电力电子仿真

合集下载

电力电子技术第7章 电力电子技术的仿真

电力电子技术第7章 电力电子技术的仿真
第7章 电力电子技术的仿真
学习指导
本章将应用一些典型的电力电子电路的仿真 实例,说明一些常用典型模块的使用方法和参数 设置意义和方法。在学习本章时,应该首先熟悉 SimPower System工具箱,了解各个模块库,这样 有助于快速找到所要的元件,提高搭建仿真系统 的效率。在进行仿真之前,应该对仿真对象有正 确的理解,对系统中各个组成部分的特性也应该 有一个比较清晰的了解,并会合理地设置参数和 选择恰当的数值计算方法等。
7.2 Simulink的模型库浏览器
Simulink称为MATLAB的一个工具箱(Toolbox)。Simulink 包括Simulink仿真平台和系统仿真模型库两部分,主要 用于仿真以数学函数和传递函数表达的系统,包含连续 系统、非线性系统和离散系统的仿真。
它能够实现动态系统建模和仿真的环境集成,且可以根 据设计及使用要求,对系统进行修改与优化,以提高系 统工作的性能,实现高效开发系统的目的。
该工具箱中有主要有Electrical sources(电源)、Elements(元 件)、Power Electronics(电力电子)、Machines(电机系统)、 Measurements(测量)和Extra Library(附加)等模块组。
7.2 Simulink的模型库浏览器
Electrical sources(电源)模块组 电源模块组包括:直流电压源、交流电压源、交流电流源、
电力电子技术的仿真
7.1 概述 7.2 Simulink的模型库浏览器 7.3 仿真步骤 7.4 驱动模块 7.5 电力电子变换电路的仿真
7.1 概述
仿真的意义
基本电力电子系统还应包括负载单元(电动机或者其他机电设 备构成)以及计算机控制电路单元(由模拟或数字信号电路构 成),形成了一个复杂的非线性的数模变量混合的系统。这种 复杂系统在建立实际模型时,在设计和分析过程中会有很大的 困难,使得传统的利用硬件面包板对设计进行验证的方法越来 越不可行。

电力电子电路分析与仿真实验报告

电力电子电路分析与仿真实验报告

电力电子电路分析与仿真实验报告实验目的:1.理解电力电子电路的基本工作原理;2.熟悉电力电子电路的常用元件,如二极管、晶闸管等;3.学习使用仿真软件进行电力电子电路的模拟分析。

实验仪器与软件:1.电力电子实验箱;2.PC机;3. Multisim仿真软件。

实验步骤:1.搭建一个简单的单相半波整流电路,其中包括一个二极管、一个负载电阻和一个输入交流电源。

2. 打开Multisim仿真软件,选择电力电子电路仿真模块,并导入所搭建的电路图。

3.模拟设置输入交流电源的电压、频率等参数,并运行仿真。

4.观察仿真结果,记录输出直流电压、负载电流及负载电压的波形。

5.更改交流电源的电压、负载电阻的数值,并重新仿真,观察输出波形的变化。

6.搭建一个三相桥式整流电路,其中包括六个二极管和一个负载电阻。

7. 导入三相桥式整流电路图到Multisim仿真软件,并设置相关参数进行仿真。

8.观察输出直流电压、负载电流及负载电压的波形,并记录数据。

9.更改电源电压及负载电阻的数值,重新进行仿真分析。

实验结果与分析:在进行了以上实验步骤后,我们分别得到了单相半波整流电路和三相桥式整流电路的仿真结果。

通过观察输出波形和记录的数据,我们发现以下几个规律:1.在单相半波整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且具有脉动。

