八年级数学上学期知识点提优检测22

合集下载

(好卷)人教版八年级数学上期中复习提优试题精选附答案

(好卷)人教版八年级数学上期中复习提优试题精选附答案

人教版八年级数学上学期期中复习提优测试题精选(全卷总分120分)姓名得分一、选择题(每小题3分,共30分)1.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°2.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°3.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分边AB、AC上的点,将△ABC沿着DE折叠压平,A与A′重合,若70°,则∠1+∠2=()A.110°B.140°C.220°D.70°4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②5.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是()A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()7.如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为()A.1 cm B.2 cm C.3 cm D.4 cm8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.29.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B. 3n+2 C. 4n+2 D. 4n-2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.如图,一副三角板AOC和BCD如图摆放,则∠AOB=.13.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=.15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=.16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=.三、解答题(共72分)17.(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.18.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E.19.(12分)问题引入:(1)如图1,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC = (用α表示);如图2,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC = (用α表示); 拓展研究:(2)如图3,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,猜想∠BOC = (用α表示),并说明理由;(3)BO 、CO 分别是△ABC 的外角∠DBC 、∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n ∠ECB ,∠A =α,请猜想∠BOC = .20.(10分)如图,点C 是线段AB 上任意一点(点C 与点A ,B 不重合),分别以AC ,BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N ,连接MN. 求证:(1)△ACM ≌△DCN ; (2)MN ∥AB.21.(9分) (1)阅读理解:如图1,在△ABC 中,若AB =10,AC =6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE =AD ,连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB ,AC ,2AD 集中在△ABE 中.利用三角形三边的关系即可判断中线AD 的取值范围是 ;(2)问题解决:如图2,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证BE +CF >EF.22.(10分)如图所示,MP 和NQ 分别垂直平分AB 和AC. (1)若△APQ 的周长为12,求BC 的长; (2)∠BAC =105°,求∠PAQ 的度数.23.(10分)如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于Q ,PQ =3,PE =1. (1)求证:BE =AD ; (2)求AD 的长.24.(9分)如图,在等边△ABC 中,点E 为边AB 上任意一点,点D 在边CB 的延长线上,且ED =EC.(1)当点E 为AB 的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE 与DB 的数量关系,并证明你的猜想.人教版八年级数学上学期期中复习提优测试题精选参考答案一、选择题(每小题3分,共30分)1.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关述错误的是(A)A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°2.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于(C)A.120°B.115°C.110°D.105°3.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=(B)A.110°B.140°C.220°D.70°4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带(C)A.①B.②C.③D.①和②5.如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不成立的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是(D)7.如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cm B.2 cmC.3 cm D.4 cm8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(C)A.8 B.6 C.4 D.29.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(A)A.15°B.17.5°C.20°D.22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为(C)(用含n的代数式表示).A.2n+1 B. 3n+2 C. 4n+2 D. 4n-2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.12.如图,一副三角板AOC和BCD如图摆放,则∠AOB=165°.13.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=69°.14.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=6cm或12cm .15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM= 5 .16.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=8 .三、解答题(共72分)17.(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.解:所补画的图形如图所示.18.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E.解:∵∠1=∠A +∠E ,∠2=∠B +∠C ,∴∠A +∠B +∠C +∠D +∠E =∠1+∠2+∠D =180°.19.(12分)问题引入:(1)如图1,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC = 90°+12∠α (用α表示);如图2,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC = 120°+13∠α (用α表示); 拓展研究:(2)如图3,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,猜想∠BOC = 120°-13∠α (用α表示),并说明理由;(3)BO 、CO 分别是△ABC 的外角∠DBC 、∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n ∠ECB ,∠A =α,请猜想∠BOC = (n -1)·180°-∠αn.解:理由:∵∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,∴∠BOC =180°-13(∠DBC +∠ECB)=180°-13[360°-(∠ABC +∠ACB)]=180°-13[360°-(180°-∠A)]=180°-13(180°+∠α)=180°-60°-13∠α=120°-13∠α.20.(10分)如图,点C 是线段AB 上任意一点(点C 与点A ,B 不重合),分别以AC ,BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N ,连接MN.求证: (1)△ACM ≌△DCN ;(2)MN ∥AB.证明:(1)∵△ACD 和△BCE 都是等边三角形, ∴AC =DC ,BC =EC , ∠ACD =∠BCE =60°.∵∠ACD +∠DCE +∠ECB =180°, ∴∠DCE =60°.∴∠ACE =∠DCB =120°. 在△ACE 和△DCB 中, ⎩⎨⎧AC =DC ,∠ACE =∠DCB ,CE =CB ,∴△ACE ≌△DCB(SAS ). ∴∠EAC =∠BDC.在△ACM 和△DCN 中, ⎩⎨⎧∠MAC =∠NDC ,AC =DC ,∠ACM =∠DCN =60°,∴△ACM ≌△DCN(ASA ). (2)由(1)知△ACM ≌△DCN , ∴CM =CN.又∵∠MCN =60°,∴△CNM 为等边三角形,∠NMC =60°. ∴∠NMC =∠ACM =60°. ∴MN ∥AB.21.(9分) (1)阅读理解:如图1,在△ABC 中,若AB =10,AC =6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE =AD ,连接BE(或将△ACD 绕着点D 逆时针旋转180°得到△EBD),把AB ,AC ,2AD 集中在△ABE 中.利用三角形三边的关系即可判断中线AD 的取值范围是 2<AD <8 ;(2)问题解决:如图2,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF交AC于点F,连接EF,求证BE+CF>EF.证明:延长FD至点G,使DG=DF,连接BG,EG.∵点D是BC的中点,∴DB=DC.∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS).∴BG=CF.∵ED⊥FD,∴∠EDF=∠EDG=90°.又∵ED=ED,FD=DG,∴△EDF≌△EDG.∴EF=EG.∵在△BEG中,BE+BG>EG,∴BE+CF>EF.22.(10分)如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.解:(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC=12.(2)∵AP=BP,AQ=CQ,∴∠B=∠BAP,∠C=∠CAQ.∵∠BAC=105°,∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.23.(10分)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求AD的长.解:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=AC.又∵AE=CD,∴△ABE≌△CAD(SAS).∴∠ABE=∠CAD,BE=AD. (2)∵∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,又∵BQ⊥PQ,∴∠PBQ=30°.∴PB=2PQ=6.∴BE=PB+PE=7.∴AD=BE=7.24.(9分)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.解:当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°. ∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD.∴∠BED=∠ECF.在△DEB和△ECF中,⎩⎨⎧∠DEB=∠ECF,∠DBE=∠EFC,DE=EC,∴△DEB≌△ECF(AAS).∴BD=EF=AE,即AE=BD.第24题。

