八年级上数学培优及答案

合集下载

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优(含答案)

2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。

A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。

人教版 八年级数学上册 第13章 轴对称 综合培优训练(含答案)

人教版 八年级数学上册 第13章 轴对称 综合培优训练(含答案)

人教版八年级数学上册第13章轴对称综合培优训练一、选择题(本大题共12道小题)1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°4. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°5. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-736. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.307. 一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C. 30海里D.60海里8. 如图,直线l是一条河,P,Q是两个村庄.欲在直线l上的某处修建一个水泵站M,向P,Q两村供水,现有如下四种铺设方案,图中PM,MQ表示铺设的管道,则所需管道最短的是()9. 对于△ABC,嘉淇用尺规进行如下操作:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;(2)作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A.△ABC的高线B.△ABC的中线C.边BC的垂直平分线D.△ABC的角平分线10. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A .CF 平分∠ACB B .CF ⊥ABC .CF 平分ABD .CF 垂直平分AB11. (2019•广西)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为A .40︒B .45︒C .50︒D .60︒12. 如图,在△ABC 中,∠BAC =72°,∠C =36°,∠BAC 的平分线AD 交BC 于点D ,则图中有等腰三角形( )A .0个B .1个C .2个D .3个二、填空题(本大题共12道小题)13. 如图所示的五角星是轴对称图形,它的对称轴共有________条.14. 如图,∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ =________.15. 如图,在△ABC 中,AD 为角平分线,若∠B =∠C =60°,AB =8,则CD 的长为________.16. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.17. 如图,点P在∠AOB内,M,N分别是点P关于OA,OB的对称点,连接MN交OA于点E,交OB于点F.若△PEF的周长是20 cm,则MN的长是________cm.18. 如图所示,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC =4,则PD=________.19. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.20. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.21. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.22. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).23. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.24. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、作图题(本大题共2道小题)25. 如图,在公路l附近有两个小区A,B,某商家计划在公路l旁修建一个大型超市M,要求超市M到A,B两个小区的距离相等,请你借助尺规在图上找出超市M的位置.(不写作法,保留作图痕迹)26. 分析与操作如图,有公路l1同侧、l2异侧的两个城镇A,B,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC长为半径作弧,交AC于点D,连接BD,求∠ABD的度数.28. (2020·广东)如题20图,在△ABC中,点D、E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.29. 如图①,在△ABC中,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC分别交AB,AC于点E,F.探究一:猜想图①中线段EF与BE,CF间的数量关系,并证明.探究二:设AB=8,AC=6,求△AEF的周长.探究三:如图②,在△ABC中,∠ABC的平分线BO与△ABC的外角平分线CO交于点O,过点O作EF∥BC交AB于点E,交AC于点F.猜想这时EF与BE,CF间又是什么数量关系,并证明.30. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.31. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.32. 如图,在直角坐标系中,△ABO的各顶点的坐标分别为O(0,0),A(2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(其中2a>m>a>0),直线l∥y轴交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的式子表示);(2)△ABO与△MFE能通过平移互相重合吗?若能通过平移互相重合,请你说出一种平移方案(平移的距离用含m,a的式子表示).人教版八年级数学下册第13章轴对称综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】C2. 【答案】A3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】D[解析] 由题意得,∠A=70°,当∠B=∠A=70°时,△ABC为等腰三角形;当∠B=55°时,可得∠C=55°,∠B=∠C,△ABC为等腰三角形;当∠B=40°时,可得∠C=70°=∠A,△ABC为等腰三角形.5. 【答案】C[解析] ∵点A(2m,2-m)和点B(3+n,n)关于y轴对称,∴2m+3+n=0,2-m=n,解得m=-5,n=7.6. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.7. 【答案】C【解析】根据题意画图,如图,∠A=42°,∠DBC=84°,AB=15×2=30(海里),∴∠C=∠DBC-∠A=42°,∴BC=BA=30(海里).8. 【答案】D9. 【答案】A10. 【答案】B11. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .12. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D , ∴∠DAB =∠CAD =36°. ∴∠CAD =∠C.∴CD =AD , ∴△ACD 是等腰三角形.∵∠ADB =∠CAD +∠C =72°,∴∠ADB =∠B.∴AD =AB. ∴△ADB 是等腰三角形.二、填空题(本大题共12道小题)13. 【答案】5[解析] 如图,五角星的对称轴共有5条.14. 【答案】2[解析] 如图,连接OQ.∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ.∴∠POB=∠QOB=30°,OP=OQ.∴∠POQ=60°.∴△POQ为等边三角形.∴PQ=OP=2.15. 【答案】4[解析] ∵∠B=∠C=60°,∴∠BAC=60°.∴△ABC为等边三角形.∵AB=8,∴BC=AB=8.∵AD为角平分线,∴BD=CD.∴CD=4.16. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.17. 【答案】2018. 【答案】2[解析] 过点P作PE⊥OB于点E.∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD.∵∠BOP=∠AOP=15°,∴∠AOB=30°.∵PC∥OA,∴∠BCP=∠AOB=30°.∴在Rt△PCE中,PE=12PC=12×4=2.∴PD=PE=2.故答案是2.19. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.20. 【答案】10[解析] ∵AB,AC的垂直平分线分别交BC于点E,F,∴AE=BE,AF=CF.∴BC=BE+EF+CF=AE+EF+AF=10 cm.21. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】③23. 【答案】924. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、作图题(本大题共2道小题)25. 【答案】解:如图,点M为所作.26. 【答案】如图所示,①作两条公路夹角的平分线OD,OE;②作线段AB的垂直平分线FG,则射线OD,OE与直线FG的交点C1,C2即为所求的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BC=BD,∴∠BDC=∠BCD=72°.∴∠DBC=36°.∴∠ABD=∠ABC-∠DBC=36°.28. 【答案】证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF,再根据等式的性质,加上相等角得到∠ABC=∠ACB,等角对等边,得到AB=AC.根据等腰三角形定义得到△ABC是等腰三角形.29. 【答案】解:探究一:猜想:EF=BE+CF.证明如下:∵BO平分∠ABC,∴∠ABO=∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO.∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14.探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC ,∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO.∴∠EBO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE -OF =BE -CF.30. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD.∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC ,∴DE =DF ,∠BED =∠CFD =90°.在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF.(2)在Rt △ADE 和Rt △ADF 中,⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.31. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF.∴CF=CE.∴△CEF是等腰三角形.32. 【答案】解:(1)∵线段EF与CD关于y轴对称,EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).∴CD与直线l之间的距离为m-a.∵线段CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能.平移方案(不唯一):将△ABO向上平移(a+1)个单位长度后,再向左平移m个单位长度,即可与△MFE重合.。

