杭州市上城区2014七年级上期末试卷
2014-2015学年七年级上学期七年级期末考试数学试题及答案(浙教版)

2014-2015学年七年级上学期期末数学试题版本:浙教版时间120分钟满分120分2015.9.17一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.下列四个数中,结果为负数的是()A.﹣(﹣) B. |﹣| C.(﹣)2 D.﹣|﹣|2.下列计算正确的是()A. B.=﹣2 C. D.(﹣2)3×(﹣3)2=723.用代数式表示:“a,b两数的平方和与a,b乘积的差”,正确的是()A. a2+b2﹣ab B.(a+b)2﹣ab C. a2b2﹣ab D.(a2+b2)ab4.据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107 B. 13.94×107 C. 1.394×106 D. 13.94×1055.若﹣2a m﹣1b2与5ab n可以合并成一项,则m+n的值是()A. 1 B. 2 C. 3 D. 46.如图,A是直线l外一点,点B、C、E、D在直线l上,且AD⊥l,D为垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,点A到直线l的距离是()A. 13cm B. 8cm C. 7cm D. 6cm7.下列式子变形正确的是()A.﹣(a﹣1)=﹣a﹣1 B. 3a﹣5a=﹣2a C. 2(a+b)=2a+b D. |π﹣3|=3﹣π8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()A.B.C. D.9.下列说法:①两点确定一条直线;②射线AB和射线BA是同一条射线;③相等的角是对顶角;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的是()A.①③④ B.①②④ C.①④ D.②③④10.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为() A. 2cm B. 4cm C. 2cm或6cm D. 4cm或6cm二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.若∠1=40°50′,则∠1的余角为,∠1的补角为.12.在实数,,0,,,﹣1.414,0.131131113…(两个“3”之间依次多一个“1”),﹣13.关于x的方程3x+2a=6的解是a﹣1,则a的值是.14.如果a﹣3b=6,那么代数式5﹣3a+9b的值是.15.若当x=3时,代数式(3x+4+m)与2﹣mx的值相等,则m= .16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为,第n个正方形的中间数字为.(用含n的代数式表示)三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.计算(1)(﹣2.25)﹣(+)+(﹣)﹣(﹣0.125)(2)﹣32+5×(﹣6)﹣(﹣4)2÷(﹣2)18.解方程(1)4x﹣2=3x﹣(2)=﹣2.19.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有OD⊥OE,试说明理由;(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.20.在同一平面内有n条直线,当n=1时,如图①,一条直线将一个平面分成两个部分;当n=2时,如图②,两条直线将一个平面最多分成四个部分.(1)在作图区分别画出当n=3时,三条直线将一个平面分成最少部分和最多部分的情况;(2)当n=4时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;(3)若n条直线将一个平面最多分成a n个部分,(n+1)条直线将一个平面最多分成a n+1个部分,请写出a n,a n+1,n之间的关系式.21.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m 处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.22.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于2015,2020吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)23.某超市在“元旦”促销期间规定:超市内所有商品按标价的75%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围 100≤a<400 400≤a<600 600≤a<800获得奖券金额(元) 40 100 130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×75%=330元,获得的优惠额为:440×(l﹣75%)+40=150元.(1)购买一件标价为800元的商品,求获得的优惠额;(2)若购买一件商品的消费金额在450≤a<800之间,请用含a的代数式表示优惠额;(3)对于标价在600元与900元之间(含600元和900元)的商品,顾客购买标价为多少元的商品时可以得到的优惠率?(设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价)参考答案一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.故选:D.2.故选B.3.故选:A.4.故选:A.5.故选:D.6故选:D.7.故选B.8.故选:A.9.故选C.10.故选:C.二.认真填一填11.故答案为:49°10′,139°10′.12.故答案为:,,0.131131113…(两个“3”之间依次多一个“1”).13.故答案为:.14.故答案为:﹣13.15.故答案为:﹣16.故答案为:29,8n﹣3.三.全面答一答17.解:(1)原式=(﹣2.25﹣0.75)+(﹣0.625+0.125)=﹣3﹣0.5=﹣3.5;(2)原=﹣9﹣30+8=﹣31.18.解:(1)方程移项合并得:x=2﹣;(2)去分母得:4x+2=1﹣2x﹣12,移项合并得:6x=﹣13,解得:x=﹣.19.解:(1)如图,∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠DOE=(∠AO B+∠BOC)=∠AOC=90°,即OD⊥OE;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.20.解:(1)如图,(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;(3)当n=1时,分成2部分,当n=2时,分成4=2+2部分,当n=3时,分成7=4+3部分,当n=4时,分成11=7+4部分,…可以发现,有几条线段,则分成的部分比前一种情况多几部分,a n、a n+1、n之间的关系是:a n+1=a n+(n+1).21.解:(1)如图,(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,∴小新家到医院的距离为800m,设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,∴小新家与学校的距离为200m.②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m∴小新家与学校的距离为400m.22.解:(1)设中间的数是a,则a的上一个数为a﹣18,下一个数为a+18,前一个数为a﹣2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a﹣18=403﹣18=385,2n﹣1=385,解得n=193,193÷9=21…4,5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.23.解:(1)优惠额为800×(l﹣75%)+130=330元;(2)消费金额在400<a≤600之间时,优惠额为(a÷70%)(1﹣75%)+100=a+100;消费金额在600≤a<800之间时,优惠额为(a÷70%)(1﹣75%)+130=a+130;(3)设购买标价为x元时,由题意得0.25x+130=x,或x+130=x,解得:x=832或x=(不合题意,舍去)答:购买标价为832元的商品时可以得到的优惠率.。
试卷分析

2014年上学期期末调研考试七年级试卷分析一、试题分析:命题难易适中,题量适宜,在考查本阶段所学内容的基础上紧扣今年中考的改革。
本次考试试卷共分四大部分:1:语文积累及运用,所占分值27分,包括字的字音字形书写,成语解释,病句修改,句子的语序,名著阅读,综合运用及古诗文名句默写。
2:古诗文阅读,所占分值16分,包括一篇课后古诗鉴赏和一篇课外短小文言文阅读。
3:现代文阅读,所占分值27分,包括一个课外说明文阅读和一个课外记叙文阅读,4:作文:所占分值10+40分,小作文10分,是片段作文,要求通过事件刻画人物形象;大作文40分,一篇半命题作文和一篇命题作文任选其一。
二、考试成绩情况:抽样试卷一共87份。
其中优秀试卷16份,占18.4%;不及格试卷12份,占13.8%。
最高分105分,最低分32分。
学生整体答题情况较好,书写工整,学习习惯好,学习态度认真。
但学生总体成绩不太令人满意,尤其是不及格人数较多,低分太低。
这与本次试题紧扣中考的改革而我们肄业班老师平时训练较少有着一定的关系。
值得我们所有语文教师反思。
三、具体分析:(一)第一大题:语文积累及运用第1小题考察了学生基础知识的同时也考察了学生的学习态度;第2、3小题成语运用、语病的考察,在考察学生对成语理解的同时也考察了学生考试的审题的细致程度;第4小题考察学生对语句衔接地理解,同时对学生语感和语文素养的提高起到了润物无声的自然效果;第5小题名著阅读,既有书本上的考点,又有四大名著的考查,与中考接轨;第6小题综合性学习的考察,真正考察了综合性,同时更体现了时代特点和现代意识。
