为进一步改善投资环境和居民生活环境,并吸收更多的人来观光旅游,决定对古运河城区实施二期开发工程,现需要A ,B 两种花砖共50万块,全部由砖厂完成此项生产任务,该厂现有甲种原料180万千克,乙种原料145万千克.已知生产1万块A 砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B 砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂是否能按要求完成任务,若能,按A ,B 两种花砖的生产块数,有哪几种方案?请你设计出来(以万块为1个单位且取整数).(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?24.【2008·四川南充】某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x ≥3)个乒乓球,已知A ,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当x=12时,请设计最省钱的购买方案.25.某单位急需汽车,但无力购买,单位领导想租一辆. 一国营汽车出租公司的出租条件为每百千米租费100元;一个体出租车司机的条件为每月付800元工资,另外每百千米付10元,问该单位租哪家的汽车合算?26.某服装厂现有甲种布料42m 、乙种布料30m ,现计划用这两种布料生产M 、L 两种型号的服装共40件.已知做一件M 型服装用甲种布料0.8m ,乙种布料1.1m ,可获利45元;做一件L 型服装用甲、乙两种布料分别为1.2m 和0.5m ,可获利30元.设生产M 型服装件数为x ,用这批布料生产这两种型号服装所获利润为y(元).(1)写出y(元)与x(件)的函数关系式,并求自变量x 的取值范围;(2)该厂在生产这批服装时,当M 型号的服装为多少时,能使该厂所获的利润最大?最大利润为多少?27.王颖和刘丽原有存款分别为80元和180元,从本月开始,王颖每月存款40元,刘丽每月存款20元.如果设两人存款时间为x(月),王颖的存款额是1y (元),刘丽的存款额为2y (元).(1)试写出1y 与x 及2y 与x 之间的关系式;(2)到第几个月时,王颖的存款额能超过刘丽的存款额?28.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的函数关系式;(2)写出y 与x 的函数关系式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大?最大利润是多少?29.某工厂生产某种产品,每件产品的出厂价为1万元.其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理一吨废渣需付0.1万元的处理费.问:(1)设工厂每月生产x 件产品,每月利润为y 万元,分别求出用方案一和方案二处理废渣时,y 与x 之间的函数关系式;(利润=总收入-总支出)(2)若你作为工厂负责人,如何根据月生产量选择处理方案,既达到环保要求又合算?30.一个由父亲、母亲、叔叔和x 个孩子组成的家庭去某地旅游,甲旅行社的收费标准:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价43优惠,这两家旅行社的原价均为100元/人. (1)写出两家旅行社的收费总额y(元)与孩子数x(个)的函数关系式;(2)试比较随着孩子人数的变化,哪家旅行社的收费更优惠?31.某企业想租一辆车,现有甲、乙两家汽车出租公司,甲公司的出租条件是:每千米租车费为1.10元;乙公司的出租条件是:每月付800元的租车费,另外每千米付0.10元油费.该企业租哪家公司的车合算?32.如图表示一骑自行车者和一骑摩托者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km ,请你根据图象解决下列问题:(1)请你分别求出表示自行车和摩托车行驶过程的函数关系式(不要求写出自变量的取值范围);(2)请你分别求出下列时间:①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.33.某班去商店为体育比赛优胜者买奖品,书包每个定价30元,文具盒每个定价5元,商店实行两种优惠方案:①买1个书包赠送一个文具盒;②按总价的九折付款.若该班需购书包8个,设实际购文具盒x 个(x ≥8),付款共y 元.(1)分别求出这两种优惠方案中,y 与x 之间的函数关系式;(2)若购文具盒30个,应选哪种优惠方案?付多少元;(3)比较购买同样多的文具盒时,按哪种优惠办法付款更省钱.34.(2006·苏州)司机在驾驶汽车时,发现紧急情况到踩下刹车这段时间之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图所示).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之间有如下关系:2kv tv s +=.其中t 为司机的反应时间(单位:s),k 为制动系数.某机构与测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s.(1)若志愿者未饮酒,且车速为11m/s ,则该汽车的刹车距离为_______m(精确到0.1m).(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s 的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s 的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)(3)假如你以后驾驶该型号的汽车以11m/s 至17m/s 的速度行驶,且与前方车辆的车距保持在40m 至50m 之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s)35.【2009·山东潍坊】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱,供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.36.【2009·内蒙古赤峰】“教师节”快要到了,张爷爷用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册,(1)若设8元的图书购买x 册,6元的图书购买y 册,求y 与x 之间的函数关系式.(2)若每册图书至少要购买2册,求张爷爷有几种购买方案?并写出y 取最大值和y 取最小值时的购买方案.37.某市自来水公司收费标准如下:每户每月用水不超过53m 收费1.5元/3m ,若超过53m ,超过的部分收费2元/3m .小明家某月水费不超过12元,若设小明家该月的用水量为x 3m .(1)x 应满足什么条件?写出其关系式.(2)x 可能取6,8吗?(3)它最多不超过多少立方米?38.【2009·广西南宁】南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系如图所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积x(2m )满足函数关系式:y 乙=kx .(1)根据图写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系式;(2)如果狮山公园铺设广场砖的面积为16002m ,那么公园应选择哪个工程队施工更合算?39.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别是40和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设从乙仓库调往A县的农用车x辆,求总运费y关于x的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?40.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所买的水果x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围内时,选择哪种购买方案付款最少?并说明理由.41.通过电话拨号上网的费用由电话费和上网费两部分组成.以前我市通过拨号上网的费用为电话费0.18元/3分钟,上网费为7.2元/时,后根据信息产业部调整上网资费的要求,自2001年起上网费用调整为电话费0.22元/3分钟,上网费为每月不超过60小时,按4元/时计算,超过60小时部分,按8元/时计算.试根据以上信息提出你的问题,并做出解答.42.(2003·大连)某水产养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工.已知每千克水产品直接出售可获得利润6元,精加工后再出售,可获利润18元.设每天安排x名工人进行水产品精加工.(1)每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使一天所获利润最大?最大利润是多少?43.A、B两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾,A商场所有商品8折出售,在B商场消费金额超过200元后,可在这家商场7折购物,试问如何选择商场来购物更经济?44.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元;B类收费标准如下:没有月租费,但每通话1分钟收费0.6元,完成下列各题.(1)写出每月应缴费用y(元)与通话时间x(分钟)之间的关系式;(2)若每月通话时间为300分钟,你选择哪类收费方式?(3)每月通话时间多长时,按A、B两类收费标准缴费,所缴话费相等?(4)你选择哪类收费标准?45.某自行车保管站在某个星期日接受保管的自行车共有3500辆,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若设一般车停放的辆数为x,总保管费的收入为y元,试写出y与x的关系式;(2)若估计前来停放的3500辆自行车,变速车的辆数不少于25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.设定间隔行数:46.(2003·四川)东风商场文具部的某种毛笔每支零售价为25元,书法练习本每本售价5元.该商场为促销制定了两种优惠办法,甲:买一支毛笔就赠一本书法练习本;乙:按购买金额九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x本(x≥10).(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的函数关系式.(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习60本设计一种最省钱的购买方案.47.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?48.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.49.某单位要制作一批宣传材料.甲公司提出每份材料收费20元,另收3000元设计费;乙公司提出每份材料收费30元,不收设计费.(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两公司的收费相同?50.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1.0元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算),有20天每天可以卖出100份,其余10天每天只能卖60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x ,每月所得利润为y.从节约资源的角度出发,在保证利润的前提下,问:(1)写出y 与x 之间的函数关系,并指出自变量x 的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?(3)报亭每天应该从报社订购多少份报纸,才能使每月获得的利润不少于560元?51.【2009·山东泰安】某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?52.折线ABC 是某人乘出租汽车所付的费用y(元)与乘车的里程数x(km)之间的函数关系的图象,如图.(1)观察图象,乘车3km 和6km 各需付乘车费用多少元?(2)当x ≥3时,求乘车费用y(元)与乘车的里程数x(km)之间的函数关系式;(3)某乘客所付车费在14~18元之间,求他乘车路程的范围.53.我市某中学要印刷本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元,按六折优惠.且甲乙两厂都规定:一次印刷数量至少500份.(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系,并指出自变量x 的取值范围;(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印刷2000份录取通知书,那么应选择哪一个厂?需要多少费用?54.某企业为解决部分职工(人数多于100)午餐,联系了两家快餐公司.两家公司的报价、质量和服务承诺都相同,且都表示对职工优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上部分按报价的80%收费.问应选择哪家公司较好.55.声音在空气中的传播速度y(m/s)(简称音速)与气温x(℃)的关系是:331x 53y +=.求音速超过340m/s 时的气温.56.下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数表达式;(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式.①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.57.某座水库的最大库容量是26.2万立方米,库区面积为100平方公里,其中林地占60%,经测定,每次降雨,林地有10%的降水流入水库,非林地有85%的降水进入水库.预测今后一段时间内库区连续降雨,且单位面积降水量相同,设降水总量为Q万立方米,进入水库的水量为y万立方米.(1)用含Q的代数式分别表示在降雨期间林地、非林地进入水库的水量.(2)预计今后x天内降水总量Q(万立方米)与天数x的函数关系式为Q=3+2x,写出y关于x的函数关系式.(3)若水库原有水量20万立方米,在降雨的第2天就开闸泄洪,每天泄洪量为0.2万立方米,问连续降雨几天后,该水库会发生险情(水库里水量超过最大库容量就有危险).58.为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费是69元,六月份用电140度,交电费是94元.(1)求a、b的值;(2)设该用户每月用电量为x(度),应付电费为y(元).①分别求0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?59.小刚有60枚1角和5角的硬币. 这些硬币的总值小于20元. 那他最少拥有多少枚1角硬币呢?60.某企业生产每种吉祥物所需材料及所获利润如下表:。