全等图形 苏科版数学八年级上册培优练习(含答案)

全等图形 苏科版数学八年级上册培优练习(含答案)

1.1全等图形培优练习一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对4、下列图形是全等图形的是()A.B.C.D.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④6、在下列各组图形中,是全等的图形是()A.B.C.D.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.9、下列各组图形中不是全等图形的是()A.B.C.D.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.612、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是. 的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个3316、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)19、如图,把大小为4⨯4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4⨯4的正方形方格图形分割成两个全等图形.20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.参考答案一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形【解析】解:A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形.故答案为:C.2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.【答案】C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对【答案】C【分析】能够完全重合的两个图形叫做全等形.【详解】图中全等图形是:笑脸,箭头,五角星.故选C4、下列图形是全等图形的是()A.B.C.D.【答案】B【详解】试题解析:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选B.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④【答案】D【分析】全等形要求两图形大小及形状完全相同,观察发现其中两个图形恰巧是可以通过旋转得到的,结合旋转前后的两个图形是全等的,即可确定最终答案.【详解】观察图形,经过旋转,②和④可以完全重合,因此全等的图形是②和④.故选D.6、在下列各组图形中,是全等的图形是()A.B.C.D.【答案】C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,对各个选项进行判断即可得答案.【详解】解:由全等形的概念可以判断:C中图形的形状和大小完全相同,符合全等形的要求;A、B、D中图形很明显不相同,A中图形的大小不一致,B、D中图形的形状不同.故选:C.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.【解析】解:如图所示:图形分割成两个全等的图形,.故选B.9、下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.【详解】解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【答案】C【解析】【分析】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【详解】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选:C.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.12、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解析】(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)【分析】根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个33【答案】180°.【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .【解析】解:,.由全等图形的性质得.故答案为60cm.三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角,可得对应顶点,对应边与对应角,进而可得a,b,c,d,e,α,β各字母所表示的值.【解答】解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)【解析】解:如图所示:19、如图,把大小为4 4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4 4的正方形方格图形分割成两个全等图形.【解析】解:四种不同的分法:20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【解答】解:如图所示:.21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形.(2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【解析】【分析】先将点C 对折到点E ,将对折后的纸片再沿DE 对折.此题要理解折叠的实质是重合,根据重合可以得到BC =BE ,AD =BD ,∠DBE =∠DAE =30°,∠BDE =∠ADE =60°,∠AED=∠BED =90°. 【详解】(1) 如下图1(2) 如下图2 .。