第7题古诗文名句默写,既达到了考察学生诗词诵读完成情况的程度,又考察了语文与科学关系及在实践中学习语文的方式。
从抽样试卷的得分来看,1-5小题得分较高,第6题的第(2)小题得分最低。
第7题大部分学生都能写,但错别字较多,失分较大。
(二)第二大题:古诗文阅读第8-9题诗歌鉴赏出自课后古诗十首,因所选篇目《峨眉山月歌》容易理解,出题也不难,所以学生把握较好,得分高。
杭州市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. -3B. 3C.D. -2.温度由-4℃上升7℃后的温度为()A. -3℃B. 3℃C. -11℃D. 11℃3.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331……(两个“1”之间依次多一个3)4.下列各组单项式中,是同类项的为()A. 2ab3与2a3bB. 2ab3与3b3aC. 6a2b与-9a2bcD. 2a与2b5.下列各组数的大小关系正确的是()A. +0.3<-0.1B. 0<-|-7|C. -<-1.414D. ->-6.下列说法正确的是()A. 两个无理数的和一定是无理数B. 两个无理数的积一定是无理数C. 有理数与无理数的和一定是无理数D. 有理数与无理数的积一定是无理数7.下列时刻中,时针与分针所成的角(小于平角)最大的是()A. 9:00B. 3:30C. 6:40D. 5:458.数轴上A,B,C,D,E五个点的位置如图所示,表示实数的点在()A. 点A与点B之间B. 点B与点C之间C. 点C与点D之间D. 点D与点E之间9.两个水桶中装有体积相等的水.先把甲桶的水倒一半至乙桶,再把乙桶的水倒出三分之一给甲桶,且整个过程中没有水溢出.则现在两个水桶中水的量是()A. 甲桶中的水多B. 乙桶中的水多C. 一样多D. 无法比较10.如图,A,B两地之间有一条东西向的道路.在A地的东5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一汽车在A地的东3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为()A. 12n+5B. 12n+2C. 12n-7D. 12n-10二、填空题(本大题共6小题,共24.0分)11.计算:-22=______,|-2|=______.12.将数据120000用科学记数法可以表示为______.13.计算:123°24'-60°36′=______.14.若等式13+6(3x-4y)=7(4y-3x)成立,则代数式4y-3x的值为______.15.如图是一副三角尺拼成的图案,其中∠ACB=∠EBD=90°,∠A=30°,∠ABC=60°,∠E=∠EDB=45°.若∠EBC=4∠ABD,则∠ABD的度数为______.16.若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x-m|+|x+n|+|x+p|的最小值是______.三、计算题(本大题共4小题,共34.0分)17.计算:(1)(-3)+(-5)(2)+(3)÷(-)+(-)2×2118.先化简,再求值:(a2+8ab)-2(a2+4ab-b),其中a=-2,b=1.19.解方程:(1)8-x=3x+2(2)=1-20.某市对七年级综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分(满分100分)由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?四、解答题(本大题共4小题,共32.0分)21.已知点A,B,C(如图),按要求完成下列问题:(1)画出直线BC、射线CA、线段AB.(2)过C点画CD⊥AB,垂足为点D.(3)在以上的图中,互余的角为______,互补的角为______.(各写出一对即可)22.如图,直线AB,CD相交于点O,∠AOD=56°,OE平分∠BOC.且OF⊥OE,求∠COF的度数.23.点A,O,B是数轴上从左至右的三个点,其中O与原点重合,点A表示的数为-4,且AO+AB=11.(1)求出点B所表示的数,并在数轴上把点B表示出来.(2)点C是数轴上的一个点,且CA:CB=1:2,求点C表示的数.24.某公司在A,B两地分别有同型号的机器17台和15台,目前需要把这些机器中的(1)设从A地运往甲地x台,则从A地运往乙地______台,从B地运往乙地______台.(结果用x的代数式表示,且代数式化到最简)(2)当运送总费用为15800元时,请确定运送方案(即A,B两地运往甲、乙两地的机器各几台).(3)能否有一种运送方案比(2)中方案的总运费低?如果有,直接写出运送方案及所需运费;如果没有,请说明理由.答案和解析1.【答案】A【解析】解:3的相反数是-3.故选:A.依据相反数的定义回答即可.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】B【解析】解:根据题意知,升高后的温度为-4+7=3(℃),故选:B.上升7℃即是比原来的温度高了7℃,所以把原来的温度加上7℃即可得出结论.本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.3.【答案】A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331……(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.4.【答案】B【解析】解:A、2ab3与2a3b,所含字母相同,相同字母的指数不相等,这两个单项式是同类项,故本选项错误;B、∵2ab3与3b3a中,所含字母相同,相同字母的指数相等,∴这两个单项式是同类项,故本选项正确;C、∵6a2b与-9a2bc中,所含字母不同,∴这两个单项式不是同类项,故本选项错误;D、∵2a与2b中,所含字母不同,∴这两个单项式不是同类项,故本选项错误.故选:B.根据同类项的定义对四个选项进行逐一分析即可.本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.5.【答案】C【解析】解:A、+0.3>-0.1,故本选项不符合题意;B、0>-|-7|,故本选项不符合题意;C、∵1.4142=1.999396,∴-<-1.414,故本选项符合题意;D、-<-,故本选项不符合题意;故选:C.先根据实数的大小比较法则比较数的大小,再得出选项即可.本题考查了实数的大小比较法则、相反数和绝对值,能熟记实数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.6.【答案】C【解析】解:A、两个无理数的和一定是无理数,错误,例如:-+=0;B、两个无理数的积一定是无理数,错误,例如:-×=-2;C、有理数与无理数的和一定是无理数,正确;D、有理数与无理数的积一定是无理数,错误,例如:0×=0.故选:C.直接利用有理数以及无理数的性质分别判断得出答案.此题主要考查了实数运算,正确掌握实数运算性质是解题关键.7.【答案】D【解析】解:A、9:00时时针与分针的夹角是90°,B、3:30时时针与分针的夹角是90°-×30°=75°,C、6:40时时时针与分针的夹角是30°×2-30°×=40°,D、5:45时时时针与分针的夹角是30°×4-30°×=97.5°,故选:D.根据时针的旋转角减去分针的旋转角,可得答案.本题考查了钟面角,利用了时针与分针的夹角是时针的旋转角减去分针的旋转角.8.【答案】C【解析】解:因为0.36<0.4<0.49,即<<,所以0.6<<0.7,即表示实数的点在点C与点D之间.故选:C.找到能开得尽方的两个数,满足一个比0.4小,一个比0.4大,从而确定表示实数的点所在的范围.本题主要考查了无理数的估算,找到接近0.4且能开得尽方的两个数是解决本题的关键.9.【答案】A【解析】解:设甲、乙两个水桶中水的重量为a.根据题意,得因为先把甲桶的水倒一半至乙桶,甲桶的水=(1-)a,乙桶的水=(1+)a,再把乙桶的水倒出三分之一给甲桶,所以甲桶有水(1-)a+(1+)a×=a,乙桶有水(1+)a(1-)=a,所以a>a.故选:A.根据题意列出代数式进行比较即可求解.本题考查了列代数式,解决本题的关键是理解题意准确列出代数式.10.【答案】D【解析】解:由题意可得,一汽车在A地的东3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为:(5-3)+12(n-1)=(12n-10)(km),故选:D.根据题意和图形,可以用代数式表示出这辆汽车行驶的路程,本题得以解决.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式,利用数形结合的思想解答.11.【答案】-4 2【解析】解:-22=-4,|-2|=2,故答案为:-4,2.根据有理数的乘方的定义和绝对值的性质求解可得.本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义和绝对值的性质.12.【答案】1.2×105【解析】解:将数据120000用科学记数法可以表示为1.2×105,故答案为:1.2×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】62°48′【解析】解:123°24'-60°36′=122°84'-60°36′=62°48′,故答案为:62°48′.根据1°=60′先变形,再分别相减即可.本题考查了度、分、秒之间的换算,能熟记1°=60′和1′=60″是解此题的关键.14.【答案】1【解析】解:∵13+6(3x-4y)=7(4y-3x)∴13-6(4y-3x)=7(4y-3x)∴13(4y-3x)=13,∴4y-3x=1,故答案为1.将13+6(3x-4y)=7(4y-3x)变形13-6(4y-3x)=7(4y-3x),移项得13(4y-3x)=13,求出4y-3x=1.