初中数学北师大八年级上册 二元一次方程组蹇蕾8稿从函数观点看方程和不等式

初中数学北师大八年级上册 二元一次方程组蹇蕾8稿从函数观点看方程和不等式

从函数观点看方程和不等式-----在整体观下,以内部关联建构新知一、教材分析(七中育才汇源校区、蹇蕾)《义务教育数学课程标准(2023版)》站在知识整体的平台上,关注知识的结构和体系,要求处理好局部知识与整体知识的关系,感受数学的整体性,对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解.函数、方程、不等式的知识是初中数学教学的重要内容,既是学习的重点,也是学习的难点.三者知识交汇也是中考、高考考查的热点问题,它们是刻画现实世界中变化规律的重要数学模型,蕴含着丰富的数学思想和方法.因此,用联系的观点研究它们是很.有必要的.函数、不等式、方程它们是动与静的关系,是变量与常量的关系,静是点,动是线,常量是变量的瞬间.在变化中,在规律中,在动静之中函数、方程、不等式既各自独立又相互联系,共同组成了“数与代数”的核心内容.二、学情分析1.经验基础:从学生认知来看,学生已经学习了二元一次方程(组)、一元一次不等式相关的概念和解法、函数图象的定义及画法、一次函数的定义及图象的性质、一次函数y=kx+b图象上的点的坐标与一次函数y=kx+b中两个变量的对应关系,这些知识和方法为本节课的学习作了铺垫,同时,学生初步具有利用数形结合思想解决问题的意识和能力.故本节课仅研究一次函数与对应的二元一次方程(组)与一元一次不等式的联系.2.困难预测:(1)函数的学习刚刚开始,学生对函数这一抽象概念的理解还不够深刻,运用函数解决一些问题存在困难. (2)学生很难用自己的语言表达函数与方程、不等式的关系.(3)整合内容较多,如果学生若没有理解到问题本质,容易混淆.3.预测学后:学生能够体会数形结合的优势,将抽象的方程、不等式用直观的图形表示出来,通过不同的途径解决问题,建立一次函数与方程、不等式的联系,发展了几何直观,强化数学数形结合思想、转化思想.并为后继各类函数与方程、不等式的学习奠定基础.三、教学目标(1)通过观察一次函数图象,求方程的解和不等式的解集,体会一次函数与方程、不等式的内在联系.(2)经历探究一次函数与方程、不等式的关系的过程,初步感受三者的辩证与统一,感受数学知识与方法的内在联系,体会数形结合的数学思想,发展几何直观.四、教学内容本节课是在八年级上学完一次函数后,安排的一节整合课.从教学内容来看,本节课要探究一次函数与方程、不等式的关系,会用一次函数的图象求二元一次方程组的近似解和一元一次不等式的解集.通过问题探究,建立函数图象点的坐标与方程的解、不等式解集的关系,为今后研究更加复杂的函数相关问题奠定基础.本节课的设计原因:(1)从教材知识顺序方面:在八上第四章一次函数的学习之前,整体做了课程的顺序的调整,先学习了八上第五章的二元一次方程组的解法,八年级下第二章一元一次不等式的解法,再来学习函数,这样在确立解析式、求自变量的取值范围等函数问题就比较方便.在三个概念刚刚学完之后,就将三者联系起来看,可以从整体上连贯的把握知识之间的内在联系,同时加深对函数的理解.(2)从教材相关内容的整体安排来看:关于方程、不等式、函数部分的教材,内容螺旋上升,逐步深化,同一类问题从不同角度理解分析,实现了从“四基”到“四能”(四基:基础知识、基本技能、基本数学思想方法、基本活动经验,四能:提出问题、发现问题、分析问题、解决问题的能力),实现了从初步感知→梯度深化→寻求关联→构建体系→探寻本质.,脱节,对于函数与方程、不等式之间的联系缺乏深刻认识,导致学生在学习过程中对模块间内容不能形成系统,对知识的要求达成率就会降低.所以,一次函数学完后再将函数、方程、不等式三部分内容整合起来,有利于从整体上把握数学知识结构,有利于全面提高学生的数学素养,从函数的观点研究方程和不等式,感受三者之间的内在联系,并学会从“数”和“形”两个不同的角度去分析观察同一对象,发展几何直观.(3)从思想方法方面:初高中各类函数(正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数和反三角函数)与方程(一元一次,一元二次,二元一次方程组)、不等式(组)之间都可以产生联系,研究问题的思路、本质、方法都是类似的,今天课程的学习也为后面进一步研究奠定基础. 北师大版高中教材对于“方程、不等式、函数”内容的编排如下:五、教学重、难点: 教学重点:(1)一次函数与二元一次方程(组)的联系 (2)一次函数与一元一次不等式的联系 教学难点:能从函数的角度理解方程、不等式六、问题群设置1、主问题:一次函数与对应的方程、不等式有什么联系?2、子问题群(1)对同一个关系式两种表达形式(一次函数及对应的二元一次方程)该如何理解? (2) 一次函数与对应的二元一次方程有什么联系? (3)一次函数与对应的二元一次方程组有什么联系? (4)一次函数与相关的一元一次不等式有什么联系? 七、教学过程一、引入课题1、下面的图你可以看到什么?2、y=−x+5又可以看作什么?3、请把二元一次方程−2x+y=−1和2x+3y=2化成对应的一次函数. 教师组织学生欣赏图片,学生回答问题.教师提出问题, y=−x+5是什么?因为最近一直在学一次函数,可能大部分学生第一反应是一次函数,如果学生看不出来是方程,教师可以马上将式子变形为x+y=5,加以引导.教师同时强调任何一个二元一次方程都可以化成一个一次函数.引导学生理解二元一次方程和一次函数可以在形式上达到一致,为后继学习做铺垫.让同学感受同一个事物可以从不同角度来看,视角不同,感官不同.二、联想探究探究一、借二元一次方程,初论以形助数1、方程x+y=5有多少个解,请试着写出几个,2、画出函数y=-x+5的图象,3、你能说说二元一次方程和对应的一次函数有联系吗?如果有,是什么?为什么?二元一次方程的解是对应的一次函数图象上点的坐标. 