2020年八年级数学上学期知识点提优检测22

2020年八年级数学上学期知识点提优检测22

2020年八年级数学上学期知识点提优检测221.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.2.如图1,已知△ABC 中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转.(1)在图1中,DE 交AB 于M ,DF 交BC 于N .①证明:DM=DN ;②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM=DN 是否仍然成立?请写出结论,不用证明.A A AB B BC C CD D D N N NE EF E F F M M M 图1 图2 图33.如图1,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时∆PBQ是直角三角形?4.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD 之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)。

初二提优测试卷答案数学

初二提优测试卷答案数学

一、选择题(每题5分,共25分)1. 下列数中,是偶数的是()A. -3B. 5C. 8D. 10答案:C解析:偶数是指能够被2整除的整数,因此8是偶数。

2. 下列图形中,是轴对称图形的是()A. 矩形B. 三角形C. 圆D. 正方形答案:C解析:轴对称图形是指图形中存在一条直线,使得图形在这条直线的两侧完全重合。

圆具有无数条对称轴,因此是轴对称图形。

3. 下列等式中,正确的是()A. 3x + 5 = 2x + 8B. 4x - 2 = 3x + 6C. 2x + 3 = 5x - 7D. 5x + 2 = 3x + 9答案:D解析:将等式两边的同类项合并,可得5x - 3x = 9 - 2,即2x = 7,所以x =3.5。

将x的值代入原等式,等式成立。

4. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x - 5C. y = 2xD. y = 3x^2答案:C解析:正比例函数是指当x变化时,y也按照相同的比例变化。