八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

八年级数学上册试题 第6章   数据的分析   单元培优卷  (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。

人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析【解析】【分析】(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN=12AD,EC=MF=12AB,我们只要再证得两对应边的夹角相等即可得出全等的结论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.【详解】(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=2EF.解法2:易证∠BED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=2EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,又∵∠EFD=∠GFB,DF=BF,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=2FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,∴FA=FB=FD,而AC=BC,CF=CF,∴△ACF≌△BCF,∴∠ACF=∠BCF=12∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=2EF.(3)(1)中的结论仍然成立.解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF,∵DF=BF,∴FM∥AB,且FM=12 AB,∵AE=DE,∠AED=90°,∴AM =EM ,∠AME =90°,∵CA =CB ,∠ACB =90°∴CN=AN=12AB ,∠ANC =90°, ∴MF ∥AN ,FM =AN =CN ,∴四边形MFNA 为平行四边形, ∴FN =AM =EM ,∠AMF =∠FNA ,∴∠EMF =∠FNC ,∴△EMF ≌△FNC ,∴FE =CF ,∠EFM =∠FCN ,由MF ∥AN ,∠ANC =90°,可得∠CPF =90°,∴∠FCN+∠PFC =90°,∴∠EFM+∠PFC =90°,∴∠EFC =90°,∴△CEF 为等腰直角三角形,∴∠CEF =45°,∴CE =2FE .【点睛】本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.3.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴CE ==【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.4.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)