学生写出二元一次方程的解,画出y=-x+5的图象后,教师引导学生从联系的眼光看两者,小组讨论二元一次方程和对应的一次函数有联系吗?如果有,是什么?为什么?鼓励学生用自己的语言表述出这种关系,并能深入本质,找到产生这种联系的原因.本节课的暗线是y=−x+5,既是方程又是函数,以它为基础,不断变化演绎深化,直击问题本质.第一部分内容是基础,同时让学生初步体会用联系的眼光寻找一次函数和二元一次方程的关系,初步体会数形结合思想.探究二、用二元一次方程组,再论以形解数请用不同的方法解方程组{x+y=5−2x+y=−1二元一次方程组的解是对应的两个一次函数图象的交点坐标.灵活用1:探究一的学习,学生初步有了从函数角度来看方程的意识,教师组织学生以小组为单位先讨论解法,再自己操作.然后教师再请学生讲解.学生可能谈到代数方法,也可能通过图象法解决.当学生说出交点坐标就是方程组的解时,教师继续追问,为什么你觉得交点就是方程组的解呢?直在y=−x+5的基础上又加y=2x−1,变成二元一次方程组去研究,过渡的很自然.已有的结论也作为新知探索的基石,继续寻找方程组的解和函数交点坐标之间的关系.灵活用1的安O x y请用不同方法解下列方程组:(1) {x +y =5x −y =3 (2) {x +y =52x +2y =2 (3) {x +y =52x +2y =10你能用函数的观点解释以上方程组的解吗? 二元一次方程组 两个一次函数 一个解 一个交点(两直线相交) 解 无数解 无数交点(两直线重合) 交点 无解 无交点(两直线平行) 数 形 探究三、引一元一次不等式,实现梯度深化 已知{y =−x +5y >0,求x 的取值范围.灵活用2:一次函数y =kx +b (k ≠0)的图象如图, 当y <0时,x 的取值范围是__________ 在已有函数图象不变的情况上,请你尝试改编题目. 延伸拓展1:如图,已知:函数y 1=-x +b 和y 2=ax ﹣3的图象交于点P (2,3),则不等式-x +b >ax ﹣3的解集是__________延伸拓展2:如图所示,函数y 1=|x |和y 2=x +的图象相交于(﹣1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 . 击问题本质. 学生先独立完成,再请学生用不同方法讲解,最后请学生总结通过解以上三个方程组,又有什么发现和体悟. 教师引导学生用不同的方法解决. 从代数角度考虑,求x 范围就是解一元一次不等式-x+5>0;从函数角度就是一次函数y 值大于0,即图象上的点的纵坐标大于0时,对应点的横坐标的取值范围.学生先独立完成灵活用2,再尝试改编题目,对学生的能力提出更高的要求.当然也有学生可能先求出一次函数解析式,转化成不等式,解不等式.教师予以鼓励,但也请学生自己感受图象法的直观.学生独立思考,再分享自己的方法.教师引导学生用函数的观点应该如何来看这个不等式呢? 非一次函数与不等式的问题,是否也可以观察图象解决问题,根据学情,灵活把握时间,可以当场处理,也可以留到课下完成.排,让学生进一步理解方程组的解和对应函数交点坐标的关系,是对探究二的深化.让学生体会到还可以形解数,数形结合的思想.从函数的角度看可以看方程,还可以看不等式.利用图象将一次函数与一元一次不等式联系起来 学生利用所学,通过图象直观解决不等式问题,加深对一次函数与不等式之间的关系的理解,发展几何直观.进一步深化问题,若两个一次函数相交,借助于函数图象求不等式的解集,让学生进一步体会从图象上去解不等式非常直观.延伸拓展,可以进一步提高学生思维,这道题用代数方法做就非常复杂,如果用图象法就非常容易了,是一道非常好的数形结合的例子.三、揽全局,形通法学到这里,请同学们回顾一下,本堂课什么地方给你的感受是很深的?或者你有什么样的感悟要与大家分享?四、布置作业八、基于单元整体教学的1设计思路和突破点.1.以数学问题驱动知识建构“如果将数学看成人类的一种创造性活动,那么,‘问题’在很大程度上就可被看成这种活动的实际出发点”,因此,以问题解决驱动数学思维与知识建构,是行之有效的教学方法.本节内容的呈现顺序依次是一次函数与二元一次方程的关系、一次函数图象上的点与二元一次方程解的关系、两个一次函数图象的交点与二元一次方程组的解的关系,一次函数与一元一次不等式的关系,这是“由易到难、拾级而上”的呈现方式.三个探究活动,使知识的发生发展浑然一体,使学生已有水平和教师要求学生达到的水平之间产生认知冲突,从而激发学生的探究欲望,产生数学学习的动力.当学生的思维处于困顿、愤悱之时,教者通过追问,将问题分解、后退至知识关联之处、学生可认知之处,进而有效驱动学生知识建构与思维发展.这是一种自上而下的、在问题解决中建构知识、发展思维的教学策略,这样既能引发学生认知冲突,又能兼顾学生认知的整体性和思维的发展性.2.以内部关联促进数学理解郑毓信教授认为:数学是外部力量与内部因素相互作用的结果.而以数学内部的关联促进数学理解不失为一种重要的教学方法.本节教学设计是在学生操作后提出一系列层层深入的问题,进而引发认知冲突,然后回到知识的本源,从知识间内在的、本质的关联出发探究:一次函数就是二元一次方程、函数图象上点的坐标与函数两个变量的关系、两个一次函数图象的公共点的坐标同时满足两个函数关系式,学生自然而然意识到:求交点坐标就是求联列两个一次函数得到的二元一次方程组的解,从而突破学习难点,促进学生对数学本质的理解.这正是外部力量与内部因素相互作用、从内部关联突破难点.有了前面两个活动的铺垫,学生通过类,也很自然的从函数的角度去理解不等式问题,找到问题的本源.3.以活动促进学生有效学习在学生学习活动方式上,宜采用独立思考、小组交流、班级展示、教师指导、教师讲解等多种形式,既为学生提供自主学习交流的时间和机会,充分发挥学生的主体作用,又要注重教师的及时指导与适时点拨,帮助学生实现认识上的提升.。