负载电流和负载电压的波形与输入交流电压的波形相同,只是幅值减小。

2.在三相桥式整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且同样存在脉动。

负载电流的波形是一个六段的锯齿波,而负载电压的波形是一个脉冲波。

结论:通过本次实验,我们深入了解了电力电子电路的基本工作原理,并熟悉了常用的电力电子元件。

同时,通过使用Multisim仿真软件进行电路仿真分析,我们能够更直观地观察到电路各个参数的变化情况,提高了实验效率和准确性。

plecs 使用指南

plecs 使用指南

PLECS是一种用于电力电子系统的仿真软件,它提供了强大的仿真功能和丰富的模型库,可以用于模拟和分析电力电子系统的性能和行为。

以下是PLECS使用指南的一些关键步骤和要点:
1.确定仿真目标和建立模型:在开始使用PLECS之前,需要明确仿真目标和要求,并建立相应的模型。

这包括定义电气元件、电路结构和控制逻辑等。

2.设置仿真参数:在仿真之前,需要设置合适的仿真参数,包括仿真时间、步长、求解器设置等。

这些参数的设置将直接影响仿真的准确性和收敛性。

3.建立模型库:PLECS提供了丰富的模型库,包括电力电子元件、电机控制器、传感器和负载等。

可以根据需要选择和调用这些模型,以构建复杂的电力电子系统。

4.进行仿真和结果分析:在建立好模型和设置好仿真参数后,可以开始进行仿真,并分析仿真结果。

PLECS提供了强大的结果分析工具,可以可视化地展示仿真结果,包括波形图、数据表和动画等。

5.优化和控制设计:根据仿真结果,可以对电力电子系统的设计和控制进行优化和控制。

这包括调整元件参数、改进控制器设计、优化系统架构等。

6.导出和分析结果:PLECS还提供了导出和分析结果的工具,可以将仿真结果导出为报告、图表或其他格式,以便进一步分析和验证。

总之,使用PLECS进行电力电子系统仿真需要掌握一定的电力电子知识和仿真技能。

通过熟悉PLECS的功能和模型库,以及掌握仿真参数的设置和结果分析方法,可以更好地应用PLECS进行电力电子系统的设计和优化。

电力电子的Matlab仿真技术54569

电力电子的Matlab仿真技术54569
所谓模型化图形输入是指SIMULINK提供了一些按功能 分类的基本的系统模块,用户只需要知道这些模块的输入 输出及模块的功能,而不必考察模块内部是如何实现的, 通过对这些基本模块的调用,再将它们连接起来就可以构 成所需要的系统模型(以.mdl文件进行存取),进而进行 仿真与分析。
电力电子技术的Matlab仿真
b) Initial step size(初始步长参数):一般建议用“auto”默认值即可。
4) 仿真精度的定义(对于变步长模式)
a) Relative tolerance(相对误差):它是指误差相对于状态的值,是一 个百分比,缺省值为1e-3,表示状态的计算值要精确到0.1%。
b) Absolute tolerance(绝对误差):表示误差值的门限,或者是说在状 态值为零的情况下,可以接受的误差。如果它被设成了auto,那么 simulink为每一个状态设置初始绝对误差为1e-6。
MATLAB主工具箱 符号数学工具箱 SIMULINK仿真工具箱 控制系统工具箱 信号处理工具箱 图象处理工具箱 通讯工具箱 系统辨识工具箱 神经元网络工具箱 金融工具箱
许多学科,在 MATLAB中都有专 用工具箱,现已有 几十个工具箱,但 MATLAB语言的扩 展开发还远远没有 结束,各学科的相 互促进,将使得 MATLAB更加强大
具有高层绘图功能——二维、三维绘图; 具有底层绘图功能——句柄绘图; 使用plot函数可随时将计算结果可视化,图形可修饰和控制
4 图形化程序编制功能
动态系统进行建模、仿真和分析的软件包 用结构图编程,而不用程序编程 只需拖几个方块、连几条线,即可实现编程功能
电力电子技术的Matlab仿真
5 丰富的MATLAB工具箱

电力电子技术实验报告--直流斩波电路的仿真

电力电子技术实验报告--直流斩波电路的仿真

实验报告(理工类)
通过本实验,加深对直流斩波电路工作原理的理解,并学习采用仿真软件来研究电力电子技术及相关控制方法。

二、实验原理
V L/R
¥GVD u 。

图2.1直流降压电路原理图
直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图2.1所示。

U 。

=
&E=『E=aE (2-1) 4>n+^off /
式(2-1)中,T 为V 开关周期,%为导通时间,为占空比。

在本实验中,采用保持开关周期T 不变,调节开关导通时间&I 的脉冲宽度调制方式来实验对输出电压的控制。

仿真的模型线路如下图所示。

开课学院及实验室:
实验时间:年月日 一、实验目的
图2.2降压斩波电路仿真模型
在模型中采用了IGBT,IGBT的驱动信号由脉冲发生器产生,设定脉冲发生器的脉冲周期和脉冲宽度可以调节脉冲占空比。

模型中连接多个示波器,用于观察线路中各部分电压和电流波形,并通过傅立叶分析来检测输出电压的直流分量和谐波。

三、实验设备、仪器及材料
PC机一台、MATLAB软件
四、实验步骤(按照实际操作过程)
1.打开MATLAB,点击上方的SimUlink图标,进入SimUIinkLibraryBroWSer模式O
2.新建model文件,从SimulinkLibraryBrowser选择元器件,分别从sinks和SimPowerSystems 中选择,powergui单元直接搜索选取
3.根据电路电路模型正确连线
五、实验过程记录(数据、图表、计算等)
六、实验结果分析及问题讨论。

