电力电子系统的计算机仿真

合集下载

电力电子计算机仿真作业

电力电子计算机仿真作业

电力电子计算机仿真作业电力电子计算机仿真作业是电力电子学科的重要部分,通过使用计算机仿真软件模拟电力电子系统,可以有效地研究和分析电力电子系统的性能及其控制策略。

下面,我们将通过一个具体的案例来介绍电力电子计算机仿真作业,以及其重要性和应用。

首先,让我们来考虑一个直流-直流变换器的仿真案例。

该案例涉及到一个电源控制器,将直流电源的电压转换为需要的电压。

通过对该系统进行仿真分析,我们可以得到变换器的性能指标和控制策略,进一步优化和改进变换器的设计。

仿真作业一般包括以下几个步骤:1.翻阅相关文献和资料,了解直流-直流变换器的工作原理和控制策略,指定需要仿真的系统结构和参数。

2.在计算机仿真软件中绘制直流-直流变换器的电路拓扑图,配置电路元件的参数和控制信号。

3.进行仿真运行,观察电路的响应特性,并记录关键的性能指标,如输出电压、电流波形、效率等。

4.分析仿真结果,识别系统中可能存在的问题或不足,并提出改进方案。

5.在仿真软件中实施改进方案,并再次进行仿真运行,观察改进后的性能指标。

通过上述步骤,我们可以利用电力电子计算机仿真作业来深入了解和研究直流-直流变换器的工作原理和性能特点,以及改进控制策略的方法。

此外,电力电子计算机仿真作业还可以应用于其他电力电子系统的设计和优化,如交流-直流变换器、交流-交流变换器等。

1.提高学生的实践能力:通过电力电子计算机仿真作业,学生可以深入理解电力电子系统的原理和性能,并掌握相关仿真软件的操作方法,提高了实践能力。

2.加深对电力电子系统的理解:通过仿真作业,学生可以观察和分析电力电子系统的运行情况,深入理解其工作原理和控制策略,加深对电力电子学科的理解。

3.探索优化和改进的途径:仿真作业可以帮助学生发现电力电子系统中可能存在的问题或不足,并通过改变参数或控制策略来优化和改进系统的性能,提高系统的效率和稳定性。

总结起来,电力电子计算机仿真作业是电力电子学科中不可或缺的一环。

计算机仿真在电力电子技术中的应用

计算机仿真在电力电子技术中的应用
t1 t2 tj t1 t2 tj
TK k k+1
TK+1 k+2
t
按图所示的时间序列,列出在第 K 个开关周期中各开关状态对应的状态 方程组:
AX Bu X 1 1 1 1 1 Y1 A1 X 1 D1u1 A X B u X j j j j j Yj C j X j Djuj
为了便于讨论同时也不失去一般性, 我们仍以上述电流连续时 具二个拓扑的升压斩波器为例进行讨论。 此时可以得到,当 t k t t k ,1 时
+ -
Vg
Vg
R C-(c)来自(d)100V
50V
0V 0s V(L:2)
10A
20ms V(Rc:2) Time
40ms
50ms
5A
0A 0s I(L) Time 20ms 40ms 50ms
输入电压为50V, 占空比为0.7时输出电压和电感中电流如上, 显然作为升压斩波器电流此时是连续的。
在电流连续的条件下装置包括二个拓扑,即,此时第 K 个周期 中状态方程可记为: A X Bu X 1 1 1 1 1 Y1 C 1 X 1
jt j K K , j 1
为了便于讨论起见假定在一个开关状态中输入信号维持常量或变 化非常慢仅有小的波动,即 并定义
j (t ) e
A jt
ui () ui

A
jt ( t ) e TKmj 1 B j d 而 j
由上述方程可改写为:
X 1 ( t ) 1 ( t ) X 1 (0) 1 ( t )u1 X j ( t ) j ( t ) X j ( 0 ) j ( t )u j