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝-解析版

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝-解析版

待定系数法、换元法、转换法是运用函数与方程思想方法解题过程中的三大法宝在运用函数与方程思想解题的过程中,在确定函数、方程、不等式的参变数的值时需要运用待定系数法,而构造法又常常与待定系数法紧密相联,换元法往往可以使较为复杂的问题变为基本题型,许多数学问题就是在不断转换的过程中加以解决的.如函数问题可以转换为方程问题求解,方程问题可以转换为函数问题通过图像结合不等式知识求解,善于转换是数学核心素养的体现.典型例题1设抛物线y =ax 2+bx +c 过点A 1,2 和B -2,-1 .(1)试用a 表示b 和c ;(2)对于任意非零实数a ,抛物线都不过点P m ,m 2+1 ,试求m 的值.【分析】对本题题意的理解是关键,什么是抛物线都不过某点呢?换一种说法是:将该点的坐标代入所给的抛物线方程,方程无实数解,所以本题体现了一种等价转换的思想以及待定系数法在研究函数与方程问题中的应用.【解析】1 依题意,a +b +c =2,4a -2b +c =-1, 解得b =1+a ,c =1-2a .(2)y =ax 2+1+a x +1-2a ,将m ,m 2+1 代人,得am 2+1+a m +1-2a =m 2+1,整理得m 2+m -2 a =m 2-m .由题意,关于a 的方程无非零实数解,由m 2+m -2=0,m 2-m ≠0, 得m =-2;由m 2+m -2≠0,m 2-m =0, 得m =0.故所求的值为m =-2或m =0.2(1)已知数列a n 中,a 1=10,且a n =15a n -1+2⋅5n ,求这个数列的通项公式;(2)已知数列a n 中,a 1=3,a 2=5,a n =a n -2+4n -3n ≥3 ,求通项公式a n .法构造新的特殊数列,从而使问题获解;第2 问,一般解法是设待定系数A ,即由a n +An 2=a n -2+An 2+4n -3配方,得a n +An 2=a n -2+A (n -2)2+4A +4 n -4A -3,令4A +4=0,解得A =-1,从而构造等差数列.当然,如果直接对递推关系变形很难看出解题者的数学核心素养.【解析】(1)先对递推式进行变形,a n 5n =15a n -15n +2.即a n 5n =3⋅a n -15n -1+2.设b n =a n 5n n ∈N * ,则b n =3b n -1+2.(1)引人待定系数α,β,使α,β满足b n -β=αb n -1-β .展开得b n =αb n -1-αβ+β.(2)对照(1)式和(2)式,可得方程组α=3,-αβ+β=2,解得α=3,β=-1. 即数列b n +1 是以b 1+1=a 15+1=3为首项,3为公比的等比数列,所以b n +1=3⋅3n -1=3n ,b n =3n -1.于是,b n =a n 5n =3n -1,a n =15n -5n n ∈N * .(2)由条件可得a n -n 2=a n -2-(n -2)2+1n ≥3 .令b n =a n -n 2,则数列b n 可化为两类等差数列,其中b 2n -1 是以b 1=a 1-1=2为首项,d =1为公差;b 2n 是以b 2=a 2-22=1为首项,d =1为公差.因此,b 2n -1=2+n -1 ,b 2n =1+n -1 .所以a 2n -1=(2n -1)2+n +1,a 2n =(2n )2+n .故a n =122n 2+n +3(n 为奇数)122n 2+n(n 为偶数) 可简化为a n =122n 2+n +341+(-1)n +1 .3设a 为实数,函数f x =a 1-x 2+1+x +1-x 的最大值为g a .(1)设t =1+x +1-x ,求t 的取值范围,并把f x 表示为t 的函数m t ;(2)求g a ;(3)试求满足g a =g 1a的所有实数.【分析】本例是一道苐进式的综合题,主要考查函数、方程等基础知识,考查分类与整合以及函数与方程的思想方法和综合运用数学知识分析问题、解决问题的能力,难度上循序渐进,第(1)问考查变量代换的技巧,难点在新变量范围的确定,可以有不同的方法求解;第(2)问是含参函数在区间上最大值的求法.分类与整合并结合函数单调性是解答的关键;第3 问实质是解方程,由于g a 是分段的,对于方程g a =g 1a 解的讨论更要分类全面、环环相扣.正如罗素所言:“数学不仅拥有真理,而且还拥有至高的美一种冷峻而严肃的美,正像雕塑所具有的美一样⋯⋯”本题的解决过程不仅能显示解题者的数学功力,也展现了“一种冷峻而严肃的美”.【解析】(1) 【解法一】 (代数法)令t =1+x +1-x ,要使t 有意义,必须1+x ≥0,1-x ≥0,即-1≤x ≤1.∵t 2=2+21-x 2,x ∈-1,1 ,t ≥0(1)∴t 的取值范围是2,2 ,由(1)式得1-x 2=12t 2-1,故m t =a 12t 2-1 +t =12at 2+t -a ,t ∈2,2 .【解法二】(三角换元法)令x =sin2θ,θ∈-π4,π4.t =1+x +1-x =1+sin2θ+1-sin2θ=sin θ+cos θ +sin θ-cos θ=sin θ+cos θ-sin θ+cos θ=2cos θ,a 1-x 2=a 1-sin 22θ=a cos2θ由于θ∈-π4,π4 ,所以cos θ∈22,1,即t ∈2,2 ,f x =m t =a cos2θ+t ,又cos2θ=2cos 2θ-1=2×t 24-1=t 22-1故m t =a 12t 2-1 +t =12at 2+t -a ,t ∈2,2 .(2)由题意知g a 即为函数m t =12at 2+t -a ,t ∈2,2 的最大值.注意到直线t =-1a 是抛物线m t =12at 2+t -a 的对称轴,故分以下几种情况讨论.①当a >0时,函数y =m t ,t ∈2,2 的图像是开口向上的一段抛物线,∵t =-1a <0,知m t 在2,2上单调递增,∴g a =m2 =a+2.②当a=0时,∵m t =t,t∈2,2,∴g a =2.③当a<0时,函数y=m t ,t∈2,2的图像是开口向下的一段抛物线.若t=-1a∈0,2.即a≤-22,则g a =m2=2;若t=-1a∈2,2,即-22<a≤-12,则g a =m-1a=-a-12a;若t=-1a∈2,+∞,即-12<a<0,则g a =m2 =a+2.综上可得:g a =a+2a>-12-a-12a-22<a≤-122 a≤-22(3)①当a<-2时,1a >-12,此时g a =2,g1a=1a+2.由2+1a=2,解得a=-1-22,与a<-2矛盾.②当-2≤a<-2时,-22<1a≤-12.此时g a =2⋅g1a=-1a-a2.2=-1a-a2,解得a=-2与a<-2矛盾.③当-2≤a≤-22时,-2≤1a≤-22,此时g a =2=g1a,所以-2≤a≤-2 2④当-22<a≤-12时,-2≤1a<-2,此时g a =-a-12a,g1a= 2.由g a =g1a 即得-a-1 2a = 2.解得a=-22与a>-22矛盾.⑤当-12<a<0时,1a<-2,此时g a =a+2,g1a=2.由g a =g1a即得a+2=2,解得a=2-2与a>-12矛盾.(6)当a>0时,1a >0,此时g a =a+2,g1a=1a+2.由g a =g1a即得a+2=1a+2.解得a=±1,由a>0得a=1.综上可得,满足g a =g1a的所有实数a为-2≤a≤-22或a=1.4如图3-3所示,设直线l与椭圆x22+y2=1相切,切点为P,点M是坐标原点O在直线l上的正投影,求MP的最大值和最小值.【分析】本例的解答分3步:第一步,求出切线l 的方程和直线OM 的方程;第二步,求出点M 的坐标用点P x 0,y 0 的坐标表示,运用两点间距离公式求得|MP |2关于y 20的函数关系式;第三步,进入求MP 最值的流程,然而函数解析式太复杂了,可通过换元法变为基本函数求最值问题,当然新元的取值范围一定要紧紧㧓住!【解析】设P x 0,y 0 ,则-1≤y 0≤1,x 20=21-y 20 (点P 在椭圆上),切线l 的方程为x 0x +2y 0y =2(已知切点求䢶圆的切线方程),由OM ⊥l 得直线OM 的方程为2y 0x -x 0y =0.联立两直线方程,求得点M x ,y 的坐标为x =2x 0x 20+4y 20=2x 021-y 20 +4y 20=x 01+y 20x 20=2(1- y 20) ,y =4y 0x 20+4y 20=2y 01+y 20∴|MP |2=x -x 0 2+y -y 0 2=y 201+y 20 2x 20y 20+1-y 20 2 =y 201-y 20 1+y 200≤y 20≤1 设y 20=t 0≤t ≤1 ,则|MP |2=g t =t 1-t 1+t =-t +2-21+t =3-t +1+2t +1≤3-22(由基本不等式求得).当且仅当t +1=2t +1,即t =2-1时等号成立.∵0<2-1<1.∴函数g t 在区间0,1 上有最大值3-22,最小值0.即MP 的最大值和最小值分别为MP |max =3-22=2-1, MP |min =0.。