在选项中,只有C中的函数y = 2x满足这一条件。

5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 2xC. 2x + 3 = 5xD. 2x + 3 = 7x答案:A解析:将方程中的同类项合并,可得2x = 4,即x = 2。

将x的值代入原方程,方程成立,因此方程有唯一解。

二、填空题(每题5分,共25分)1. 若a = -3,则a^2的值为__________。

答案:9解析:a^2表示a的平方,即a乘以自己。

将a = -3代入,可得(-3)^2 = 9。

2. 下列图形中,周长最大的是__________。

答案:圆解析:周长是指图形边界上所有线段长度的总和。

在所有图形中,圆的周长最大,因为圆的周长与半径成正比。

3. 若x = 2,则2x + 3的值为__________。

答案:7解析:将x = 2代入2x + 3,可得2×2 + 3 = 7。

苏教版8年级上学期数学综合提优练习(附答案)

苏教版8年级上学期数学综合提优练习(附答案)

苏教版8年级上学期数学综合提优练习一、综合题1.在平面直角坐标系中.抛物线y=ax2+2ax−3a(a≠0)与x轴交于A.B两点(点A在点B的左侧).与y轴交于点C.该抛物线的顶点为D.(1)求该抛物线的对称轴及点A、B的坐标;(2)当a>0时.如图1.连接AD.BD.是否存在实数a.使△ABD为等边三角形?若存在.求出实数a的值.若不存在.请说明理由;(3)当a=1时.如图2.点P是该抛物线上一动点.且位于第三象限.连接AP.直线PO交AC于点Q. △APQ和△OCQ的面积分别为S1和S2.当S1−S2的值最大时.求直线PO的解析式.2.综合题:提出问题(1)问题如图1.点A为线段BC外一动点.且BC=a.AB=b.填空:当点A位于时.线段AC的长取得最大值.且最大值为(用含a.b的式子表示)(2)应用点A为线段BC外一动点.且BC=3.AB=1.如图2所示.分别以AB.AC为边.作等边三角形ABD和等边三角形ACE.连接CD.BE.①请找出图中与BE相等的线段.并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3.在平面直角坐标系中.点A的坐标为(2.0).点B的坐标为(5.0).点P为线段AB外一动点.且PA=2.PM=PB.∠BPM=90.请直接写出线段AM长的最大值及此时点P的坐标.3.操作:在∠ABC中.AC=BC=2.∠C=90°.将一块等腰三角形板的直角顶点放在斜边AB的中点P 处.将三角板绕点P旋转.三角板的两直角边分别交射线AC、CB于D、E两点。

图①.②.③是旋转三角板得到的图形中的3种情况。

研究:(1)三角板ABC绕点P旋转.观察线段PD和PE之间有什么数量关系?并结合图②加以证明。

(2)三角板ABC绕点P旋转.∠PBE是否能为等腰三角形?若能.指出所有情况(即写出∠PBE为等腰三角形时CE的长);若不能.请说明理由。

(图④不用)4.如图.将矩形ABCD沿AF折叠.使点D落在BC边的点E处.过点E作EG∠CD交AF于点G.连接DG.(1)求证:四边形EFDG是菱形;(2)求证:EG2= 12GF •AF;(3)若AB=4.BC=5.求GF的长.5.已知:直线y=−x+1与x轴、y轴分别交于A、B两点.点C为直线AB上一动点.连接OC. ∠AOC为锐角.在OC上方以OC为边作正方形OCDE.连接BE.设BE=t.(1)如图1.当点C在线段AB上时.判断BE与AB的位置关系.并说明理由;(2)真接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k.经过点A的抛物线y=ax2+bx+c(a>0)顶点为P.且有6a+3b+ 2c=0. △POA的面积为12k.当t=√2时.求抛物线的解析式.26.如图. 四边形ABCD内接于⊙O.BD平分∠ABC. 过点D作DE∥AB. 交BC于点E. 连结AE交BD于点F. 已知∠AFD=∠ADB+∠CDE.(1)①假设∠ABD=α. 则∠AFD=.②证明:AB=AE;(2)若AB2=BF⋅BD,AD=2. 求CB的长;(3)若CE=2,AB=8.求DE的长.7.在等腰∠ABC中.AB=AC=2. ∠BAC=120°.AD∠BC于D.点O、点P分别在射线AD、BA上的运动.且保证∠OCP=60°.连接OP.(1)当点O运动到D点时.如图一.此时AP=1.∠OPC是什么三角形。