2021-2022学年人教版八年级数学上册期末综合复习培优提升训练(附答案)1.如图,在△ABC中,∠C=50°,∠BAC=60°,AD⊥BC于D,AE平分∠BAC,则∠EAD的度数为()A.10°B.15°C.20°D.25°2.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠EAD=∠BAC=80°,若∠BDC =160°,则∠DCE的度数为()A.110°B.118°C.120°D.130°3.如图,锐角∠AOB=x,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠QNO=β,当MP+PQ+QN最小时,则关于α,β,x的数量关系正确的是()A.α﹣β=2x B.2β+α=90°+2xC.β+α=90°+x D.β+2α=180°﹣2x4.已知x a=3,x b=4,则x3a+2b=()A.B.C.432D.2165.已知三个正数a、b、c满足abc=1,++的值()A.2B.3C.﹣1D.16.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE 和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP =PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.27.已知△ABC的三边长分别为a,b,c,则|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|=.8.如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=10cm,CF=3cm,则AC =cm.9.如图,在△ABC中,点D为AC边的中点,过点C作CF∥AB,过点D作直线EF交AB 于点E,交直线CF于点F,若BE=9,CF=6,△ABC的面积为50,则△CDF的面积为.10.已知a2=b+6,b2=a+6且a≠b,则a+b=.11.已知实数a2﹣3a﹣1=0,则代数式a2﹣a﹣﹣1的值为.12.如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在坐标轴上运动,则使△ABC为等腰三角形的点C有个.13.把下列多项式因式分解.(1)m(m﹣2)﹣3(2﹣m);(2)n4﹣2n2+1.14.(1)计算:;(2)解方程:.15.在如图所示的网格纸中,点A,B,C都在网格点上,请仅用无刻度的直尺按下列要求作图.(1)在图1中过点A画BC的垂线AP,且点P在网格点上.(2)在图2中画∠BCD=∠B,再画DE∥BC,且点D,E都在网格点上.16.如图,在△ABC中,AD是BC边上的中线,过C作AB的平行线交AD的延长线于E 点.若AB=6,AC=2,试求AE的取值范围.17.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE相交于点P,点Q 为EF的中点,探究PQ与EF的位置关系,并证明.18.如图,△ABC中CD⊥AB于点D,CE平分∠ACB,点F在AC的延长线上,过点C作直线MN∥AB,且∠ACM=58°,∠BCN=36°.(1)求∠BCF的度数;(2)求∠DCE的度数.19.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)28和2020这两个数是“神秘数”吗?为什么?(2)设两个连续奇数为2k﹣1和2k+1(其中k取正整数),由这两个连续奇数构造的神秘数是8的倍数吗?为什么?20.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?21.如图,已知A(﹣1,0),B(1,0),C为y轴正半轴上一点,点D为第三象限一动点,CD交AB于F,且∠ADB=2∠BAC.(1)求证:∠ADB与∠ACB互补;(2)求证:CD平分∠ADB;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.22.如图,在等边△ABC中,CD是高,点P在线段CD上,连接P A、PB.(1)如图1,CD一定垂直且线段AB;线段P A、PB的数量关系为.(2)如图2,点E在线段BC上,且PE=P A,设∠P AB=α,则∠APB=,∠BPE =(用α的式子表示),并求∠APE的度数.(3)如图3,延长AP交BC于点F,连接AE.当α=15°时,猜想线段AE和AF的数量关系,并说明理由.23.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC的度数;(2)如图1,请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.参考答案1.解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=∠BAC=×60°=30°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.2.