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系【第1课时】【教学目标】【核心素养】1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)2.会求函数的零点.(重点)3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)1.借助函数零点概念的理解,培养数学抽象的素养.2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.3.利用零点法求不等式的解集,培养数学运算的素养.【教学过程】一、新知初探1.函数的零点(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.(2)三者之间的关系:函数f(x)的零点⇔函数f(x)的图像与x轴有交点⇔方程f(x)=0有实数根.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c 的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.二、初试身手1.函数y=1+1x的零点是()A.(-1,0)B.x=-1 C.x=1 D.x=0 答案:B解析:令1+1x=0解得x=-1,故选B.2.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个x -1012 3e x0.3712.727.4020.12x+21234 5A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:C解析:令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.3.若f(x)=-x2+mx-1的函数值有正值,则m的取值范围是()A.m<-2或m>2 B.-2<m<2C.m≠±2D.1<m<3答案:A解析:∵f(x)=-x2+mx-1有正值,∴Δ=m2-4>0,∴m>2或m<-2.4.不等式1+x1-x≥0的解集为________.答案:[-1,1)解析:原不等式等价于(x+1)(x-1)≤0,且x-1≠0,∴-1≤x<1.三、合作探究类型1:函数的零点及求法例1:求函数f(x)=x3-7x+6的零点.解:令f(x)=0,即x3-7x+6=0,∴(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)·(x2+x-6)=(x-1)(x-2)(x+3)=0,解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.规律方法求函数y=f(x)的零点通常有两种方法:一是令y=0,根据解方程f(x)=0的根求得函数的零点;二是画出函数y=f(x)的图像,图像与x轴的交点的横坐标即为函数的零点.跟踪训练1.如图所示是一个二次函数y=f(x)的图像.(1)写出这个二次函数的零点;(2)试比较f(-4)·f(-1),f(0)·f(2)与0的大小关系.解:(1)由图像可知,函数f(x)的两个零点分别是-3,1.(2)根据图像可知,f(-4)·f(-1)<0,f(0)·f(2)<0.类型2:二次函数的零点及其与对应方程、不等式的关系例2:利用函数求下列不等式的解集:(1)x2-5x-6>0;(2)(2-x)(x+3)<0;(3)4(2x2-2x+1)>x(4-x).解:(1)方程x2-5x-6=0的两根为x1=-1,x2=6.结合二次函数y=x2-5x-6的图像知,原不等式的解集为(-∞,-1)∪(6,+∞).(2)原不等式可化为(x-2)(x+3)>0.方程(x-2)(x+3)=0的两根为x1=2,x2=-3.结合二次函数y=(x-2)(x+3)的图像知,原不等式的解集为(-∞,-3)∪(2,+∞).(3)由原不等式得8x 2-8x +4>4x -x 2,即9x 2-12x +4>0.解方程9x 2-12x +4=0,解得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎝ ⎛⎭⎪⎫-∞,23∪⎝ ⎛⎭⎪⎫23,+∞. 规律方法利用函数求不等式解集的基本步骤1.把一元二次不等式化成一般形式,并把a 的符号化为正;2.计算其对应一元二次方程的根的判别式Δ;3.求其对应一元二次方程的根;4.写出解集大于取两边,小于取中间. 跟踪训练2.利用函数求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0;(3)x 2-4x -5<0;(4)-4x 2+18x -814>0.解:(1)对于方程2x 2+7x +3=0,因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不相等的实数根,x 1=-3,x 2=-12.又因为二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞. (2)对于方程-x 2+8x -3=0,因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不相等的实数根,x 1=4-13,x 2=4+13. 又因为二次函数y =-x 2+8x -3的图像开口向下,所以原不等式的解集为(4-13,4+13).(3)原不等式可化为(x -5)(x +1)<0,所以原不等式的解集为(-1,5).(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922<0, 所以原不等式的解集为∅.类型3:用函数零点法求一元高次不等式的解集例3:求函数f(x)=(x-1)(x-2)(x+3)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-3,1,2.x (-∞,-3)(-3,1)(1,2)(2,+∞)f(x)-+-+由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为[-3,1]∪[2,+∞),f(x)<0的解集为(-∞,-3)∪(1,2).规律方法解题步骤:1.求出零点;2.拆分定义域;3.判断符号;4.写出解集.注意判断符号的方法,将最高项的系数化为正数,最右边的区间内为正,然后往左依次负正相间.跟踪训练3.求函数f(x)=(1-x)(x-2)(x+2)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-2,1,2.x (-∞,-2)(-2,1)(1,2)(2,+∞)f(x)+-+-由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为(-∞,-2]∪[1,2],f(x)<0的解集为(-2,1)∪(2,+∞).四、课堂小结1.方程f(x)=g(x)的根是函数f(x)与g(x)的图像交点的横坐标,也是函数y=f(x)-g(x)的图像与x轴交点的横坐标.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.五、当堂达标1.下列图像表示的函数中没有零点的是()答案:A解析:B,C,D的图像均与x轴有交点,故函数均有零点,A的图像与x 轴没有交点,故函数没有零点.2.方程5x2-7x-1=0的根所在的区间是()A.(-1,0)B.(1,2)C.一个根在(-1,0)上,另一个根在(1,2)上D.一个根在(0,1)上,另一个根在(-2,-1)上答案:C解析:∵f(-1)·f(0)<0,f(1)·f(2)<0,∴选C.3.函数f(x)=x-1x零点的个数是()A.0 B.1 C.2 D.3答案:C解析:令x-1x=0,即x2-1=0,∴x=±1.∴f(x)=x-1x的零点有两个.4.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.答案:4解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)=(x+1)2(x-1)(x+2)2(x-3).可知零点为±1,-2,3,共4个.【第2课时】【教学目标】【核心素养】1.掌握函数零点的存在性定理,并会判断函数零点的个数.(重点)2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)1.通过存在性定理的学习,培养逻辑推理的素养.2.通过二分法的学习,提升数据分析,数学建模的学科素养.3.理解函数与方程之间的联系,提升数学抽象的学科素养.【教学过程】一、新知初探1.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.2.二分法的定义(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且f(a)f(b)<0.(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.3.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f (x )在[a ,b ]上的零点近似值的步骤是:第一步:检查|b -a |<2ε是否成立,如果成立,取x 1=a +b 2,计算结束;如果不成立,转到第二步.第二步:计算区间[a ,b ]的中点a +b 2对应的函数值,若f ⎝ ⎛⎭⎪⎫a +b 2=0,取x 1=a +b 2,计算结束;若f ⎝ ⎛⎭⎪⎫a +b 2≠0,转到第三步. 