提优试卷八年级上册数学

提优试卷八年级上册数学

一、选择题(每题4分,共20分)1. 若a、b是方程x^2 - 5x + 6 = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 52. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)3. 若a^2 + b^2 = 1,则a + b的取值范围是()A. -√2 < a + b < √2B. -√2 ≤ a + b ≤ √2C. -√2 < a + b ≤ √2D. -√2 ≤ a + b < √24. 下列函数中,y = kx + b(k ≠ 0)为一次函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = √xD. y = log2x5. 若一个三角形的三边长分别为3,4,5,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形二、填空题(每题4分,共20分)6. 若x + y = 3,则x^2 + y^2 = _______。

7. 若a^2 - 2a + 1 = 0,则a的值为_______。

8. 在直角坐标系中,点P(-3,4)关于x轴的对称点坐标为_______。

9. 若a,b是方程x^2 - 4x + 3 = 0的两根,则a + b的值为_______。

10. 下列函数中,y = kx + b(k ≠ 0)为反比例函数的是_______。

三、解答题(每题10分,共30分)11. (1)已知a、b是方程x^2 - 3x + 2 = 0的两根,求a^2 + b^2的值。

(2)已知函数y = kx + b(k ≠ 0)为一次函数,若点A(2,3)在该函数图象上,求k和b的值。

12. (1)已知等腰三角形ABC中,AB = AC,∠B = 50°,求∠C的度数。

(2)已知三角形ABC中,AB = 3,BC = 4,AC = 5,求三角形ABC的面积。

八年级数学上学期提优训练试题试题

八年级数学上学期提优训练试题试题

八年级数学提优训练
制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日
1.在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,假如A 1〔1,1〕,A 2〔23,27〕,那么点A n 的纵坐标是_ _____.
2.如图,在平面直角坐标系中,直线AB 交x 轴于点A 〔-4,0〕,交y 轴于点B 〔0,2〕,P 为线段OA 上一个动点,Q 为第二象限的一个动点,且满足PQ =PA ,OQ =OB .〔1〕求直线AB 的函数关系式;
〔2〕假设 △OPQ 为直角三角形,试求点P 的坐标,并判断点Q 是否在直线AB 上.
y
x y=kx+b O B 3 B 2 B 1 A 3 A 2 A 1
〔第1题〕
初二数学提优训练〔二〕
1.如图,点M 是直线32+=x y 上的动点,过点M 作MN 垂直于x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标 .
2.(此题10分)如图,在平面直角坐标系中,OA=OB=OC=6,过点A 的直线AD 交BC 于点D ,
交y 轴与点G ,△ABD 的面积为△ABC 面积的
3
1. (1)求点D 的坐标;
(2)过点C 作CE⊥AD,交AB 交于F ,垂足为E .
①求证:OF=OG ;
②求点F 的坐标.
(3)在(2)的条件下,在第一象限内是否存在点P ,使△CFP
为等腰直角三角形,假设存在,直接写出点P 坐标;
假设不存在,请说明理由. 制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日
〔第1题图〕。

八年级上册数学提优试卷

八年级上册数学提优试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √3B. √4C. √-1D. √02. 已知a,b是实数,且a+b=0,则()A. a和b都是正数B. a和b都是负数C. a和b互为相反数D. a和b相等3. 下列各式中,正确的是()A. 3a+b=3a+2bB. 2a+b=2a-2bC. 3a+2b=3a+bD. 3a+b=3a-b4. 已知m=2,n=3,则下列各式中正确的是()A. m+n=5B. m-n=1C. mn=6D. m/n=2/35. 下列各式中,错误的是()A. a²+b²=(a+b)²B. a²-b²=(a+b)(a-b)C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²6. 已知m=5,n=3,则下列各式中正确的是()A. m+n=8B. m-n=2C. mn=15D. m/n=5/37. 下列各式中,正确的是()A. 2a+b=2a+2bB. 3a+b=3a-2bC. 4a+b=4a+2bD. 5a+b=5a-2b8. 已知m=4,n=2,则下列各式中正确的是()A. m+n=6B. m-n=2C. mn=8D. m/n=2/49. 下列各式中,错误的是()A. a²+b²=(a+b)²B. a²-b²=(a+b)(a-b)C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²10. 已知m=3,n=2,则下列各式中正确的是()A. m+n=5B. m-n=1C. mn=6D. m/n=3/2二、填空题(每题5分,共25分)11. 有理数a,b满足a+b=0,则a=________,b=________。