电力电子电路的计算机仿真训练报告

电力电子电路的计算机仿真训练报告

电力电子电路的计算机仿真训练报告一、课题背景电力电子电路作为电力工程和自动化工程中一个重要的研究领域,其在现代工业生产和生活中发挥着极为重要的作用。

因此,对于电力电子电路的计算机仿真训练显得尤为重要,这也是电力工程和自动化工程学生们必须掌握的重要技能。

二、课程目标本次电力电子电路计算机仿真训练的目标主要是培养电力工程和自动化工程学生的计算机仿真能力,以及帮助学生们更深刻地理解电力电子电路的相关知识。

三、训练内容1. 认识仿真环境关于电力电子电路的仿真计算,我们一般会采用一些常见的仿真环境,如PSpice、MATLAB等。

因此,本次训练首先介绍了仿真环境的实用方法和使用技巧,让学生们熟悉在仿真环境中进行电力电子电路的仿真计算。

2. 单向/双向变流器的仿真本次训练中,我们选取了单向/双向变流器作为练习仿真的主要对象,然后根据给定的电路图,让学生们学会进行仿真计算。

同时,为了让学生更好地理解电路中各个元器件的作用,我们还进行了详细的解析和讲解。

3. 运动控制电路的仿真在某些特定应用领域中,运动控制电路是必不可少的。

本次训练中,我们也选取了一组运动控制电路进行仿真计算,让学生们掌握动态控制的相关知识。

4. 小组讨论为了让学生们更好地理解电力电子电路,本次训练还设置了小组讨论环节,让学生们就电力电子电路的相关知识进行深入的交流。

此外,还组织学生们进行课后模拟仿真实验,加深他们对课堂知识的掌握程度。

四、训练效果通过这次电力电子电路的计算机仿真训练,学生们不仅掌握了仿真工具的使用技巧,还深入了解和理解了电力电子电路中各个元器件的作用机理和特点。

此外,通过小组讨论的方式,学生们还能交流以及分享各自的电子电路仿真计算心得,进一步加深他们对电力电子电路的了解。

五、总结电力电子电路的计算机仿真训练,是电力工程和自动化工程学生们必不可少的一项技能。

通过本次训练,学生们不仅熟悉了仿真计算工具的使用,还加深了对电力电子电路的理解和掌握,为今后的学习和工作打下坚实的基础。

《电力电子电机控制系统仿真技术》第1章

《电力电子电机控制系统仿真技术》第1章



缺省变量名,用于应答最近一次的操作、 运算结果。
虚数单位
圆周率π
浮点数的相对误差
最大的实正数
最小的实正数
无穷大
表示不定值(即0/0)
函数实际输入的参数个数
函数实际输出的参数个数
一维数组的表示和赋值
一维数组(行向量)是用方括号括起的一组元素
(或数),元素之间用空格或逗号分隔,组成数 组的元素可以是具体的数值、变量名或算式
%回车生成传递函数
12 s^3 + 24 s^2 + 12 s + 20
-------------------------------------- ---- %生成的传递函数
2 s^4 + 4 s^3 + 6 s^2 + 2 s + 2
按格式2: >> s=tf('s'); >>G1=(12*s^3+24*s^2+12*s+20)/(2*s^4+4*s^
第1章 MATLAB和控制理论中的应用
1.1 计算机仿真与MATLAB
仿真是用物理的或数学的模型来描述或模仿实际 的物体,环境,装置或系统
MATLAB是“矩阵实验室”(Matrix Laboratory) 的缩写,这是一种以矩阵为基础的交互式程序计 算语言。由美国Mathworks公司于1984年开始推出 , 它成为在科技界广为使用的软件,也是国内外高 校教学和科学研究的常用软件。
1.7.2 求特征方程的根和根轨迹
闭环传递函数
W(s) G(s) 1G(s)H(s)
闭环传递函数的特征方程
1G (s)H(s)0
一 求方程的根

电力电子的Matlab仿真技术

电力电子的Matlab仿真技术

SimpowerSystems模型库
Extra Library (其他模块库) Application Libraries(应用) Electrical Sources(电源) Elements(元器件) Machines (电机模块库) Measurements(测量仪器) Power Electronics(电力电子 元件)
主要应用领域
➢ 工业研究与开发
➢ 数学教学,特别是线性代数 ➢ 数值分析和科学计算方面的教学与研究 ➢ 电子学、控制理论和物理学等工程和科学学科方面的
教学与研究 ➢ 经济学、化学和生物学等计算问题的所有其他领域中
的教学与研究 ➢ 图像处理和信号检测等方面
二、MATLAB语言的功能
1 矩阵运算功能
特点
➢ 它将一个优秀软件的易用性与可靠性、通用性与专业性 有机 的相结合。
➢ 它是一种直译式的高级语言,基本单位是矩阵,比其它程序 设计语言容易。
➢ MATLAB已经不仅是一个“矩阵实验室”了,它集科学计 算、图象处理、声音处理于一身,并提供了丰富的Windows 图形界面设计方法
➢ MATLAB吸收了其他软件的优点,是功能强大的计算机高 级语言, 它以超群的风格与性能风靡全世界, 成功地应用于 各工程学科的研究领域
MATLAB提供了丰富的矩阵运算处理功能,是基于矩阵运算 的处理工具。
2 符号运算功能
3 丰富的绘图功能与计算结果的可视化
具有高层绘图功能——二维、三维绘图; 具有底层绘图功能——句柄绘图; 使用plot函数可随时将计算结果可视化,图形可修饰和控制
4 图形化程序编制功能
动态系统进行建模、仿真和分析的软件包 用结构图编程,而不用程序编程 只需拖几个方块、连几条线,即可实现编程功能