第三步 若f (a )f ⎝ ⎛⎭⎪⎫a +b 2<0,将a +b 2的值赋给b ⎝ ⎛⎭⎪⎫用a +b 2→b 表示,下同,回到第一步;若f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,将a +b 2的值赋给a ,回到第一步. 二、初试身手1.下列函数不宜用二分法求零点的是( )A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2+22x +2D .f (x )=-x 2+4x -1 答案:C解析:因为f (x )=x 2+22x +2=(x +2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.若函数f (x )在区间[a ,b ]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )A .函数f (x )在区间[a ,b ]上不可能有零点B .函数f (x )在区间[a ,b ]上一定有零点C .若函数f (x )在区间[a ,b ]上有零点,则必有f (a )·f (b )<0D .若函数f (x )在区间[a ,b ]上没有零点,则必有f (a )·f (b )>0 答案:D解析:函数f (x )在区间[a ,b ]上为单调函数,如果f (a )·f (b )<0,可知函数在(a ,b )上有一个零点,如果f (a )·f (b )>0,可知函数在[a ,b ]上没有零点,所以函数f (x )在区间[a ,b ]上可能没有零点,也可能有零点,所以A 不正确;函数f (x )在区间[a ,b ]上可能有零点,也可能没有零点;所以B 不正确; 若函数f (x )在区间[a ,b ]上有零点,则可能f (a )·f (b )<0,也可能f (a )·f (b )=0所以C 不正确;若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]3.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(1,2)内有零点;③函数f(x)在区间(0,2)内有零点;④函数f(x)在区间(0,4)内有零点.答案:④解析:∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.三、合作探究类型1:判断函数零点所在的区间例1:求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.证明:设f(x)=x4-4x-2,其图像是连续曲线.因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,所以方程在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.规律方法一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.跟踪训练1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是()A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0 答案:C解析:对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.类型2:对二分法概念的理解例2:下列图像与x轴均有交点,其中不能用二分法求函数零点的是()答案:B解析:利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B 中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.规律方法二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.跟踪训练2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是()A.(-2.1,-1)B.(1.9,2.3)C.(4.1,5)D.(5,6.1)答案:B解析:只有B 中的区间所含零点是不变号零点. 类型3:用二分法求函数零点例3:求函数f (x )=x 2-5的负零点.(精确度为0.1) 解:由于f (-2)=-1<0,f (-3)=4>0, 故取区间(-3,-2)作为计算的初始区间, 区间 中点的值 中点函数近似值 (-3,-2) -2.5 1.25 (-2.5,-2) -2.25 0.0625 (-2.25,-2) -2.125 -0.4844 (-2.25,-2.125) -2.1875-0.2148 (-2.25,-2.1875)-2.21875-0.0771由于|-2.25-(-2.1875)|=0.0625<0.1, 所以函数的一个近似负零点可取-2.25. 规律方法利用二分法求函数零点应关注三点1.要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.2.用列表法往往能比较清晰地表达函数零点所在的区间.3.根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.跟踪训练3.证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分(a ,b ) (a ,b )的中点f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (1,2)1.5f (1)<0f (2)>0f (1.5)>0(1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125f (1)<0 f (1.25)>0f (1.125)<0 (1.125,1.25)1.1875 f (1.125)<0f (1.25)>0f (1.1875)<0因为|1.1875-1.25|=0.0625<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.类型4:用二分法求方程的近似解例4:用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 解:令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0, 所以方程2x 3+3x -3=0在(0.5,1)内有解. (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.6875)<0(0.6875,0.75)|0.6875-0.75|=0.0625<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.规律方法用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.跟踪训练4.求方程x2=2x+1的一个近似解.(精确度0.1)解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.4375<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.4375)>0⇒x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.四、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.并非所有函数都可以用二分法求其零点,只有满足:(1)在区间[a,b]上连续不断;(2)f(a)·f(b)<0,上述两条的函数方可采用二分法求得零点的近似值.五、当堂达标1.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点答案:B解析:令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.2.用二分法求函数f (x )=x 3+x 2-2x -2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f (1)=-2,f (1.5)=0.625,f (1.25)≈-0.984,f (1.375)≈-0.260,关于下一步的说法正确的是( )A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 答案:C解析:由二分法知,方程x 3+x 2-2x -2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .3.函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )答案:B4.用二分法求函数零点,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<ε时,函数的近似零点a n +b n2与真正零点的误差不超过A .εB .12εC .2εD .14ε 答案:B解析:根据用“二分法”求函数近似零点的步骤知,当|a n -b n |<ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过12ε.故选B .。