本题考查了代数式的值,正确提取负号进行式子变形是解题的关键.15.【答案】30°【解析】解:∵∠EBC=4∠ABD,∴设∠ABD=x,则∠EBC=4x.∵∠DBE=90°,∠ABC=60°,∴∠DBC=60°-x,∴∠EBC=90°+60°-x=150°-x,∴150°-x=4x,∴x=30°,即∠ABD=30°.故答案为:30°.设∠ADB=x,则∠EBC=4x,根据题意列方程即可得到结论.本题主要考查了角的计算,数形结合是解答此题的关键.16.【答案】-m-n【解析】解:∵mp<0,∴m、p异号,∵m<p,∴p>0,m<0,∵m<n<p且|p|<|n|<|m|,∴n<0,如图所示:∴当x=-p时,|x-m|+|x+n|+|x+p|有最小值,其最小值是:|x-m|+|x+n|+|x+p|=|-p-m|+|-p+n|+|-p+p|=-p-m-n+p=-m-n,则|x-m|+|x+n|+|x+p|的最小值是-m-n,故答案为:-m-n.先根据mp<0,确认p>0,m<0,再根据已知可得:n<0,并画数轴标三个实数的位置及-n和-p的位置,根据图形可知:当x=-p时,|x-m|+|x+n|+|x+p|有最小值,代入可得最小值.本题考查绝对值的几何意义,即这个数表示的点到原点的距离.17.【答案】解:(1)(-3)+(-5)=-(3+5)=-8;(2)+=4+(-4)=0;(3)原式=×(-)+×21=-2+=-.【解析】(1)根据有理数的加法法则计算可得;(2)先计算算术平方根和立方根,再计算加法即可得;(3)根据实数的混合运算顺序和运算法则计算可得.本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则.18.【答案】解:原式=a2+8ab-2a2-8ab+2b=-a2+2b,当a=-2,b=1时,原式=-(-2)2+2×1=-4+2=-2.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)-x-3x=2-8,-4x=-6,x=;(2)2(3x-1)=6-(4x-1),6x-2=6-4x+1,6x+4x=6+1+2,10x=9,x=0.9.【解析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.20.【答案】解:设孔明同学测试成绩为x分,则平时成绩为(185-x)分,根据题意得:80%x+20%(185-x)=91,解得:x=90,∴185-90=95,答:孔明同学测试成绩为90分,则平时成绩为95分.【解析】设孔明同学测试成绩为x分,则平时成绩为(185-x)分,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题意是解本题的关键.21.【答案】∠DBC和∠BCD等等∠BDC和∠ADC等等【解析】解:(1)如图,直线BC、射线CA、线段AB为所作;(2)如图,CD为所作;(3)∠DBC+∠BCD=90°,∠DAC+∠ACD=90°,∠BDC+∠ADC=180°.故答案为∠DBC和∠BCD等等;∠BDC与∠ADC.(1)(2)根据几何语言画出对应的几何图形;(3)根据余角和补角的定义求解.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.【答案】解:∵直线AB,CD相交于点O,∠AOD=56°,∴∠BOC=56°,∵OE平分∠BOC,∴∠BOE=∠EOC=28°,∵OF⊥OE,∴∠EOF=90°,∴∠COF=90°-28°=62°.【解析】直接利用对顶角的定义得出∠BOC=56°,进而利用垂直的定义得出答案.此题主要考查了垂线以及对顶角,正确得出∠EOC的度数是解题关键.23.【答案】解:(1)∵O与原点重合,点A表示的数为-4,∴AO=4,∵AO+AB=11,∴AB=7,∵点A,O,B是数轴上从左至右的三个点,∴点B所表示的数是-4+7=3,如图所示:(2)①点C在点A的左边,7×=7,点C表示的数是-4-7=-11;②点C在点A和点B的中间,7×=,点C表示的数是-4+=-.故点C表示的数是-11或-.【解析】(1)先求出AB的长度,再根据两点间的距离公式即可在数轴上把点B表示出来.(2)分两种情况:①点C在点A的左边;②点C在点A和点B的中间;进行讨论即可求解.本题考查了分类思想的应用以及数轴,熟练掌握两点间的距离公式是解题的关键.24.【答案】17-x x-3【解析】解:(1)∵A地有17台机器,运往甲地x台∴剩(17-x)台运往乙地∵需运14台机器到乙地,A地已运(17-x)台过来∴剩下需由B地运来的台数为:14-(17-x)=x-3故答案为:17-x;x-3(2)依题意得:600x+500(17-x)+400(18-x)+800(x-3)=15800解得:x=5∴17-x=12,18-x=13,x-3=2答:当运送总费用为15800元时,从A地运往甲地5台,运往乙地12台;从B地运往甲地13台,运往乙地2台.(3)有运送方案比(2)中方案的总运费低.设总运费为y元,得:y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300y随x增大而增大又∵得:3≤x≤17∴当x=3时,y有最小值,为y=500×3+13300=14800∴方案为:从A地运往甲地3台,运往乙地14台;从B地运往甲地15台,运往乙地0台.最低运费为14800元.(1)按题目的数量关系计算即可得答案.(2)把每种情况的运费与相应的数量相乘,再把积相加,即为总运费,列得方程并求解.(3)设总运费为y,可列得y关于x的函数关系式,再根据一次函数性质和x的取值范围,即能求得运费最小值.本题考查了一元一次方程应用,一次函数的应用.解决数据比较多的应用题时,可适当利用表格写出相应的数量关系,减少出错机会.第11页,共11页。
2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)

2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)下列各对数中,互为相反数的是()A.和0.2 B.和C.﹣1.75和+1.75 D.+2和﹣(﹣2)2.(3分)如果一个角是36°,那么()A.它的余角是64°B.它的补角是64°C.它的余角是144° D.它的补角是144°3.(3分)一个数的立方就是它本身,则这个数是()A.1 B.0 C.﹣1 D.1或0或﹣14.(3分)如图,图中线段、射线、直线的条数分别为()A.5,4,1 B.8,12,1 C.5,12,3 D.8,10,35.(3分)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n6.(3分)下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.1个 B.2 C.3个 D.4个7.(3分)一副三角板按如图方式摆放,且∠1比∠2小60°,则∠AOB的度数是()A.140°B.150°C.160° D.165°8.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+18C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=9.(3分)若现在的时间为下午2:30,那么时针与分针的夹角为()A.120°B.115°C.110° D.105°10.(3分)一列匀速前进的火车,从它进入500m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.m B.100m C.120m D.150m二、填空题(本题有8小题,每小题3分,共24分)11.(3分)64的平方根是.12.(3分)用代数式表示比a的5倍大3的数是.13.(3分)已知一个角的补角加上10°后等于这个角的余角的3倍,则这个角的余角为.14.(3分)大于﹣不大于的整数有(写出这些数).15.(3分)当n为正整数时,(﹣1)2n+(﹣1)2n+1=.16.(3分)小刚他们玩扑克牌游戏,首先把扑克牌分成左、中、右三堆,每堆的扑克牌不少于2张,且每堆的扑克牌数量相等,后按下列步骤操作:①从左边一堆拿一张扑克牌放入中间一堆;②从右边一堆拿二张扑克牌放入中间一堆;③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中,这时,中间一堆的扑克牌数是张.17.(3分)如图,甲以3km/h的速度从A地到C地,乙以4km/h的速度从A地到B地,CB=4km,D是CB的中点,设AD=x km(x<12),则甲所用的时间比乙时间少h.(结果用x的代数式表示,要化简)18.(3分)如图,平面内有公共端点的六条射线:OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字:1,2,3,4,5,6,7,….根据规律将射线OD上的第n个数字(从O向D数)用含正整数n的式子表示为.三、解答题(本题有7题,共66分)19.(12分)计算(1)21﹣(﹣5)2×(﹣1)(2)﹣(+4)(3)50°24′×3+98°12′25″÷5(4)4.8×104﹣8.4×103.20.(6分)化简或求值(1)﹣2(3x﹣2y)+3[5x﹣(2y﹣4x)](2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.求A﹣2B的值,其中a=2,b=﹣.21.(12分)解方程(1)16﹣2(x﹣3)=x(2)1﹣=(3)+x=.22.(8分)某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?23.(8分)(1)已知线段AB 长为6cm ,点C 是线段AB 上一点,满足AC=CB ,点D 是直线AB 上一点,满足BD=AC ,求出线段CD 的长.(2)如图,已知O 是直线MN 上的一点,∠AOB=90°,OC 平分∠BON ,∠3=24°,求∠1和∠MOC 的度数.24.