电力电子系统的建模与仿真研究

电力电子系统的建模与仿真研究

电力电子系统的建模与仿真研究一、引言随着工业化和信息化不断推进,电力电子成为了近些年来的热点研究领域之一。

电力电子技术是指在电力系统中对电能进行转换、控制和调节等过程中应用的电子技术,其所涉及到的领域包括功率电子器件、电磁兼容、系统控制等方面。

在电力电子系统的设计与开发过程中,建模与仿真技术已经发挥了重要的作用,本文将对电力电子系统建模与仿真研究进行探讨。

二、电力电子系统建模技术电力电子系统建模是指对于电力电子系统的各个组成部分进行抽象和模拟,以期能够得到该系统的整体性能和特性。

电力电子系统建模技术可以分为两类:物理建模技术和黑盒建模技术。

1.物理建模技术物理建模技术是指基于物理原理和电路等的数学模型对电力电子系统进行建模。

比如,对于交流变电站来说,可以利用电机理论及变压器的等效电路进行模拟。

物理建模技术适用于系统结构相对稳定和系统的单元较为清晰的情况下,能够更精确地反映工程实际应用。

2.黑盒建模技术黑盒建模技术是指将某些受控系统作为整体,而不考虑其内部结构和机制,将系统的输入和输出关系进行数学描述。

黑盒建模技术适用于系统内部结构复杂、组成部分很多或者对系统行为知识不够充分或不可预知的情况。

常用的黑盒建模技术包括ARMA、ARIMA、ARMAX、Gray Box等。

三、电力电子系统仿真技术电力电子系统仿真技术是指将建模结果转化为可以数字化处理的仿真模型,开展电力电子系统行为的数字化仿真分析。

在电力电子系统设计中,利用仿真技术可以预测系统性能、分析系统的优化方案和研究系统的控制策略。

电力电子系统的仿真技术包括离散时间仿真与连续时间仿真。

1.离散时间仿真离散时间仿真是指将一个连续时间的电路模拟器在存在离散时间的情况下进行仿真。

使用离散时间仿真可以很好地处理数值误差的问题。

通常,离散时间仿真适合于模拟具有整数时节性的系统。

离散时间仿真主要有的两种方法是事件驱动仿真和固定时间间隔仿真。

2.连续时间仿真连续时间仿真是指基于微分方程或者差分方程的模型对电力电子系统进行仿真。

电力电子电路的计算机仿真训练报告

电力电子电路的计算机仿真训练报告

电力电子电路的计算机仿真训练报告电力电子电路是一种广泛应用于工业和民用电气设备中的电路。

它们的设计和操作需要对电逻辑、电路分析和控制系统等方面具备深入的了解。

为了更好的掌握电力电子电路,需要学习其相关理论,同时进行大量的仿真训练。

本文将从以下三个角度描述电力电子电路的计算机仿真训练。

一、计算机仿真训练的目的电力电子电路的计算机仿真训练目的是加强学生的动手能力,提高学生的实践操作技能和解决实际问题的能力,同时提升学生的仿真分析能力和逻辑思维能力。

通过计算机仿真,可以模拟实际的电路运行环境,通过观察仿真结果来学习电路实际运行的规律,更好地掌握电力电子电路的运行过程。

二、电力电子电路的计算机仿真训练方法1.建立电力电子电路模型在进行计算机仿真前,需要先建立电力电子电路模型。

在建立电路模型时,需要根据电路的实际情况来确定所要模拟的电路元件和电路拓扑结构,确定元件的数值和电路参数,以及设置初始条件和仿真时间等。

建立模型后,还需要对模型进行验证和参数调整,确保模型的准确性和合理性。

2.使用仿真软件进行仿真电力电子电路的计算机仿真训练需要使用仿真软件进行模拟。

常用的仿真软件有PSIM、PSCAD、SABER等。

通过仿真软件,可以对电路进行仿真分析和模拟实验。

仿真软件还可以提供电路的电压、电流、功率等参数,并可输出相应的仿真波形。

3.分析仿真结果在仿真过程中,需要对仿真结果进行分析。

通过对仿真波形的观察和数据的分析,可以得出电路中各元件的电压、电流和功率等参数,了解电路的实际运行情况。

在分析仿真结果的过程中,还应对电路的稳定性、效率和波形失真等进行评估和改进。

三、电力电子电路的计算机仿真训练效果通过计算机仿真训练,学生可以更加深入地了解电力电子电路的相关知识和理论,并掌握实际的电路设计和操作能力。

在训练过程中,学生还可以学习到如何进行电路仿真和数据分析的技能,提高他们的学习兴趣和探究能力。

此外,电力电子电路的计算机仿真训练还可以帮助学生更好地理解工程实践中纷繁复杂的现象和问题。

电力电子、电机控制系统的建模及仿真(第1章)