解:如图所示:∵∠EAD=∠BAC=80°,∴∠1=∠2,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,∵∠BAC=80°,AB=AC,∴∠BCA=∠CBA=50°,∴∠DCE=∠4+∠BCA+∠ACE=∠4+50°+∠ABD=∠4+50°+∠3+∠ABC=∠3+∠4+100°,又∵∠BDC=160°,∴∠3+∠4=180°﹣∠BDC=20°,∴∠DCE=20°+100°=120°,故选:C.3.解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA 于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ=α,∠OQP=∠AQN′=∠AQN,∵∠AQN=∠QNO+∠AOB=β+x,∴∠OQP=∠AQN=β+x,∵∠NPQ=∠OQP+∠AOB,∴α=β+x+x=β+2x∴α﹣β=2x.故选:A.4.解:∵x a=3,x b=4,∴x3a+2b=x3a•x2b=(x a)3•(x b)2=33×42=27×16=432.故选:C.5.解:原式=++,∵abc=1,∴原式=++=+=+=+==1,故选:D.6.解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=×(180°﹣∠BAC)=×(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,故①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,PF=PG=PH,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,故②正确;若AP=PC,则∠P AC=∠PCA,则BAC=BCA=60°,则△ABC为等边三角形,这与题干任意画一个∠BAC=60°的△ABC不符,故③错误.∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,,∴PD=PE,在Rt△BHP与Rt△BFP中,,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,故④正确;∵AP是角平分线,∴P到AB、AC的距离相等,∴S△ABP:S△ACP=AB:AC,故⑤正确.故选:B.7.解:∵△ABC的三边长分别为a,b,c,∴a+b>c,b+c>a,a+c>b,∴a﹣b﹣c<0,b﹣c﹣a<0,c+b﹣a>0,∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|=﹣(a﹣b﹣c)﹣(b﹣c﹣a)+(c﹣a+b)=﹣a+b+c﹣b+c+a+c﹣a+b=﹣a+b+3c,故答案为:﹣a+b+3c.8.解:∵AE=BE,DE是AB的垂线,∴AD=BD,∠ADE=∠BDE=90°,在△ADF和△BDF中,,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=10cm,CF=3cm,∴AC=13cm,故答案为:13.9.解:∵点D为AC边的中点,∴AD=CD,∵CF∥AB,∴∠A=∠FCD,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF,S△ADE=S△CDF,∵BE=9,CF=6,∴AE=6,∴AB=AE+BE=15,∴AE=AB,∴S△AED=S△ABD,∵D为AC边的中点,△ABC的面积为50,∴S△ABD=S△CBD=S△ABC=25,∴S△ADE=S△CDF=×25=10,故答案为:10.10.解:∵a2=b+6,b2=a+6,∴a2﹣b2=b﹣a,∴(a+b)(a﹣b)+(a﹣b)=0,(a﹣b)(a+b+1)=0,∵a≠b,∴a﹣b≠0,∴a+b+1=0,解得a+b=﹣1.故答案为:﹣1.11.解:由题意可知:a2﹣3a﹣1=0,a≠0,∴a﹣=3,a2﹣a=2a+1,∴原式=(2a+1)﹣﹣1=2a+1﹣﹣1=2(a﹣)=2×3=6,故答案为:6.12.解:分别以A、B为圆心,AB为半径画圆,所画的圆与坐标轴的交点为C点(A、B两点除外).作AB的垂直平分线与坐标轴交于原点.∴满足条件的点C有7个.故答案为;7.13.解:(1)原式=m(m﹣2)+3(m﹣2)=(m﹣2)(m+3);(2)原式=(n2﹣1)2=(n+1)2(n﹣1)2.14.解:(1)原式=+===;(2)x(x+2)﹣(x+2)(x﹣2)=8,x2+2x﹣x2+4=8,2x=8﹣4,x=2,经检验x=2为原方程的增根,∴原方程无解.15.解:(1)如图1,AP即为所作垂线;(2)如图,图中D、E或D'、E'即为所作点.16.解:∵AD是BC边上的中线,∴BD=CD.