二次函数与一元二次方程及不等式的关系探析

二次函数与一元二次方程及不等式的关系探析

程 ax2+bx+c=0(a≠0)在实数范围内无解
(或称无实数根)。
二次函数是我们初中数学中的一个
难点,我们一定要掌握好二次函数与一元
二次方程的关系,使我们在面对二次函数
时,能够巧妙地结合方程来解决二次函数 的相关问题。
四、进一步的拓展应用
在二次函数与一元二次方程关系的 基础上,我们其实还可利用二次函数的图 像去解一元二次不等式,我们可以结合二 次函数图像与 x 轴交点的情况来判断一 元二次不等式的解集;下面以 a>0 为例说 明,抛物线 y=ax2+bx+c(a≠0)与 x 轴无交 点时,不等式 ax2+bx+c>0(或 <0)(a>0)的 解集为全体实数或无解;抛物线
参考文献: [1]石慧英,秦继东.从“有形无图”到 “以形助数”— —— 一道中考题的解法与变 式探究[J].中学数学,2020(14):67-69. [2]仓猛.复习课“三个关注”:目标、教 材与“考向”———以“二次函数与一元二次 方程”复习课为例[J].中学数学,2019(22): 41-42. [3]徐章韬.从二次函数到一元二次方 程———教育数学研究之九[J].教育研究与 评论(中学教育教学),2019(08):43-46. [4]沈莉.基于机会的教学立意———以 “二次函数与方程、不等式的关系”教学为 例[J].中学数学,2018(18):10-12. [5]陆炜锋.重新建构学材,提升学习 能力—— —以“二次函数与一元二次方程” 教学为例[J].中学数学,2017(18):15-17.
2021·9
解:(1)①当 m=0 时,原方程可化为
x-2=0,解得 x=2;
②当 m≠0 时,方程为一元二次方程,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用 不 等 式 的 有 关 性 质 很 难 直 接 得 到 本 题 的答 案 作 差 , 通过 因式分 解判 断 ( n s +6 s ) 一