电力电子、电机控制系统的建模及仿真(第1章)
图1-1 Saber Sketch的工作环境
2. 保存目前空白的设计 (File>Save As …),在File Name字段输入名称VoltageRegulator,在保存文件的时候需要注 意,文件的保存路径必须为英文路径,否则在文件再次打开时会出现错误。
3. 放置元器件 按图1-2所示在原理框图上放置元器件。
(5) 将鼠标放置在窗口空白处并单击鼠标右键,通过图1-9中的选项可以改变主窗口背景颜色。 第一项为彩色黑背景;第二项为彩色白背景;第三项为黑色白背景。用户可根据自己的习惯进行 修改。
5. 连接原理图 在完成元件布局并设定属性后,可以将元件用导线连接在一起。在两个端口间连线的最简
单的方法如下: (1) 将光标放在第一端口上面(以V_dc符号的顶部开始); (2) 单击鼠标左键; (3) 将光标放在第二个端口上(lm317的左侧端口); (4) 再次单击鼠标左键。 重复步骤(1)-(4),从而将每个元件符号连至相关部件,如图1-10所示。
图1-31参数设置对话框
3. 在Saber中设置输入输出接口 启动Sketch并打开power_window_control.ai_sch 文件,文件位于:Synopsys\B
-2008.09-SP1\Saber\lib\tool_model\Simulink2SaberRTWexport_Matlab2008a\po wer_window,如图1-32所示。
主要功能: • 1. 数值计算功能 • 2. 符号计算功能 • 3. 数据分析和可视 化功能 • 4. 文字处理功能 • 5. SIMULINK动态仿真功能
主要特点: • 1. 功能强大
含有40多个应用于不同领域的工具箱.
• 2. 界面有好
其指令表达方式与习惯上的数学表达 式非常接近。 • 3. 扩展性强
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子系统的计算机仿真》题目:方波逆变电路的计算机仿真电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。

由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。

仿真技术为电力电子电路的分析提供了崭新的方法。

我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。

掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。

实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。

而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。

仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。

【关键字】电力电子,MATLAB,仿真。

第一章电力电子与MATLAB软件的介绍一、电力电子概况二、MATLAB软件介绍第二章电力电子器件介绍一、电力二极管特性介绍二、晶闸管特性介绍三、IGBT特性介绍第三章主电路工作原理一、单相桥式逆变电路二、三相桥式逆变电路三、PWM控制基本原理第四章仿真模型的建立一、单极性SPWM触发脉冲波形的产生二、双极性SPWM触发脉冲波形的产生三、单极性SPWM方式下的单相桥式逆变电路四、双极性SPWM方式下的单相桥式逆变电路第五章仿真结果分析第六章心得体会第七章参考文献第一章电力电子与MATLAB软件的介绍一、电力电子概况电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。

电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。

一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。

此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。

70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。

80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。

为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助器件做成模块的形式,后来又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC)。

目前PIC的功率都还较小但这代表了电力电子技术发展的一个重要方向利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。

一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。

例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。

应用电力电子技术还能实现非电能与电能之间的转换。

例如,利用太阳电池将太阳辐射能转换成电能。

与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。

因此人们关注的是所能转换的电功率。

电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。

因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。

电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。

电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。

近代新型电力电子器件中大量应用了微电子学的技术。

电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。

这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。

利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。

这些装置常与负载、配套设备等组成一个系统。

电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。

二、MATLAB软件介绍MATLAB 是一个功能强大的常用数学软件, 它不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。

由于MATLAB带有一些强大的具有特殊功能的工具箱,而且随着近年来它的版本不断升级,所含的工具箱功能越来越丰富,工具越来越多,应用范围也越来越广,涵盖了当今几乎所有的工业、电子、医疗、建筑等各领域,MATLAB自1984年由美国的MathWorks公司推向市场以来,历经十几年的发展和竞争,现已成为国际最优秀的科技应用软件之一。