∵AB∥CE,∴∠BAD=∠E,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC,∵AB=6,AC=2在△ACE中,CE﹣AC<AE<CE+AC,即6﹣2<AE<6+2,∴4<AE<8.17.解:PQ⊥EF.证明如下:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠AFB=∠EDC,∴PE=PF,∵点Q为EF的中点,∴PQ⊥EF.18.解:(1)∵MN∥AB,且∠ACM=58°,∠BCN=36°,∴∠CAB=∠ACM=58°,∠CBA=∠BCN=36°,∴∠BCF=∠CAB+∠CBA=58°+36°=94°;(2)∵CE平分∠ACB,∠BCF=94°,∴∠ACB=2∠ACE=180°﹣∠BCF=180°﹣94°=86°,∴∠ACE=43°,∵CD⊥AB于点D,∠CAD=58°,∴∠ACD=90°﹣58°=32°,∴∠DCE=∠ACE﹣∠ACD=43°﹣32°=11°.19.解:(1)假设28和2020这两个数是“神秘数”,则存在两个连续偶数n,n+2使28=(n+2)2﹣(n)2,即2n+2=14,解得n=6与n为偶数矛盾,故28是“神秘数”,存在两个连续偶数k,k+2使2020=(k+2)2﹣(k)2,即2k+2=1010,解得k=504,存在504,506使2020=5062﹣5042,故2020是“神秘数”,(2)(2k+1)2﹣(2k﹣1)2=(2k+1﹣2k+1)(2k+1+2k﹣1)=2×4k=8k,∵8k是8的倍数,故由两个连续奇数为2k﹣1和2k+1(其中k取正整数)构造的神秘数是8的倍数.20.解:(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意得:,解之得:x=8,经检验,x=8为原方程的解,答:第一批笔记本每本进价为8元.(2)第二批笔记本有:=60(本),设剩余的笔记本每本打y折,由题意得:,解得:y≥7.5,答:剩余的笔记本每本最低打七五折.21.(1)证明:∵A(﹣1,0),B(1,0),∴OA=OB=1,∵CO⊥AB,∴CA=CB,∴∠ABC=∠BAC,∵∠ABC+∠BAC+∠ACB=180°,∠ADB=2∠BAC,∴∠ADB+∠ACB=180°,即∠ADB与∠ACB互补;(2)如图1,过点C作CM⊥DA于点M,作CN⊥BD于点N,则∠AMC=∠DNC=90°,∵∠ADB+∠AMC+∠DNC+∠MCN=360°,∴∠ADB+∠MCN=180°,又∵∠ADB+∠ACB=180°,∴∠MCN=∠ACB,∴∠MCN﹣∠CAN=∠ACB﹣∠CAN,即∠ACM=∠BCN,又∵AC=BC,∴△ACM≌△BCN(AAS),∴CM=CN.∴CD平分∠ADB;(3)∠BAC的度数不变化,如图2,延长DB至点P,使BP=AD,连接CP,∵CD=AD+BD,∴CD=DP,∵∠ADB+∠DBC+∠ACB+∠CAD=360°,∠ADB+∠ACB=180°,∴∠CAD+∠CBD=180°,∵∠CBD+∠CBP=180°,∴∠CAD=∠CBP,又∵CA=CB,∴△CAD≌△CBP(SAS),∴CD=CP,∴CD=DP=CP,即△CDP是等边三角形,∴∠CDP=60°,∴∠ADB=2∠CDP=120°,又∵∠ADB=2∠BAC,22.解:(1)∵△ABC是等边三角形,CD是高,∴CD⊥AB,AD=BD,∠ABC=∠ACB=60°,∴CD垂直平分AB,∴P A=PB,故答案为:平分,P A=PB;(2)∵P A=PB,∴∠P AB=∠PBA=α,∴∠APB=180°﹣2α,∵∠PBE=∠ABC﹣∠ABP,∴∠PBE=60°﹣α,∵PE=P A,P A=PB,∴PB=PE,∴∠PBE=∠PEB=60°﹣α,∴∠BPE=180°﹣2(60﹣α)=60°+2α,故答案为:120°﹣α,60°+2α;(3)AF=AE,理由如下:∵α=15°,∴∠P AB=∠PBA=15°,∠PBE=∠PEB=60°﹣α=45°,∴∠BPE=90°,∠BPF=∠P AB+∠ABP=30°,∴∠FPE=60°,∵∠AFE=∠ABC+∠BAF,∴∠AFE=60°+15°=75°,∵P A=PE,∴∠P AE=∠PEA=30°,∴∠AEF=∠AEP+∠PEF=75°,∴∠AFE=∠AEF=75°,∴AF=AE.23.(1)解:∵AE=AB,∴∠AEB=∠ABE=63°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠F AC=180°,∴54°+2×45°+∠F AC=180°,∴∠F AC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3);理由如下:由(2)得,AD=EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+∠CAF=55°,∴∠BAC=55°﹣∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣∠CAF=110°﹣∠ACB,∴∠ACB﹣∠CAF=55°.。