人教五四学制版八年级上册数学第二十二章 分式 含答案

人教五四学制版八年级上册数学第二十二章 分式 含答案

人教五四学制版八年级上册数学第二十二章分式含答案一、单选题(共15题,共计45分)1、把分式中的都扩大3倍,那么分式的值().A.扩大3倍B.缩小3倍C.扩大9倍D.不变2、若=x+,则A为()A.3x+1B.3x﹣1C. ﹣2x﹣1D. +2x﹣13、下来运算中正确的是()A. B.()2= C. D.4、分式有意义,则x的值为()A.x=1B.x≠0C.x≠1D.x=05、下列运算错误的是( )A. =1B.x 2+x 2=2x 4C.|a|=|-a|D. =6、(π﹣3.14)0的相反数是()A.3.14﹣πB.0C.1D.﹣17、要使分式有意义,则x应满足的条件是()A. x>0B. x≠0C. x>﹣1D. x≠﹣18、两个小组同时开始攀登一座450米高的山,第一组的攀登速度比第二组快1米/分,他们比第二组早15分到达顶峰,则第一组的攀登速度是()A.6米/分B.5.5米/分C.5米/分D.4米/分9、化分式方程−−=0为整式方程时,方程两边必须同乘()A.(4x 2-4)(x 2-1)(1-x)B.4(x 2-1)(1-x)C.4(x 2-1)(x-1)D.4(x+1)(x-1)10、计算a÷a×的结果是()A.aB.1C.D.a 211、下列运算正确的是()A. 3x﹣2x=1B. ﹣2x﹣2=﹣C. (﹣a)2•a3=a6D. (﹣a2)3=﹣a612、化简是()A.mB.﹣mC.D.-13、若a=(﹣2)﹣2, b=(﹣2)0, c=(﹣)﹣1,则a、b、c大小关系是()A.a>c>bB.b>a>cC.a>b>cD.c>a>b14、下列运算正确的是()A. B. C. D.15、下列各式中,分式的个数有()、、、、、、.A. 个B. 个C. 个D. 个二、填空题(共10题,共计30分)16、方程的解是________.17、给出下列3个分式:①,②,③.其中的最简分式有________(填写出所有符合要求的分式的序号).18、计算(-2020)0×=________.19、关于x的方程的解是正数,则a的取值范围是________20、计算:﹣(π﹣3)0﹣10sin30°﹣(﹣1)2017+ =________.21、不改变分式的值,使分子、分母的第一项系数都是正数,则=________22、若|a﹣1|+(ab﹣2)2=0,则…=________.23、一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,问:江水的流速为多少?设江水的流速为x千米/时,则可列方程为________.24、设,若,则________.25、如果,那么代数式的值是________.三、解答题(共5题,共计25分)26、计算:.27、关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.28、某学校准备组织部分学生到当地社会实践基地参加活动,陈老师从社会实践基地带回来了两条信息:信息一:按原来报名参加的人数,共需要交费用320元.现在报名参加的人数增加到原来人数的2倍,可以享受优惠,此时只需交费用480元;信息二:享受优惠后,参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?29、先化简代数式,再从﹣4<x<4的范围内选取一个合适的整数x代入求值.30、某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、C5、B6、D7、D8、A9、D10、C11、D12、B13、B14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名
1.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
2.如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交AB于M,DF交BC于N.①证明:DM=DN;
②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,
请说明理由;
(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM=DN 是否仍然成立?请写出结论,不用证明.
A A
A B
B B
C
C
C
D D D
N
N N E
E F
E
F
F
M M M
图1
图2
图3
3.如图1,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的
动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时∆PBQ是直角三角形?
4.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD 之间的位置关系为,数量关系为.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)。

相关文档
最新文档