(10分)我们知道,任何一个三角形三个内角的和是180°,如图,△ABC 中,∠BAC +∠ABC +∠ACB=180°.(1)请画出∠ABC 和∠ACB 的角平分线,交点是D .(2)若∠BAC=x 度,请用x 的代数式表示出∠BDC 的度数,并简单说明理由.(3)若∠BAC 和∠BDC 互补,求x 的值.25.(10分)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为 元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为元;(2)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费为多少元?2014-2015学年浙江省杭州市七年级(上)期末数学复习试卷(2)参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)1.(3分)(2013秋•蓝山县期末)下列各对数中,互为相反数的是()A.和0.2 B.和C.﹣1.75和+1.75 D.+2和﹣(﹣2)【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 互为倒数,故A错误;B 互为倒数,故B错误;C 只有符号不同,故C正确;D 两数相等,故D错误;故选:C.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.2.(3分)(2004•郫县)如果一个角是36°,那么()A.它的余角是64°B.它的补角是64°C.它的余角是144° D.它的补角是144°【分析】根据余角、补角的定义计算.【解答】解:如果一个角是36°,那么它的余角是90°﹣36°=54°,补角为180°﹣36°=144°.故选D.【点评】本题考查余角、补角的定义;α的余角为90°﹣α,补角为180°﹣α.3.(3分)(2013春•临沂期末)一个数的立方就是它本身,则这个数是()A.1 B.0 C.﹣1 D.1或0或﹣1【分析】本题考查立方的意义,在解答时,根据立方的意义求得结果.【解答】解:一个数的立方就是它本身,则这个数是1或0或﹣1.故选D.【点评】解决此类题目的关键是熟记立方的意义.根据立方的意义,一个数的立方就是它本身,则这个数是1,﹣1或0.4.(3分)(2012秋•下城区期末)如图,图中线段、射线、直线的条数分别为()A.5,4,1 B.8,12,1 C.5,12,3 D.8,10,3【分析】已知直线上的两个端点即可确定一条线段,直线上的一点就可确定两条射线,据此即可求解.【解答】解:图中的线段有:AB、AO、AC、BO、BC、OC、DO、EO,共有8条;图中的射线有:AC、BC、OC、CH、CO、OB、BA、AK、OD、DM、OE、EN,共有12条.图中的直线有:直线AC.共1条.故选B.【点评】本题考查了直线、射线、线段.在线段、射线的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.5.(3分)(2008•咸宁)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n【分析】考查整式的加减运算,首先去括号,然后合并同类项.【解答】解:m+n﹣(m﹣n)=m+n﹣m+n=2n.故选C.【点评】去括号时,当括号前面是负号,括号内各项都要变号.合并同类项时把系数相加减,字母与字母的指数不变.6.(3分)(2013秋•杭州期末)下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.1个 B.2 C.3个 D.4个【分析】根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.【解答】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.【点评】本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.7.(3分)(2014秋•杭州期末)一副三角板按如图方式摆放,且∠1比∠2小60°,则∠AOB的度数是()A.140°B.150°C.160° D.165°【分析】根据三角板可得∠1+∠2=90°,∠AOC=90°,根据∠1比∠2小60°可得∠2﹣∠1=60°,然后与∠1+∠2=90°结合可计算出∠1和∠2的度数,进而得到∠AOB 的度数.【解答】解:∵∠1+∠2=90°,∠2﹣∠1=60°,∴∠1=15°,∠2=75°,∴∠AOB=∠AOC+∠2=90°+75°=165°.故选:D.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.8.(3分)(2015秋•红河州校级期末)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+18C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=【分析】各项利用去分母,去括号,移项合并,将x系数化为1的方法计算得到结果,即可做出判断.【解答】解:A、4x﹣5=3x+2变形得:4x﹣3x=﹣2﹣5,故选项错误;B、x﹣1=x+3变形得:4x﹣6=3x+18,故选项正确;C、3(x﹣1)=2(x+3)变形得:3x﹣3=2x+6,故选项错误;D、3x=2变形得x=,故选项错误.故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)(2014秋•杭州期末)若现在的时间为下午2:30,那么时针与分针的夹角为()A.120°B.115°C.110° D.105°【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:2点30分时,时针和分针中间相差3.5大格.∵钟表12个数,每相邻两个数字之间的夹角为30°,∴2点30分时分针与时针的夹角是3.5×30°=105°.故选;D.【点评】此题考查的知识点是钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.10.(3分)(2013秋•蓝山县期末)一列匀速前进的火车,从它进入500m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.m B.100m C.120m D.150m【分析】设这列火车的长度为xm,则火车通过隧道时的速度为米/秒,而火车通过灯光时的速度为你米/秒,根据这两个速度相等建立方程求出其解即可.【解答】解:设这列火车的长度为xm,由题意,得=,解得:x=100.故选B.【点评】本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,解答时根据速度不变为等量关系建立方程是关键.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)(2010•婺源县校级模拟)64的平方根是±8.【分析】直接根据平方根的定义即可求解.【解答】解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(3分)(2014秋•海曙区期末)用代数式表示比a的5倍大3的数是5a+3.【分析】比a的5倍大3的数也就是用a乘5再加上3,直接列式即可.【解答】解:根据题意可知,比a的5倍大3的数是5a+3.故答案为:5a+3.【点评】此题考查列代数式,注意字母和数字相乘的简写方法.13.(3分)(2014秋•杭州期末)已知一个角的补角加上10°后等于这个角的余角的3倍,则这个角的余角为50°.【分析】先设出这个角,可表示出其补角和余角,根据题意我们可列出等式,解这个等式即可得出这个角的度数,然后求得其余角即可.【解答】解:设这个角为x°,则它的余角为90°﹣x°,补角为180°﹣x°,根据题意,得180°﹣x°+10°=3×(90°﹣x°),解得x=40,余角为50°,故答案为:50°.【点评】本题考查的是角的余角和补角的关系,以及对题意的准确把握.14.(3分)(2014秋•杭州期末)大于﹣不大于的整数有﹣1,0,1,2,3(写出这些数).【分析】根据﹣,的取值范围得出符合题意的整数即可.【解答】解:∵写大于﹣不大于的整数,∴符合题意的有:﹣1,0,1,2,3.故答案为:﹣1,0,1,2,3.【点评】此题主要考查了估算无理数,正确得出﹣,接近的有理数是解题关键.15.(3分)(2014秋•杭州期末)当n为正整数时,(﹣1)2n+(﹣1)2n+1=0.【分析】利用﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1进而化简得出即可.【解答】解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故答案为:0.【点评】此题主要考查了有理数的乘法运算,利用﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1得出是解题关键.16.(3分)(2010秋•永康市期末)小刚他们玩扑克牌游戏,首先把扑克牌分成左、中、右三堆,每堆的扑克牌不少于2张,且每堆的扑克牌数量相等,后按下列步骤操作:①从左边一堆拿一张扑克牌放入中间一堆;②从右边一堆拿二张扑克牌放入中间一堆;③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中,这时,中间一堆的扑克牌数是4张.【分析】本题需先根据题意求出中间一堆扑克牌的数量和左边一堆扑克牌的数量,再把结果相减即可.【解答】解:设左、中、右三堆扑克牌分别有x张,当①从左边一堆拿一张扑克牌放入中间一堆时中间一堆扑克牌的数量是x+1张,当②从右边一堆拿二张扑克牌放入中间一堆时中间一堆扑克牌的数量是x+3张,此时左边的扑克牌张数是x﹣1,中间是x+3,故当③左边一堆有多少张扑克牌就从中间一堆拿多少张扑克牌放入左边一堆扑克牌中时,中间一堆的扑克牌数是(x+3)﹣(x﹣1)=4张.故答案为4.【点评】本题主要考查了整式的加减,在解题时要注意根据题意找出规律是解题的关键.17.