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷一、选择题(每题3分,共30分) 1.计算4的结果是( )A .4B .-2C .2D .±22.计算(-a )3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 63.下列说法不正确的是( )A .1的平方根是1B .-2是-8的立方根C .4是64的立方根D .0的平方根是04.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间 5.计算-2a 3b 4÷3a 2b ·ab 3的结果是( )A .-23B .-23abC .-23a 6b 8D .-23a 2b 66.数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:-4xy (3y -2x -3)=-12xy 2●+ 12xy ,●处被墨水弄污了,你认为●处是( ) A .+8x 2yB .-8x 2yC .+8xyD .-8xy 27.计算:52a ×1 0012-52a ×9992=( )A .5 000aB .1 999aC .10 001aD .10 000a8.在多项式16x 2+1中添加一个单项式,使新得到的多项式能运用完全平方公式分解因式,则下列表述正确的是( ) 嘉琪:添加±8x ,16x 2+1±8x =(4x ±1)2; 陌陌:添加64x 4,64x 4+16x 2+1=(8x 2+1)2; 嘟嘟:添加-1,16x 2+1-1=16x 2=(4x )2. A .嘉琪和陌陌的做法正确 B .嘉琪和嘟嘟的做法正确 C .陌陌和嘟嘟的做法正确D .三名同学的做法都正确9.已知10a =20, 100b =50,则2a +4b -3的值是( )A .9B .5C .3D .610.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+(m+2n)(m-2n)的最大值为()A.24 B.443 C.163D.-4二、填空题(每题3分,共15分)11.写出一个比3大且比4小的无理数:________.12.实数a,b在数轴上的对应点的位置如图所示,那么化简|a+b|+|-a|+3b3的结果为________.(第12题)13.计算:1 2342-1 235×1 233=________.14.若M=(x-2)(x-8),N=(x-3)(x-7),则M与N的大小关系为:M______N. 15.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M是一个“完美数”,且M =x2+4xy+5y2-12y+k(x,y是两个任意整数,k是常数),则k的值为________.三、解答题(20题9分,21题10分,22,23题每题12分,其余每题8分,共75分)16.计算:(1)9+3-27-(-2)2;(2)(-1)2 023-|3-2|+2+14-0.25.17.利用乘法公式计算:(1)(x-y)(x+y)-(x-y)2; (2)3.992-4.01×3.97.18.已知5x+2的立方根是3,3x+y-1的算术平方根是4.求:(1)x,y的值;(2)3x-2y-2的平方根.19.分解因式:(1)a3b-ab; (2)(x+y)2-(2x+2y-1).20.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 009.21.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m,11的整数部分为n,求m+n-7的值.22.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n的小正方形,五块是长为m、宽为n的小长方形.(1)观察图形可以发现,代数式2m2+5mn+2n2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m-n)2的值.(第22题)23.两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如(7x+2+6x2)÷(2x+1),仿照672÷21计算如图①所示.(第23题)因此(7x+2+6x2)÷(2x+1)=3x+2.(1)阅读上述材料后,试判断x3-x2-5x-3能否被x+1整除,并说明理由;(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求ab的值;(3)有一个长为x+2,宽为x-2的长方形A,若将它的长增加6,宽增加a就得到一个新长方形B,此时长方形B的周长是A周长的2倍(如图),另有一长方形C,它的一边长为x+10,且长方形B的面积比C的面积大76,求长方形C已知边长的邻边长.答案一、1.C 2.A 3.A 4.C 5.D 6.A7.D8.A9.C10.B二、11.15(答案不唯一)12.-2a13.114.<点拨:∵M=(x-2)(x-8)=x2-10x+16,N=(x-3)(x-7)=x2-10x+21,∴M-N=(x2-10x+16)-(x2-10x+21)=16-21=-5<0,即M<N. 15.36点拨:∵M=x2+4xy+5y2-12y+k=(x+2y)2+(y-6)2+k-36,且M是“完美数”,∴k-36=0,∴k=36.三、16.解:(1)原式=3-3-2=-2.(2)原式=-1+3-2+94-0.5=-3+3+32-12=-2+ 3.17.解:(1)原式=x2-y2-(x2-2xy+y2) =x2-y2-x2+2xy-y2=2xy-2y2.(2)原式=3.992-(3.99+0.02)×(3.99-0.02)=3.992-(3.992-0.022)=3.992-3.992+0.000 4=0.000 4.18.解:(1)由题意得,35x+2=3,3x+y-1=4,∴5x+2=27,3x+y-1=16.∴x=5,y=2.(2)由(1)得,x=5,y=2,∴3x-2y-2=15-4-2=9.∴3x-2y-2的平方根是±3.19.解:(1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).(2)(x+y)2-(2x+2y-1)=(x+y)2-2(x+y)+1=(x+y-1)2.20.解:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2=4-a2+a2-5ab+3a5b3÷a4b2=4-a2+a2-5ab+3ab=4-2ab,当ab=-1 009时,原式=4-2×(-1 009)=4+2 018=2 022.21.解:(1)2(2)m=7-2,因为9<11<16,即3<11<4,所以n=3,所以m+n-7=1.22.解:(1)(2m+n)(m+2n)(2)①由题意知mn=20,2m2+2n2=162,∴m2+n2=81,∴(m+n)2=m2+n2+2mn=121,∴m+n=11(负值已舍去),∴图中所有裁剪线(虚线)长度之和为2(2m+n)+2(m+2n)=6(m+n)=66.②(m-n)2=m2+n2-2mn=81-40=41.23.解:(1)x3-x2-5x-3能被x+1整除.理由如下:(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则有∴a+9=-3,b=6,∴a=-12,∴ab=-2.(3)长方形A的周长为2(x+2+x-2)=4x,长方形B的周长为2(x-2+a+x+2+6)=4x+2a+12. ∵长方形B的周长是A周长的2倍,∴4x+2a+12=8x.∴a=2x-6.∴长方形B的面积为(x+2+6)(x-2+2x-6)=(x+8)(3x-8)=3x2+16x-64. ∴长方形C的面积为3x2+16x-140.∴所求边长为(3x2+16x-140)÷(x+10)=3x-14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y (微克/毫升) 8 4 八年级培优试卷一、填空题1、设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a , 则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