MATLAB中的仿真集成环境Simulink工具箱,是进行系统分析与射击队有力工具。

Simulink是一个图形化的建模工具,具有两个显著功能:SIMU(仿真)和LINK(连接)。

用来进行动态系统仿真、建模和分析的软件包,不但支持线性系统仿真,也支持非线性系统;既可以进行连续系统,也可以进行离散系统仿真。

Simulink提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大便利。

在Simulink 平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。

在Simulink平台上仿真模型的可读性很强,这就避免了在MATLAB窗口使用MATLAB命令和函数仿真时,需要熟悉记忆大量M函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。

现在的MATLAB都同时捆绑了Simulink,Simulink的版本也在不断地升级,从1993年的MATLAB 4.0/Simulink1.0版到2001年的MATLAB 6.1/Simulink 4.1版2002年即推出了MATLAB6.5 /Simulink 5.0版。

MATLAB已经不再是单纯的"矩阵实验室"了,它已经成为一个高级计算和仿真平台。

Simulink原本是为控制系统的仿真而建立的工具箱,在使用中易编程、易拓展,并且可以解决MATLAB不易解决的非线性、变系数等问题。

它能支持连续系统和离散系统的仿真,支持连续离散混合系统的仿真,也支持线性和非线性系统的仿真,并且支持多种采样频率(Multirate)系统的仿真,也就是不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。

因此,各科学领域根据自己的仿真需要,以MATLAB为基础,开发了大量的专用仿真程序,并把这些程序以模块的形式都放人Simulink中,形成了模块库。

Simulink的模块库实际上就是用MATLAB基本语句编写的子程序集。

现在Simulink模块库有三级树状的子目录,在一级目录下就包含了Simulink最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱(DSP Blocks)、通信系统工具箱(Comm)等也并行列入模块库的一级子目录,逐级打开模块库浏览器(Simulink Library Browser)的目录,就可以看到这些模块。

Simulink创建模型、仿真的过程方法介绍如下:1、Simulink建模一个典型的Simulink模型由信号源模块、被模拟的系统模块和输出显示模块三个类型模块构成。

其基本特点有:1)Simulink提供许多的Scope(示波器)接收器模块,使得Simulink进行仿真具有图形化显示效果;2)Simulink模型具有层次性,通过底层子系统可以构建上层母系统;3)Simulink提供对子系统进行封装功能,用户可以自定义子系统的图标和设置参数对话框。

2、Simulink仿真基本过程1)打开一个空白的Simulink模块窗口;2)进入Simulink模块库浏览界面,将相应模块库中所需的模块拖拉到编辑窗口里;3)修改编辑窗口中模块参数;4)将各模块按给定框图连接,搭建所需系统模型;仿真观察结果,修正参数;5)保存模型。

第二章电力电子器件介绍电力电子器件是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。

同我们在学习电子技术基础时广泛接触的处理信息的电子器件一样,广义上电力电子器件也可以分为电真空器件和半导体器件两类。

由于电力电子器件直接用于处理电能的主电路,因而同处理信息的电子器件相比,它一般具有如下的特征:1)电力电子器件所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数。

2)因为处理的电功率较大,所以为了减少本身的损耗,提高效率,电力电子器件一般都工作在开关状态。

3)在实际应用当中,电力电子器件往往需要由信息电子电路来控制。

4)尽管工作在开关状态,但是电力电子器件自身的功率损耗通常仍远大于信息电子器件,因而为了保证不致于损耗散热的热量导致器件温度过高而损坏,不仅在器件封装上比较讲究散热设计,而且在其工作时一般都还需要安装散热器。

此外,电力电子器件在实际应用中,一般是由控制电路、驱动电路和电力电子器件为核心的组成一个系统。

一.电力二极管特性介绍不可控器件——电力二极管(Power Diode)自20世纪50年代初期就获得应用,当时也被称为半导体整流器(Semiconductor Rectifier——SR)。

虽然是不可控器件,但结构和原理简单,工作可靠。

电力二极管的基本结构和工作原理与信息电子电路中的二极管一样,以半导体PN结为基础,由一个面积较大的PN结和两端引线以及封装组成的。

由于PN 结具有单向导电性,所以二极管是一个正方向单向导电、反方向阻断的电力电子器件。

从外形上看,主要有螺栓型平板型两种封装。

a)结构图 b) 电器图形符号1、电力二极管特性1)静态特性电力二极管的基本特性——电力二极管的伏安特性:当电力二极管承受的正向电压大到一定值(门槛电压UTO ),正向电流才开始明显增加,处于稳定导通状态。

与正向电流IF 对应的电力二极管两端的电压UF 即为其正向电压降。

当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。

2 )动态特性动态特性——因结电容的存在,三种状态之间的转换必然有一个过渡过程,此过程中的电压—电流特性是随时间变化的。

相关文档
最新文档