PSIM仿真软件使用说明

PSIM仿真软件使用说明

PSIM仿真软件使用说明PSIM仿真软件使用说明1.简介1.1 软件概述PSIM是一款电力电子仿真软件,用于电力电子系统的建模、仿真和分析。

它提供了丰富的电路模型库和强大的仿真功能,可帮助工程师研究、设计和优化各种电力电子系统。

1.2 适用范围本使用说明适用于PSIM版本X.X.X及以上版本。

2.系统要求2.1 硬件要求- 操作系统:Windows 7/8/10- 处理器.2 GHz 或更高- 内存.4 GB 或更高- 存储空间:至少500 MB可用空间2.2 软件要求- PSIM软件安装包(提供)3.安装与激活3.1 安装PSIM软件- PSIM软件安装包- 打开安装包并按照提示进行安装3.2 激活PSIM软件- 打开PSIM软件- 在菜单栏中选择“Help” > “Activate”- 输入产品密钥,“Activate”完成激活4.软件界面介绍4.1 主界面- 菜单栏:包含各种功能和命令选项- 工具栏:快速访问常用功能和命令- 仿真画布:用于绘制和编辑电路图- 属性窗口:显示所选元件或元件属性的详细信息- 控制面板:用于设置仿真参数和运行仿真4.2 元件库- 电力电子元件库:包含各种常用电力电子元件模型- 控制元件库:包含用于实现控制系统的元件模型- 信号源库:包含各种信号源元件模型5.仿真流程5.1 创建电路图- 选择合适的元件并拖放到仿真画布上,连接元件之间的引脚- 设置元件的参数和初始条件5.2 设置仿真参数- 在控制面板中设置仿真时间、仿真步长、仿真速度等参数5.3 运行仿真- 控制面板中的“Run”按钮开始仿真- 仿真过程中可以监测电路变量、绘制波形图等6.仿真结果分析6.1 变量监测- 在仿真过程中,可以实时监测电路中的各个变量- 控制面板中的“Waveform”按钮,打开波形图窗口6.2 波形绘制- 在波形图窗口中选择需要绘制的变量- “Add”按钮添加变量,并设置显示属性- “Apply”按钮波形图6.3 数据记录- 在控制面板中“Logging”选项卡,设置要记录的变量- 运行仿真后,记录的数据将保存到指定文件中7.常见问题7.1 无法正常启动PSIM软件- 检查系统要求,确保满足硬件和软件的要求- 确保已正确安装PSIM软件并进行了正确的激活7.2 仿真结果与预期不符- 检查电路图连接是否正确- 检查元件参数设置是否正确- 检查仿真参数设置是否合理附件:- 附件1:PSIM软件安装包- 附件2:PSIM使用示例文件法律名词及注释:- 版权:指对作品享有的法律保护- 许可证:指授权他人使用特定内容或技术的文件或证书- 商标:指用以标识产品或服务来源的名称、符号或标识。

电力电子仿真实验实训报告

电力电子仿真实验实训报告

一、实验目的本次电力电子仿真实验实训旨在通过MATLAB/Simulink软件,对电力电子电路进行仿真分析,加深对电力电子电路工作原理、性能特点以及设计方法的了解,提高实际工程应用能力。

二、实验环境1. 软件环境:MATLAB R2020b、Simulink R2020b2. 硬件环境:计算机三、实验内容本次实验主要涉及以下内容:1. 单相桥式整流电路仿真2. 三相桥式整流电路仿真3. 逆变器电路仿真4. 直流斩波电路仿真四、实验步骤1. 单相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建单相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

2. 三相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建三相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

3. 逆变器电路仿真(1)建立仿真模型:在Simulink中搭建逆变器电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率因数等参数。

4. 直流斩波电路仿真(1)建立仿真模型:在Simulink中搭建直流斩波电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