(3分)(2009秋•江东区期末)如图,甲以3km/h的速度从A地到C地,乙以4km/h的速度从A地到B地,CB=4km,D是CB的中点,设AD=x km(x<12),则甲所用的时间比乙时间少(﹣x+)h.(结果用x的代数式表示,要化简)【分析】甲比乙少用的时间=乙走(x+2)km所用的时间﹣甲走(x﹣2)km所用的时间,把相关数值代入后化简即可.【解答】解:∵CB=4km,D是CB的中点,∴CD=BD=2,∴AC=x﹣2,BA=x+2,∴甲比乙少用的时间=﹣=﹣x+(h),故答案为:(﹣x+).【点评】考查列代数式;得到两人所走的路程是解决本题的突破点.18.(3分)(2013秋•天柱县期末)如图,平面内有公共端点的六条射线:OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字:1,2,3,4,5,6,7,….根据规律将射线OD上的第n个数字(从O向D数)用含正整数n的式子表示为6n﹣2.【分析】写出线段上的数据,再寻找并发现规律.【解答】解:射线OD上的第1个数字为4,第2个为旋转一周后,是第10个,第3个,再旋转一周,转过了6个数字;…由此发现规律:每两个数字之差为6,那么射线OD上的第n个数字表示为6n﹣2.【点评】通过观察图形,仔细分析数据后,发现并找出规律,规律题是近年中考的热点之一.三、解答题(本题有7题,共66分)19.(12分)(2014秋•杭州期末)计算(1)21﹣(﹣5)2×(﹣1)(2)﹣(+4)(3)50°24′×3+98°12′25″÷5(4)4.8×104﹣8.4×103.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用平方根,立方根定义计算即可得到结果;(3)原式利用度分秒运算法则计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=21+25=46;(2)原式=4+3﹣4=3;(3)原式=150°72′+19°38′29″=170°50′29″;(4)原式=48000﹣8400=39600.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014秋•杭州期末)化简或求值(1)﹣2(3x﹣2y)+3[5x﹣(2y﹣4x)](2)已知A=3b2﹣2a2,B=ab﹣2b2﹣a2.求A﹣2B的值,其中a=2,b=﹣.【分析】(1)原式去括号合并即可得到结果;(2)把A与B代入A﹣2B中,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(1)原式=﹣6x+4y+15x﹣6y+12x=21x﹣2y;(2)∵A=3b2﹣2a2,B=ab﹣2b2﹣a2,∴A﹣2B=3b2﹣2a2﹣2ab+4b2+2a2=7b2﹣2ab,当a=2,b=﹣时,原式=+2=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(12分)(2014秋•杭州期末)解方程(1)16﹣2(x﹣3)=x(2)1﹣=(3)+x=.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:16﹣2x+6=x,移项合并得:3x=22,解得:x=;(2)去分母得:6﹣3x+5=2+10x,移项合并得:13x=9,解得:x=;(3)方程整理得:+x=,去分母得:15x﹣9+6x=2x+20,移项合并得:19x=29,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.22.(8分)(2006•恩施州)某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?【分析】本题最后的问题是旅游团住了三人普通间和双人普通间客房各多少间,跟表中的豪华间是没有关系的.那么根据人数和钱数就可以得到两个等量关系:三人普通间的人数+双人普通间的人数=50;三人普通间的钱数+双人普通间的钱数=1510.【解答】解:设三人普通房和双人普通房各住了x、y间.根据题意,得化简得:,②﹣①×5得:y=13,将y=13代入①得:x=8,∴(7分)答:三人间普通客房、双人间普通客房各住了8、13间.【点评】解题关键是弄清题意,摒弃没用的条件,找到有用的条件,最简单的等量关系,列出方程组.23.(8分)(2014秋•杭州期末)(1)已知线段AB长为6cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上一点,满足BD=AC,求出线段CD的长.(2)如图,已知O是直线MN上的一点,∠AOB=90°,OC平分∠BON,∠3=24°,求∠1和∠MOC的度数.【分析】(1)由AB的长,即AC为BC的一半求出AC与BC的长,再由BD为AC 一半求出BD的长,由BC﹣BD及BD+BC即可求出CD的长;(2)根据∠AOB=90°,∠3=24°,求出∠1+∠2=90°﹣24°=66°,从而求出∠1和∠MON的度数.【解答】解:如图1,2,分两种情况讨论:(1)由题意得AC=2cm,BC=4cm,BD=1cm,由图1得CD=BC﹣BD=3cm,由图2得CD=BC+BD=5cm;如图3:∵∠AOB=90°,∠3=24°,∴∠1+∠2=90°﹣24°=66°,又∵OC平分∠BON,∴∠1=∠2=66°×=33°,∴∠MOC=180°﹣33°=147°.【点评】本题考查了两点间的距离和角的计算,熟悉线段的加减运算和角的相关运算是解题的关键.24.(10分)(2013秋•江干区期末)我们知道,任何一个三角形三个内角的和是180°,如图,△ABC中,∠BAC+∠ABC+∠ACB=180°.(1)请画出∠ABC和∠ACB的角平分线,交点是D.(2)若∠BAC=x度,请用x的代数式表示出∠BDC的度数,并简单说明理由.(3)若∠BAC和∠BDC互补,求x的值.【分析】(1)用量角器作出两个角的角平分线即可;(2)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义表示出∠DBC+∠DCB,然后利用三角形的内角和定理列式整理即可得解;(3)根据互为补角的两个角的和等于180°列出方程求解即可.【解答】解:(1)如图所示;(2)∠BDC=90°+.理由如下:由三角形内角和180°得,∠ABC+∠ACB=180°﹣∠A,∵∠ABC和∠ACB的角平分线的交点是D,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(180°﹣∠A)=90°+∠A,∵∠BAC=x,∴∠BDC=90°+;(3)由题意得,90°++x=180°,解得,x=60°.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.25.(10分)(2014秋•杭州期末)某市积极推行农村医疗保险制度,制定了参加医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为1750元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为8250元;(2)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为多少元?(3)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费为多少元?【分析】(1)根据该医疗报销比例,可以直接求出医疗费分别为3000元和12000元时,分别报销金额;(2)当实际医疗费为x元(500<x≤10000)时,按标准报销的金额为:(x﹣500)×70%;(3)要求该农民当年实际医疗费用,应先设实际医疗费为y元,根据自付医疗费2600元=实际医疗费﹣按标准报销的金额,这个等量关系列出方程求解.【解答】解:(1)甲农民一年的实际医疗费为3000元,则按标准报销的金额为:(3000﹣500)×70%=1750元;乙农民一年的实际医疗费为12000元,则按标准报销的金额为:(10000﹣500)×70%+(12000﹣10000)×80%=8250元;(2)由题意得:某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为:(x﹣500)×70%=0.7(x﹣500)元;(3)设该农民当年实际医疗费为y元,由题意得:当该农民当年实际医疗费为10000元时:该农民自付费用为:10000﹣0.7(10000﹣500)=3350元,所以:500<y<10000元,即:y﹣0.7(y﹣500)=2600,解得,y=7500元.所以,该农民当年实际医疗费为7500元.【点评】本题的关键在于准确理解题意,是“超过部分而非全部”并理解其报销的比例关系以及找出等量关系列方程求解.参与本试卷答题和审题的老师有:2300680618;fuaisu;自由人;py168;dbz1018;HJJ;刘超;sd2011;sks;马兴田;hdq123;疯跑的蜗牛;117173;73zzx;sjzx;gbl210;lantin;lanchong;星期八;HLing;CJX;xingfu123(排名不分先后)菁优网2017年6月1日第21页(共21页)。
浙江省杭州市上城区2023-2024学年七年级上学期期末考试语文试卷(含答案)

2023-2024学年浙江省杭州市上城区七年级(上)期末语文试卷一、班级开展主题为“人与动物”的综合性学习活动,请你参与。
(29分)【任务一说文解字】1.(5分)同学制作了三张汉字卡并展开了讨论,请你根据情境补全对话。
小语:早在远古时期,狗、马和猪这三种动物就被我们的祖先饲养,成为家畜,你看,在甲骨文中古人用线条把动物的外形特征惟妙惟肖地勾勒出来了。
小文:我发现甲骨文“犬”字和“豕”字乍一看很相似,但仔细比较还是有区别的。
小语:嗯,这两个字的区别在①。
小文:这可真形象!我还发现这三个字也都可用作偏旁,像这个“犬”字,用作偏旁就是“犭”,“反犬旁”,形容走兽性情的字常以“犭”为偏旁,如“猛”“狂”“②jiǎo huá”等。