3、在△ABC 中,∠B 和∠C 的平分线相交于O ,若∠BOC=α,则∠A=_________。

4、直角三角形两锐角的平分线交角的度数是 。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m °B.2m °C.(90-m)°D.(90-2m)°2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则 当1≤x ≤6时,y 的取值范围是( ) A . 8 3≤y ≤ 64 11 B . 6411≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④4、将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同 的截法有( )A.5种B. 6种C. 7种D.8种 5、在△ABC 中,适合条件C B A ∠=∠=∠4131,则△ABC 中是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式k 1x +b <k 2x +c 的解集为( ). A .x >1 B .x <1 C .x >-2 D .x <-27、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( ) A.23y x =-- B.26y x =-- C.23y x =-+ D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1 xy-2 y =k 2x +c y =k 1x +bxyOBA2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?1 2 3 41 2 y sO 1 2 3 41 2 y s O s 1 2 3 412 y sO 1 2 3 41 2 y O A .B .C .D .工作量 1125 16时间(小时)2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为 km,乙、丙两地之间的距离为 km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,①求排水时y与x之间的关系式。

②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量。

4、如图,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t ,OPQ △的面积为S ,求S 关于t 的函数关系式.5、探索:在如图①至图③中,三角形ABC 的面积为a,(1)如图①,延长△ABC 的边BC 到点D ,使CD=BC ,连接DA.若△ACD 的面积为S ,则S 1=______(用含a 的代数式表示);(2)如图②,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连接DE ,若△DEC 的面积为S ,则S 2= (用含a 的代数式表示)并写出理由; (3)在图②的基础上延长AB 到点F ,使BF=AB ,连接FD ,FE ,得到△DEF (如图③),若阴影部分的面积为S 3,则S 3=______(用含a 的代数式表示)发现:象上面那样,将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF (如图③),此时,我们称△ABC 向外扩展了一次,可以发现,扩展后得到的△DEF 的面积是原来△ABC 面积的____倍。

应用:去年在面积为10m 2的△ABC 空地上栽种了某种花,今年准备扩大种植规模,把△ABCL 1向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图④)。

求这两次扩展的区域(即阴影部分)面积共为多少m 2?6、如图:已知△ABC 中,AD ⊥BC 于D ,AE 为∠A 的平分线,且∠B=35°,∠C=65°,求∠DAE 的度数。

7、如图:△ABC 中,O 是内角平分线AD 、BE 、CF 的交点。

⑴ 求证:∠BOC=90°+21∠A ; ⑵ 过O 作OG ⊥BC 于G ,求证:∠ DOB=∠GOC 。

ABE DCA BCD E F G答 案1、2〈c 〈42、⎪⎭⎫ ⎝⎛-441,或⎪⎭⎫ ⎝⎛-447,、 3、01802-α 4、045或0135 5、4≥a 注意:一次函数图象是直线,但直线不一定是一次函数。

如直线02=+y ,03=-x 6、060或0120 7、② 8、20BADCB BDCDA CB1、解:(1)S 1=100t …………………………………………………………………………(3分) (2) ① ∵S 2=kt+b ,依题意得t=9时,S 2=0,……(4分) ∵t=2,S 2=560 ∴⎩⎨⎧=+=+560209b k b k :⎩⎨⎧=-=72080b k ………………………………………(7分)② (解法一)由①得,S 2=-80t+720令S 1=S 2,得100t=-80t+720,解得t=4 ……(9分) 当t <4时,S 2>S 1 , ∴S 2-S 1<288 …………………………(11分) 即(-80t+720)-100t <288 , -180t <-432∴ 180t >432,解得t >2.4 ……………………………(12分)∴ 在两车相遇之前,当2.4<t <4时,两车的距离小于288千米。

…………(13分) (解法二) 由①得,S 2=-80t+720, 令t=0,∴S 2=720, 即王红所乘汽车的平均速度为9720=80(千米/时)…………………………………(8分) 设两辆汽车t 1小时后相遇,∴100t 1+80t 1=720,解得t 1=4 ……………………(9分) 又设两车在相遇之前行驶t 2小时后,两车之距小于288千米,则有720-(100t 2+80t 2)<288 …………(11分)解得:t 2>2.4 ………(12分) ∴在两车相遇之前,当2.4<t <4时,两车的距离小于288千米。

……………(13分)2、解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A 、B 的坐标分别为(0.8,0)和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得: ⎩⎨⎧+=+= 28.00b k bk 解得:⎩⎨⎧==-810b k ∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .3、解:(1)4分钟,40升(各一分) (2)y=40-19(x-15)=-19x+325 , (3分) 2升 (1分)4、(1)1y x =- ··························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分 ②当121≥t ,即2t ≥时,111122QM t t =-=-,∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ 4分5、a 2a 6a 7 7(7a )×10 m26注意:⑴书写数学符号语言一定要规范!⑵在不会引起误会情况下,角尽量用∠1、∠2、∠3、∠4、…形式表达,或用表示角顶点的一个字母表示,如∠A 、∠B 、∠C 、∠D 、…。

相关文档
最新文档