五、实验结果与分析1. 单相桥式整流电路仿真结果通过仿真实验,我们得到了单相桥式整流电路的输出电压、电流、功率等参数。

《电力电子系统建模与仿真》题集

《电力电子系统建模与仿真》题集

《电力电子系统建模与仿真》题集一、选择题(每题2分,共20分)1.在电力电子系统建模过程中,哪一种软件工具常被用于进行系统级仿真分析?( )A. Microsoft OfficeB. AutoCADC. MATLAB/SimulinkD. Photoshop2.PWM (脉宽调制)技术中,通过调节什么参数来控制开关管的导通时间?( )A. 电压幅值B. 电流频率C. 脉冲宽度D. 电容容量3.在Simulink环境中,哪个模块库提供了丰富的电力电子元件模型用于系统仿真?( )A. Simulink Control DesignB. SimPowerSystemsC. Communications System ToolboxD. Robotics System Toolbox4.电力电子系统建模的主要目的是什么?( )A. 提高系统美观性B. 分析和优化系统性能C. 增加系统复杂性D. 降低系统成本5.在进行电力电子系统仿真时,哪个因素对于仿真结果的准确性至关重要?( )A. 计算机的显示器尺寸B. 元器件模型的精度C. 仿真软件的安装位置D. 操作系统的版本6.SPWM (正弦脉宽调制)技术主要应用于哪种电力电子变换器?( )A. DC-DC变换器B. AC-DC整流器C. DC-AC逆变器D. AC-AC变频器7.PID控制器在电力电子系统中主要起什么作用?( )A. 增加系统噪声B. 提高系统稳定性C. 降低系统效率D. 增加系统功耗8.在电力电子系统仿真中,设置合适的仿真步长对结果有何影响?( )A. 不影响仿真结果B. 提高仿真速度但降低精度C. 平衡仿真速度和精度D. 只影响仿真过程中的动画效果9.电力电子系统中的核心元件是什么?( )A. 电阻和电容B. 电感和变压器C. 电力电子开关器件D. 传感器和执行器10.在进行DC-DC变换器仿真时,需要关注哪些性能指标?( )A. 变换效率和输出电压纹波B. 变换器的重量和体积C. 变换器的颜色和材质D. 变换器的生产厂家和品牌二、填空题(每题2分,共20分)1.电力电子系统建模中,常用的两种仿真方法是________________和________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子计算机仿真题目:晶闸管单相桥式整流可控整流电路的设计与仿真姓名:毛宣霖学号:10230418专业班级:控制工程基地(1)班指导老师:杨巧玲学院:电气工程与信息工程学院摘要本次课程设计只要是对单相全控桥式晶闸管整流电路的研究。

首先对几种典型的整流电路的介绍,从而对比出桥式全控整流的优点,然后对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。

主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护。

之后就对整体电路进行Matlab仿真,最后对仿真结果进行分析与总结。

关键词:单相全控桥;晶闸管;整流目录第一章绪论 (1)1.1 电力电子技术的发展 (1)1.2 电力电子技术的应用 (1)1.3 电力电子技术课程中的整流电路 (2)第二章设计要求 (3)第三章系统方案的选择 (4)第四章单项全控整流电路的工作原理 (6)4.1 系统总设计框图 (6)4.2 系统主体电路原理及说明 (6)4.3 系统的元器件选择 (7)4.4 整流电路的参数计算 (10)第五章系统MATLAB仿真 (12)5.1 MATLAB软件介绍 (12)5.2 参数设置 (13)5.3单相桥式电阻性负载全控整流电路 (14)5.3.1仿真结果图 (16)5.3.2仿真分析 (18)5.4单相桥式阻感性负载全控整流电路 (19)5.4.1仿真结果图 (19)5.4.2仿真分析 (23)5.5单相桥式反电势全控整流电路 (24)5.5.1仿真结果图 (24)5.5.2仿真分析 (27)5.6单相桥式全控整流电路(阻感性负载加续流二极管) (28)5.6.1仿真结果图 (28)5.6.2 仿真分析 (32)第六章设计总结 (33)参考文献 (34)第1章绪论1.1 电力电子技术的发展晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。

晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。

并且,其应用范围也迅速扩大。

电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。

晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。

对晶闸管电路的控制方式主要是相位控制式,简称相控方式。

晶闸管的关断通常依靠电网电压等外部条件来实现。

这就使得晶闸管的应用受到了很大的局限。

70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。

全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。

在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。

它是MOSFET和BJT的复合,综合了两者的优点。

与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。

1.2 电力电子技术的应用电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。

本课程体现了弱电对强电的控制,又具有很强的实践性。

能够理论联系实际,在培养自动化专业人才中占有重要地位。

它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。

在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。

工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、飞机、船舶、电梯等交通运输工具中也广泛采用整流电力电子技术;各种电子装置如通信设备中的程控交换机所用的直流电源、大型计算机所需的工作电源、微型计算机内部的电源都可以利用整流电路构成的直流电源供电,可以说有电源的地方就有电力电子技术的设备。