小语:没错,以“马”字为偏旁的汉字也大多与马有关,如“驱”和“③chí”都是策马疾奔之意,“驯”字的意思是④。
小文:嗯,“豕”也是表意的偏旁,古时候人们通常在“宀”(屋子)里养猪,这就是“⑤”字的由来,【任务二故事启思】2.(6分)同学们发现西方寓言和中国神话中都有与狗相关的故事,请你一起探究。
(一)两只狗有个人养了两只狗,他驯养一只狗狩猎,另一只看家守门。
每次猎人带着猎狗出去打猎,获得什么猎物,总是分给守门狗一些。
猎狗对此很不高兴,便指责守门狗,说自己每次出去打猎都是四处奔跑十分辛苦,而他什么都没有做,却坐享其成。
守门狗对猎狗说:“你别责怪我,应该去责怪主人,是他教我不去打猎,坐在家中享受别人的劳动果实。
”——选自《伊索寓言》(二)猴王只顾苦战七圣,却不知天上坠下这兵器,打中了天灵,立不稳脚,跌了一跤,爬将起来就跑;被二郎爷爷的细犬赶上,照腿肚子上一口,又扯了一跌。
他睡倒在地,骂道:“这个亡人!你不去妨家长①,却来咬老孙!”急翻身爬不起来,被七圣一拥按住,即将绳索捆绑,使勾刀穿了琵琶骨,再不能变化。
【注释】①家长:奴仆或牲口的主人。
——选自《西游记》第六回(1)结合两则故事,概括狗在人类生活中的作用。
上城区学一学期七数学历年考试

2009学年第一学期上城区教学质量监测七年级 数学试卷考生须知1.本科目试卷分试题卷和答题卷两部分.考试时间100分钟. 2.答题前,必须在答题卷地密封区内填写学校、姓名和准考证号.3.所有答案都必须做在答题卷标定地位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.A 卷(共100分)一、选择题(本题有10个小题,每小题4分, 共40分) 1.数轴上表示2.1-地点在 ( ) A 、-2和-1之间 B 、-1和0之间C 、0和1之间D 、1和2之间2.把0.70945四舍五入到千分位是 ( ) A 、0.7095 B 、0.710 C 、0.71 D 、0.7093.在-1.5,-π,-27,38-,-0.01,0各数中,最小地数是 () A 、-27B 、-πC 、-1.5D 、38- 4.如果m 表示有理数,那么m m +地值 () A、可能是负数 B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 5.下列所列代数式正确地是 ( )A 、 a 与b 地积地立方是3ab B 、x 与y 地平方地差是2()x y -C 、x 与y 地倒数地差是1x y-D 、5与x 地差地7倍是5-7x 6.有理数a ,b 在数轴上地位置如图所示,则下列结论中,不正确地是( )A 、b a +<0B 、b a ->0C 、ba<0 D 、a >b 7.方程1+=x ax 地解是1=x ,则关于x 地方程24-=a ax 地解为 ( ) A 、x =0 B 、x =1 C、x =2 D 、x =3a b 12-2 -1 08.下列说法正确地是 () A 、两点之间直线最短B 、连结两点间地线段叫做两点间地距离C 、经过直线外一点有且只有一条直线与已知直线平行D 、如果两个角互补,那么这两个角中,一个是锐角,一个是钝角 9.如图是某市一天地温度随时间变化地图像,那么下列说法错误地是()A 、这天15点时温度最高B 、这天3点时温度最低C 、这天最高温度与最低温度地差是13℃D 、这天21点时温度是30℃10.观察下列图形,并阅读图形下面地相关文字:①②③①两直线相交,最多1个交点;②三条直线相交最多有3个交点;③四条直线相交最多有6个交点;那么十条直线相交交点个数最多有( )b5E2R 。
浙江省杭州市上城区七年级(上)期末数学试卷

浙江省杭州市上城区七年级(上)期末数学试卷一、仔细选一选1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.计算的结果为()A.±3B.﹣3C.3D.93.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为()A.4.6×108B.46×108C.4.69D.4.6×1094.下列运算错误的是()A.﹣|﹣2|=2B.(6.4×106)÷(8×103)=800C.(﹣1)2015﹣12016=﹣2D.5.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④6.若单项式x2y m﹣n与单项式﹣是同类项,那么这两个多项式的和是()A.B.C.D.7.估算的值()A.在2.3到2.4之间B.在2.4到2.5之间C.在2.5到2.6之间D.在2.6到2.7之间8.如果m表示有理数,那么|m|﹣m的值()A.不可能是负数B.可能是零或者负数C.必定是零D.必定是正数9.已知∠α是锐角,∠β是钝角,且∠α+∠β=180°,那么下列结论正确的是()A.∠α的补角和∠β的补角相等B.∠α的余角和∠β的补角相等C.∠α的余角和∠β的补角互余D.∠α的余角和∠β的补角互补10.在数轴上,点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个,单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于30,那么n的最小值是()A.19B.20C.21D.22二、认真填一填11.比较大小:.12.计算=.13.已知x=﹣2是关于x的一元一次方程3﹣ax=x的解,则a的值为.14.若2a﹣b=2,则6﹣8a+4b=.15.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是4963,则这三个数中中间的数是.16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x,宽为y,不重叠地放在一个底面为长方形(宽为a)的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是(用只含b的代数式表示).三、全面答一答17.计算:(1)(﹣﹣)×36;(2)﹣32+16÷(﹣2)×(3)37°49'+44°28'(4)﹣(a2﹣6ab+9)+2(a2+4ab﹣4.5),其中a=﹣,b=6.18.按要求作图(不必写作图过程,但需保留作图痕迹).(1)用量角器作一个∠AOB,使得∠AOB=2∠α;(2)已知线段a,b,用直角和圆规作线段MN,使MN=2a﹣b.19.解方程:(1)2x+3=9﹣x;(2)=1﹣.20.老王把10000元按一年期定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为10160元.已知利息税税率为20%,问当时一年期定期储蓄的年利率为多少?21.如图,4×4方格中每个小正方形的边长都为1(1)图(1)中正方形ABCD的边长为;(2)在图(2)的4×4方格中画一个面积为8的正方形;(3)把图(2)中的数轴补充完整,再用圆规在数轴上找出表示的点.22.(1)如图1,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.①直接写出图中∠AOF的余角;②如果∠EOF=∠AOD,求∠EOF的度数.(2)如图2,已知O为线段AB中点,AC=AB,BD=AB,线段OC长为1,求线段AB,CD 的长.23.某市居民用电收费有两种方式,普通电价:全天0.53元/千瓦时,峰谷电价:峰时(早8:00~晚22:00)电价0.57元/千瓦时,谷时(晚22:00~早8:00)电价分为三级:第一级50千瓦时及以下的部分,电价为0.29元/千瓦时,超过50千瓦时,不超过200千瓦时为第二级,超过部分的电价为0.32元/千瓦时;超过200千瓦时为第三级,超过部分的电价为0.39元/千瓦时.小明家使用的是峰谷电.(1)小明家上个月总用电量为250千瓦时,其中峰时用电量为100千瓦时,问小明家上月应付电费是多少元?与普通电价相比,是便宜了还是贵了?(2)若小明家一个月峰时电量为100千瓦时,谷时电量为m千瓦时,请用含m的代数式表示小明家该月应交的电费.(3)某月小明家的电费为215.5元,其中峰时电量为200千瓦时,问那个月小明家的总用电量是多少千瓦时.浙江省杭州市上城区七年级(上)期末数学试卷参考答案与试题解析一、仔细选一选1.﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】14:相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.计算的结果为()A.±3B.﹣3C.3D.9【考点】73:二次根式的性质与化简.【分析】根据=|a|进行计算即可.【解答】解:=3,故选:C.3.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为()A.4.6×108B.46×108C.4.69D.4.6×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4600000000有10位,所以可以确定n=10﹣1=9.【解答】解:4600000000=4.6×109.故选D.4.下列运算错误的是()A.﹣|﹣2|=2B.(6.4×106)÷(8×103)=800C.(﹣1)2015﹣12016=﹣2D.【考点】1G:有理数的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,符合题意;B、原式=0.8×103=800,不符合题意;C、原式=﹣1﹣1=﹣2,不符合题意;D、原式=﹣6÷(﹣)=﹣6×(﹣6)=36,不符合题意,故选A5.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【考点】IC:线段的性质:两点之间线段最短.【分析】四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.【解答】解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选C.6.若单项式x2y m﹣n与单项式﹣是同类项,那么这两个多项式的和是()A.B.C.D.