( n b 。 +n 。 b ) 的符 号可迅 速得 到答 案 :
n +b >口 b 。 +口 。 b 。 .
即 l 1 3 + 4 3 — 2 袅+ 亳 . 。 < ’ 。 , 解 解 得 得一 一 > 0 > 一 一 即 , 即 。 。 > > 一 一 .
推导 a z . +b x+c >O( 口 <O ) 的解 集 时 , 应 让 学 生 充 分理 解 函数 —a x +b a r +C 、 方程 n +b x+f 一0
一 一
B + c > 0 ( < 0 ) 若 可 化 为 > 一 詈 z 一 旨 , 则 表 示 直 线
最值
设计课 蚤
遵赢 赣 曝 誊
◇ 山 东 薛 颖
基本 不等 式 一 节 经 常 考 查 已 知 . z +y— , 求x y 的最 值 , 或 已知 x y—q , 求x +y的最 值 , 于是 求 +
( n >O ) 型 的最值 就成 为本 节研 究 的重 点 内容 之 一.
间[ 1 , 2 ] 上单 调递 增 , 一z 一( n +n ) < O在 区 间 ( 1 ,
不等 关 系是 自然 界 中普 遍存 在 的数量 关 系. 高 中
数 学教 材较 少 直 接 地研 究 不 等 关 系 问 题 , 这给“ 不 等
式” ( 本 文 以人 教 A 版必修 5为例 进行 说 明) 的教 学带 来 一 定 的 困难 . 数 量 关 系 无 非 是 相 等 与 不 等 2种 情
事 实 上, A . r + B y + C 一 0 可 化 为 一 一 号 z 一
时可直 接得 到不 等 式 的解 集 ; 当 △一次方 程 根 的关 系 , 先求 一 元 二 次方程 的根 , 再根 据 函数 图象 与 轴 相 关位 置确 定 不 等式 的解集 .

彝 董 兰
必需 向学 生说 明清楚 , 引导 学 生养 成运 用 方 程 思想 解 决 不等 关 系问题 的 习惯.
拓 展 比较 2个代数 式 的大小 , 根 据 代数 式 的结 构 也可 采用 比商法 .
2 利 用 = a x +b x + C( a >O ) 图象 , 推导 a X +b x + c >O ( a <O l 的解 集 结合 y —n +b x+ c的 图 象 , 当 △一 b 。 +4 a c ≤0
■, ■ .

例3 已知 二 次 函数 _ 厂 ( ) 一a x 。 +b x + l( n >
Q 解 析 记g ( z ) 一 厂 ( ) 一 z — a x 。 + b x +1 一 —
口 z z +( b -1 ) z +1 , 设 g ( ) 一0的 2根 为 z 、
课堂 教学 的 引入新课 环 节 , 是 整 个课 堂教 学 中不
可缺 少 的有 机 组 成部 分 . 传 统 教 学模 式 中 , 大 多 数 教 师是 直接 灌输 , 学 生 还 没有 准备 好 , 教 师 就 直 接 将 枯 更谈 不上 探究 的欲 望. 《 普 通 高 中数 学 课 程标 准 》 倡 导
Ar +B + C一 0上 方 的平 面 区 域 ;若 可 化 为 y<

和不 等式 a 3 2 4 - b x +c > O( 口 <O ) 三者 之 间 的关 系 , 可
则 表示直 线 Ax+B y + C一0下 方 的 平 面
先结合 图象 引入 函数 . y —a x +b与 方 程 n z+6 —0和 不等式 a x+b >O( n <0 ) 的关 系 , 引导 学生 思考 函数 、
了方 程 与不 等式 之 间的关 系 , 体 会 事 物 之 间联 系 的 普
遍性 . 从 本质 上懂 得 了 Ax +B y +C >0 ( <0 ) 则 表 示 的平 面 区域 , 运 用必将 更 加灵 活. 4 构 造 函数 ,( ) = + a ( n > 0) , 求 + a 型 的
- z , 根据 a > O和 z <2 <z <4 , 结 合二 次 函数 图象有
例 1 已知 a 、 b ∈R +并 且 a ≠b , 试 比较 口 +b 与a b 。 +a 。 b 大小 的关 系.

』 g 2 < 0 , 即 』 4 a + 2 b - < 0 ,
理化
象通 过分 析点 P。 ( z。 , y 。 ) , P ( z 。 , y ) , Pz ( 。 , y ) ( 其
中点 P。 在直 线上 , > 。 > : ) 的位 置 关 系得 到. 这 里 与课本 不 同 的处 理 方 法 让 学 生 更 好 地 理 解
例2 关 于 z的不 等 式 一z一 ( n +口 ) < o在
Q 二 次 函 数- 厂 ( z ) 一 z - 。 一 z 一 ( & q - a ) 的 对 称 轴
◇ 福建 杨 春 元
为z : : = ÷, 函数 . 厂 ( z ) 一z 。 一z 一( n +Ⅱ ) 在区
况, 通过 学生熟 悉 的相等 关 系 的研 究来 揭 发 和探 索 不 等关 系 问题 , 运 用 函数与 方 程思 想 来指 导 不等 式 的教 与学 将 使学 生对 不等式 知识 的发 生 、 发展 和运 用 有 更 深 刻 的理解 . 本 文 以教 材 中几 个 片段 的教 学 , 谈谈 函 数 与方 程思 想在 不等式 教学 中的运用. 1 利用 n —b的 符号 , 比较 实数 口 、 b大 小关 系
相关文档
最新文档