1.3 电力电子技术课程中的整流电路整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。

正是因为整流电路有着如此广泛的应用,因此整流电路的研究无论在是从经济角度,还是从科学研究角度上来讲都是很有价值的。

本设计正是结合了Matlab仿真软件对单相半控桥式晶闸管整流电路进行分析。

第二章设计要求计算机仿真具有效率高,精度高,可控性高和成本低等特点,已经广泛应用与电力电子电路的分析和设计中。

计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解释法在近似处理中带来的较大误差,还可以与实物调制和调试相互补充,最大限度地降低设计成本,缩短系统研制周期。

可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。

通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的基本方法。

1,晶闸管单相全控桥式整流电路,参数要求:电网频率 f=50Hz电网额定电压 U1=380V电网电压波动正负10%阻感性负载电压 0——190V可调。

2设计内容(1)制定设计方案(2)主电路设计及主电路元件选择(3)驱动电路和保护电路设计及参数计算,器件选择(4)绘制电路原理图(5)总体电路原理图及其说明书3仿真任务要求(1)熟悉matlab、simulink、power system中的仿真模块用法及功能(2)根据设计电路搭建仿真模型(3)设置参数并进行仿真(4)给出不同触发角时对应的Ud Id i2 和Ivt1 的波形4 设计总体要求(1)熟悉整理和触发电路的基本原理,能够运用所学的理论知识分析设计任务(2)掌握基本电路的数据分析,处理;描绘波形并加以判断(3)能正确设计电路,画出线路图,分析电路原理(4)广泛收集相关技术资料第三章系统方案的选择整流电路对比我们知道,单相整流电路形式是各种各样的,可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也是比较多的。

因此在做设计之前我们主要考虑了以下几种方案:方案一:单相桥式半控整流电路电路简图如图3-1:图3-1 单相桥式半控整流电路对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。

所以必须加续流二极管,以免发生失控现象。

方案二:单相桥式全控整流电路电路简图如图3-2:图3-2 单相桥式全控整流电路此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

方案三:单相半波可控整流电路:电路简图如图3-3:图 3-3 单相半波可控整流电路此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 。

但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。

实际上很少应用此种电路。

方案四:单相全波可控整流电路:电路简图如图3-4:图 3-4 单相全波可控整流电路此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。

不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。

而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。

相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。

综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路。

第四章 单项全控整流电路的工作原理4.1系统总设计框图系统原理方框图如4.1所示:图4.1系统原理方框图4.2系统主体电路原理及说明TLu(a)图4.2阻感性负载电路(a )工作波形(b )假设,工作于稳定状态,负载电流连续,近似为一平直的直线。

R L >>ω(1) 工作原理在电源电压2u 正半周期间,VT1、VT2承受正向电压,若在αω=t 时触发,VT1、VT2导通,电流经VT1、负载、VT2和T 二次侧形成回路,但由于大电感的存在,2u 过零变负时,电感上的感应电动势使VT1、VT2继续导通,直到VT3、VT4被触发导通时,VT1、VT2承受反相电压而截止。

输出电压的波形出现了负值部分。

在电源电压2u 负半周期间,晶闸管VT3、VT4承受正向电压,在απω+=t 时触发,VT3、VT4导通,VT1、VT2受反相电压截止,负载电流从VT1、VT2中换流至VT3、VT4中在πω2=t 时,电压2u 过零,VT3、VT4因电感中的感应电动势一直导通,直到下个周期VT1、VT2导通时,VT3、VT4因加反向电压才截止。

值得注意的是,只有当2πα≤时,负载电流d i 才连续,当2πα>时,负载电流不连续,而且输出电压的平均值均接近零,因此这种电路控制角的移相范围是20π-。

4.3主电路元器件选择 1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。

引出阳极A 、阴极K 和门极(或称栅极)G 三个联接端。

内部结构:四层三个结如图2.2 2)晶闸管的工作原理图晶闸管由四层半导体(P 1、N 1、P 2、N 2)组成,形成三个结J 1(P 1N 1)、J 2(N 1P 2)、J 3(P 2N 2),并分别从P 1、P 2、N 2引入A 、G 、K 三个电极,如图1.2(左)所示。

由于具有扩散工艺,具有三结四层结构的普通晶闸管可以等效成如图2.3(右)所示的两个晶闸管T 1(P 1-N 1-P 2)和(N 1-P 2-N 2)组成的等效电路。

图1晶闸管内部结构及等效电路 3)晶闸管的门极触发条件(1): 晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通; (2):晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通; (3):晶闸管一旦导通门极就失去控制作用; (4):要使晶闸管关断,只能使其电流小到零一下。

相关文档
最新文档