【考点】44:整式的加减;34:同类项.【分析】利用同类项定义列出方程组,求出方程组的解得到m与n的值,即可求出两个多项式的和.【解答】解:∵单项式x2y m﹣n与单项式﹣x2m+n y3是同类项,∴,解得:,则原式=x2y3﹣x2y3=x2y3,故选B7.估算的值()A.在2.3到2.4之间B.在2.4到2.5之间C.在2.5到2.6之间D.在2.6到2.7之间【考点】2B:估算无理数的大小.【分析】依据夹逼法解答即可.【解答】解:∵2.42=5.67,2.52=6.25,∴2.4<<2.5.故选:B.8.如果m表示有理数,那么|m|﹣m的值()A.不可能是负数B.可能是零或者负数C.必定是零D.必定是正数【考点】15:绝对值.【分析】分类讨论m的范围确定出原式的值即可.【解答】解:当m≥0时,|m|=m,原式=m﹣m=0;当m<0时,|m|=﹣m,原式=﹣2m,则原式的值可能是零或者负数,故选B.9.已知∠α是锐角,∠β是钝角,且∠α+∠β=180°,那么下列结论正确的是()A.∠α的补角和∠β的补角相等B.∠α的余角和∠β的补角相等C.∠α的余角和∠β的补角互余D.∠α的余角和∠β的补角互补【考点】IL:余角和补角.【分析】根据补角和余角的定义列出关系式即可求解.【解答】解:A、∠α是锐角,∠β是钝角,则∠α的补角是钝角,∠β的补角是锐角,它们不相等,故选项错误;B、∠α的余角为90°﹣∠α,∠β的补角为180°﹣∠β,当90°﹣∠α=180°﹣∠β,∠β﹣∠α=90°,故选项错误,C、∠α的余角为90°﹣∠α,∠β的补角为180°﹣∠β,∵90°﹣∠α+180°﹣∠β=270°﹣(∠α+∠β)=90°,故选项正确;D、∠α的余角为90°﹣∠α,∠β的补角为180°﹣∠β,∵90°﹣∠α+180°﹣∠β=270°﹣(∠α+∠β)=90°,故选项错误,故选C.10.在数轴上,点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个,单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于30,那么n的最小值是()A.19B.20C.21D.22【考点】37:规律型:数字的变化类;13:数轴.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得每移动2次点与原点的距离增加3个单位,据此可得.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;所以每移动2次点与原点的距离增加3个单位,∵30÷3=10,∴移动20次时,点与原点为距离为30,∴n的最小值为20,故选:B.二、认真填一填11.比较大小:<.【考点】18:有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣|==,|﹣|==,∴﹣<﹣.故答案为<.12.计算=.【考点】24:立方根.【分析】直接开立方运算即可求得答案.【解答】解:=,故答案为:.13.已知x=﹣2是关于x的一元一次方程3﹣ax=x的解,则a的值为﹣.【考点】85:一元一次方程的解.【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得3+2a=﹣2,解得a=﹣.故答案是:﹣.14.若2a﹣b=2,则6﹣8a+4b=﹣2.【考点】33:代数式求值.【分析】原式后两项提取4变形后,将已知等式代入计算即可求出值.【解答】解:∵2a﹣b=2,∴原式=6﹣4(2a﹣b)=6﹣8=﹣2,故答案为:﹣215.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是4963,则这三个数中中间的数是﹣2127.【考点】8A:一元一次方程的应用.【分析】跟具体意列出相应的方程,从而可以解答本题.【解答】解:设这三个数中中间的数是x,则第一个数为,第三个数是﹣3x,,解得,x=﹣2127,故答案为:﹣2127.16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x,宽为y,不重叠地放在一个底面为长方形(宽为a)的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是4b(用只含b的代数式表示).【考点】44:整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:x+2y=a,则图②中两块阴影部分周长和是2a+2(b﹣2y)+2(b﹣x)=2a+4b﹣4y﹣2x=2a+4b﹣2(x+2y)=2a+4b﹣2a=4b.故答案为:4b.三、全面答一答17.计算:(1)(﹣﹣)×36;(2)﹣32+16÷(﹣2)×(3)37°49'+44°28'(4)﹣(a2﹣6ab+9)+2(a2+4ab﹣4.5),其中a=﹣,b=6.【考点】II:度分秒的换算;1G:有理数的混合运算;45:整式的加减—化简求值.【分析】(1)根据有理数的乘法分配律,可得答案;(2)根据有理数的混合运算,可得答案;(3)根据度分秒的加法,可得答案;(4)根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=×36﹣×36﹣×36=21﹣18﹣30=﹣27;(2)原式=﹣9+(﹣8)×=9+(﹣4)=5;(3)原式=81°77′=82°17′;(4)=﹣a2+6ab﹣9+2a2+8ab﹣9=a2+14ab﹣18,当a=﹣,b=6时,原式=(﹣)2+14×(﹣)×6﹣18=﹣42﹣18=﹣59.18.按要求作图(不必写作图过程,但需保留作图痕迹).(1)用量角器作一个∠AOB,使得∠AOB=2∠α;(2)已知线段a,b,用直角和圆规作线段MN,使MN=2a﹣b.【考点】N3:作图—复杂作图.【分析】(1)先作∠AOC=α,再作∠COB=α,从而得到∠AOB;(2)先作MP=2a,再作PN=b,从而得到MN.【解答】解:(1)如图,∠AOB为所作;(2)如图,MN为所作.19.解方程:(1)2x+3=9﹣x;(2)=1﹣.【考点】86:解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:3x=6,解得:x=2;(2)去分母得:2(2x﹣1)=6﹣(2x﹣1),去括号得:4x﹣2=6﹣2x+1,移项合并得:6x=9,解得:x=1.5.20.老王把10000元按一年期定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为10160元.已知利息税税率为20%,问当时一年期定期储蓄的年利率为多少?【考点】8A:一元一次方程的应用.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:设当时一年期定期储蓄的年利率为x,10000(1+x)﹣20%×10000x=10160,解得,x=0.02,即当时一年期定期储蓄的年利率为2%.21.如图,4×4方格中每个小正方形的边长都为1(1)图(1)中正方形ABCD的边长为;(2)在图(2)的4×4方格中画一个面积为8的正方形;(3)把图(2)中的数轴补充完整,再用圆规在数轴上找出表示的点.【考点】N3:作图—复杂作图;29:实数与数轴;KQ:勾股定理.【分析】(1)根据勾股定理可得;(2)根据勾股定理作出一个边长为2的正方形即可;(3)以上图中位于数轴上的点为圆心,边长为半径画弧,与数轴的正半轴的交点即为所求.【解答】解:(1)图1中正方形的边长为=,故答案为:;(2)如图所示:正方形OPQR即为所求正方形;(3)如图,点M即为所求点.22.(1)如图1,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.①直接写出图中∠AOF的余角;②如果∠EOF=∠AOD,求∠EOF的度数.(2)如图2,已知O为线段AB中点,AC=AB,BD=AB,线段OC长为1,求线段AB,CD 的长.【考点】J2:对顶角、邻补角;ID:两点间的距离;IL:余角和补角.【分析】(1)①由垂直的定义可知∠AOF+∠COA=90°,∠AOF+∠FOE=90°,从而可知∠COA与∠FOE是∠AOF的余角,由对顶角的性质从而的得到∠BOD是∠AOF的余角;②依据同角的余角相等可知∠FOE=∠DOB,∠EOF=∠AOD,从而得到∠EOF=平角.(2)先根据中点的定义和已知得到OC所占的分率,从而得到线段AB的长,再根据已知得到CD所占的分率,从而得到线段CD的长.【解答】解:(1)①∵OE⊥AB,OF⊥CD,∴∠AOF+∠COA=90°,∠AOF+∠FOE=90°.∴∠COA与∠FOE是∠AOF的余角.∵由对顶角相等可知:∠AOC=∠BOD,∴∠BOD+∠AOF=90°.∴∠BOD与∠APF互为余角.∴∠AOF的余角为∠AOC,∠FOE,∠BOD;②∵∠AOC=∠EOF,∠AOC+∠AOD=180°,∠EOF=∠AOD,∴6∠AOC=180°.∴∠EOF=∠AOC=30°.(2)∵O为线段AB中点,∴AO=AB,∵AC=AB,∴OC=AB,∵线段OC长为1,∴AB=6,∵AC=AB,BD=AB,∴CD=AC+BD﹣AB=AB=×6=.23.某市居民用电收费有两种方式,普通电价:全天0.53元/千瓦时,峰谷电价:峰时(早8:00~晚22:00)电价0.57元/千瓦时,谷时(晚22:00~早8:00)电价分为三级:第一级50千瓦时及以下的部分,电价为0.29元/千瓦时,超过50千瓦时,不超过200千瓦时为第二级,超过部分的电价为0.32元/千瓦时;超过200千瓦时为第三级,超过部分的电价为0.39元/千瓦时.小明家使用的是峰谷电.(1)小明家上个月总用电量为250千瓦时,其中峰时用电量为100千瓦时,问小明家上月应付电费是多少元?与普通电价相比,是便宜了还是贵了?(2)若小明家一个月峰时电量为100千瓦时,谷时电量为m千瓦时,请用含m的代数式表示小明家该月应交的电费.(3)某月小明家的电费为215.5元,其中峰时电量为200千瓦时,问那个月小明家的总用电量是多少千瓦时.【考点】8A:一元一次方程的应用.【分析】(1)根据题意可以得到小明家上月应付的电费和按普通价格需付的电费,从而可以解答本题;(2)根据题意可以用含m的代数式表示小明家该月应交的电费;(3)根据题意可以判断小明家的用电量,从而可以根据题意列出相应的方程,进而解答本题.【解答】解:(1)由题意可得,小明家上月应付电费为:0.57×100+[50×0.29+×0.32]=103.5(元),如果按普通电价应付电费为:250×0.53=132.5(元),∵132.5>103.5,∴与普通电价相比,便宜了,即小明家上月应付电费是101.5元,与普通电价相比,便宜了;(2)由题意可得,小明家该月应交的电费为:0.57×100+[50×0.29+(m﹣50)×0.32]=0.32m+55.5,即小明家该月应交的电费为(0.32m+55.5)元;(3)由题意可得,小明家峰时的电费为:200×0.57=114(元),若谷时的用电量为50时,需交电费为:50×0.29=14.5,则114+14.5<215.5,故此种情况不符合要求,若谷时的用电量为200时,需交电费为:50×0.29+×0.32=62.5,114+62.5=176.5<215.5,故此种情况不符合要求,∴小明家这个月用电量在谷时超过200千瓦时,设小明家这个月的用电量为x千瓦时,200×0.57+50×0.29+×0.32+(x﹣200﹣200)×0.39=215.5,解得,x=500,即那个月小明家的总用电量是500千瓦时.。
杭州市上城区七年级上学期语文期末考试试卷

杭州市上城区七年级上学期语文期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共4题;共12分)1. (2分)下列加下划线的字注音无误的一项是()A . 祈祷(qí)波澜(lán)罪孽(niè)踌躇(zhù)B . 土偶(ǒu) 劈开(pī) 虐待(nuè)阴惨(cǎn)C . 播弄(bō) 稽首(jǐ) 污秽(huì)咆哮(xiào)D . 睥睨(nì) 鞭挞(tà) 徘徊(pái)婵娟(chán)2. (2分) (2018七下·扬州月考) 下面划线字字形、字音完全正确的一组是()A . 深恶痛疾鲜(xiǎn)为人知迥(jiǒng)乎不同通宵达旦B . 妇儒皆知气冲斗(dǒu)牛警报迭(dié)起马革裹尸C . 不以为然目不窥(kuī)园慷慨(kǎi)淋漓鞠恭尽瘁D . 铤而走险锲(qì)而不舍兀兀(wù)穷年家喻户晓3. (6分) (2018九上·鱼台期中) 阅读下面一段文字,完成下列问题。
生命像向东流的一江春水,他从最高处发源,冰雪是他的前身。
他聚集起许多细流,合成一股有力的洪涛,向下奔注,他曲折的穿过了,冲倒了,挟卷着,快乐勇敢地流走,一路上他享受着他所遭遇的一切:有时候他遇到巉岩前阻,他愤激地奔腾了起来,怒吼着,回旋着,前波后浪地起伏催逼,直到冲倒了这危崖,他才心平气和一泄千里。
有时候他经过了细细的平沙,斜阳芳草里,看见了夹岸红艳的桃花,他快乐而又羞怯,静静地流着,低低地吟唱着,轻轻地度过这一段浪漫的行程。
有时候他遇到暴风雨,这激电,这迅雷,使他心魂惊骇,疾风吹卷起他,大雨击打着他,他暂时浑浊了,扰乱了,而雨过天晴,只加给他许多新生的力量。
(1)下列加下划线字读音有错误的一项是()A . 挟(xié)卷巉(chǎn)岩B . 催(cuī)逼羞怯(qiè)C . 吟(yín)唱惊骇(hài)D . 浑浊(zhú)扰(rǎo)乱(2)文章中画线字词书写有错误的一项是()A . 催逼浪漫B . 羞怯激电C . 峻岩前阻心平气和D . 心魂惊骇一泄千里(3)文章中画线的空缺处依次填入词语最合适的一项是()A . 悬崖峭壁滚滚沙石层沙积土B . 悬崖峭壁层沙积土滚滚沙石C . 滚滚沙石悬崖峭壁层沙积土D . 层沙积土悬崖峭壁滚滚沙石4. (2分) (2017七上·荔湾期末) 下列句子没有语病的一项是()A . 5月4日,广州电视台记者采访了我校黄博文同学,并祝贺他荣获“五四好青年”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市上城区2014七年级上期末试卷
一、仔细选一选。
(本题10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的。
注意可以用不同的而方法来选取正确答案。
1、-2
1的绝对值是( ) A.21 B.2 C.-1 D.-2
1 2、在国家体育馆“鸟巢”的钢结构工程施工建设中,首次使用了我国科研人员自主研发的强度为4.6×810帕的钢材,则4.6×8
10的原数为( )
A.460000
B.46000000
C.460000000
D.4600000000
3、下列各数-(-2),-|-2|,()22-,()32-,-22中负数的个数为( ) A.2个 B.3个 C.4个 D.5个
4.下列各式运算正确的事( )
A.32a b-4b 2a =-2a b
B.6a -5a =1
C.32a +23a =55a
D.2a +2a =4a
5.下列说法正确的是( ) A.x 5的系数是5 B.3
3y x +是单项式 C.-m 5n 是5次单项式 D.-2x y -23x y 是四次多项式
6.在平面内,线段AC=5㎝,BC=3㎝,线段AB 的长度不可能是( )
A.2㎝
B.5㎝
C.8㎝
D.9㎝
7.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A.51 B.5
3 C.1 D.-1 8.一张纸的厚度为0.07㎜,连续对折15次后,它的厚度最接近于( )
A.三层楼的高度
B.篮球运动员的身高
C.课桌的高度
D.数学课本的厚度
9.一部复读机售价a 元,利润是成本的20%,如果要把利润提高到成本的30%,那么售 价应提高( )
A.
15a 元 B.12a 元 C.10a 元 D.8
a 元 10.如图,一个瓶身为圆柱体的玻璃瓶高h 厘米,内装有高a 厘米的墨水,将瓶盖盖好后倒
置,墨水水面高b 厘米,则瓶内空余容积占玻璃瓶总容积的( ) 、 A.b h a b h -+- B.b
a h
b h +-- C.h b a h 22-- D.h b a b a h ++--2
二、认真填一填(本题有8个小题,每小题4分,共32分)
11.如果中午以后2小时计作+2时,那么中午以前2小时应计作( )时。
12.在π, 3.14, 0, 5, 0.43五个数中无理数有( )个。
(π表示圆周率) 13.如图,直线AB 与直线CD 相交,下列说话:①若∠1=∠2,则AB ⊥CD;②若∠1=∠3,
则AB ⊥CD;③若∠2+∠4=180o
,则AB ⊥CD;④若∠2+∠3=2∠1,则AB ⊥CD.其中正确的 是( )(请填写序号)
14.一个两位数的各位数字为a ,十位数字比个位数字大2,则这个数为( )
15.已知a 和92+a 都是数M 的平方根,则M=( )
16.平面内有10条直线,任意两条都相交,设这些直线的交点最多有m 个,最少有n 个,
则n m +的值为( )
17.如图是一个有规律排列的数表,用字母n (n 为正数)的代数式表示数表中第n 行n 列
的数是( ),2015在第( )行第( )列。
18.如图,几块大小不等的正方形纸片A, B, ......I,无重叠地铺满了一个长方形。
已知
正方形纸片E 的边长为14,则正方形的边长是( )。
三、全面答一答(本小题有7个小题,共58分)
19.(本小题8分)计算:
(1) 1-
)32(2-×)2(2- (2) 21-+4-327
(3)50o 24'+
98o 43'25"
20.(本小题8分)
(1)先化简,再求值:(5a -2b )-4(2b -a ),其中a =2,b =-1.
(2)解方程:321x --6
1+x =1
21.(本小题8分)某天早上,一辆交通巡逻车从A 地出发,在一条东西向的马路上巡视, 中午到达B 地,如果规定向东行驶为正,向西行驶为负,行驶记录如下:(单位km ) 第一次 第二次 第三次 第四次 第五次 第六次 第七次
+15 -8 +6 +12 -4 +6 -10
(1)巡逻车在巡逻过程中,离开A 地最远是多少千米?
(2)若巡逻车行驶每km 耗油0.2升,问全程共耗油多少升?
22.(本小题8分)
(1) 如图,已知点c 为线段AB 上一点,且D 、E 分别是线段BC AB ,的中点
①若AC=9cm,BC=4cm,试求线段DE 的长度。
②如果BC=a ,其它条件不变,DE 的长度是否变化,试说明理由。
(2)如图,已知∠AOC=a,∠BOC=β,且OD,OE 分别为∠AOB,∠BOC 的角平分线,请用含有字母α,β的代数式表示出∠DOE 的度数。
23.(本小题8分)
(1)已知a 、b 、c 在数轴上的位置如图所示,求代数式b a +-c a -+c b a +-的值
(2)已知3-a 与
)1(2+y 互为相反数,()13-b +a 3=0, m,n 的绝对值相等,且mn <0,求代数式)(b y a ++m(a+1)+n b 2的值。
24.(本小题8分)为响应“建设节约型社会”的号召,某市制定如下规定:每户用煤气如果不超过m 立方米,按每立方米0.8元收费,超过m 立方米,超过的部分按每立方米1.2元收费。
小颖家10,11月交煤气费的情况如下:
月份 用气量 缴费金额
10 50 40
11 75 66
(1)求m 的值;
(2)由于天气转冷,小颖家12月份的用气量将比11月份增加20%,为了节约煤气,小颖的爸爸用了高科技煤气灶具,该灶具在提供相同热量的情况下可节约用气20%,试问小颖家12月份预计将比用原灶具少交煤气费多少元?
25.(本小题10分)已知数轴上三点M,O,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应数为x 。
(1)如果点P 是线段MN 的中点,那么x 的值是( )
(2)数轴上是否存在点P ,使点P 到点M 的距离之和是5?若存在,直接写出x 的值;若不存在,请说明理由。
(3)如果当点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个长度单位和每分钟4个长度单位的速度也向左运动,且三点同时出发,那么出发几分钟后,其中一点位于另两点所成线段的中点?。