高等代数北大版第章习题参考答案

合集下载

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。

2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。

高等代数北大版第章习题参考答案精修订

高等代数北大版第章习题参考答案精修订

高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。

8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。

2)当0=α时,是;当0≠α时,不是。

3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。

4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。

5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数[北大版]第1章习题参考答案解析

高等代数[北大版]第1章习题参考答案解析

第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数北大版(第三版)答案

高等代数北大版(第三版)答案

令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4

f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),

d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
所以 q(x)=2x4-6x3+13x2-39x+109,r(x)=-327. (2)q(x)=x2-2ix-(5+2i),r(x)=-9+8i.
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书

(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算

高等代数(北大版)第3章习题参考答案

高等代数(北大版)第3章习题参考答案

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-+=-⎪⎪-+--=⎨⎪-++-=⎪⎪++-+=-⎩ 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 1234234124234234433)31733x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+++=⎪⎪-++=-⎩ 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=⎪⎪-++=-⎩ 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=-⎪⎪-+-=⎩ 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩ 解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥→------⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦10210110010100321200021200200000200000000000000001110010000--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()()45rank A rank B ==<,所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪-+=⎩, 解得123451022x k x k x x k x k=+⎧⎪=⎪⎪=⎨⎪=⎪⎪=--⎩ 其中k 为任意常数。

0701205_高等代数 北大版 课后习题答案

0701205_高等代数 北大版 课后习题答案

39
26 2 x;
99
2)同理可得 q( x) x2 x 1, r ( x) 5x 7 。
2. m, p, q 适合什么条件时,有
1) x2 mx 1 | x3 px q ,
2) x2 mx 1 | x 4 px2 q 。
解 1)由假设,所得余式为 0,即 ( p 1 m2 ) x (q m) 0 ,
g( x) q2( x)r1(x) r2 ( x)
解得 r2 ( x) g( x) q2( x)r1(x) g( x) q2( x)[ f ( x) q1( x) g( x)] , [ q2( x)] f ( x) [1 q1(x)q2 ( x)] g( x)
u( x)
于是
q2( x)
x1

v( x) 1 q1(x)q2 ( x) 1 1 ( x 1) x 2
9.证明: ( f (x)h( x), g(x)h( x)) ( f (x), g (x)) h( x) , (h( x) 的首系数为1) 。
证 因为存在多项式 u( x), v( x) 使 ( f (x), g (x)) u(x) f ( x) v( x)g( x) ,
式,求 t, u 的值。

f (x)
因为
q1(x)g( x)
r1( x)
( x3
tx2
u)
( x2
2x u)

g( x) q2 ( x)r1( x) r2 (x)
(x (t 2))( x2 2x u) (u 2t 4)x u(3 t ) ,
且由题设知最大公因式是二次多项式,所以余得 ( f (x), g( x)) x 1,且 u(x)
11
22 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章线性变换1.?判别下面所定义的变换那些是线性的,那些不是:1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;则A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。

6)是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。

7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。

8)是,因任取二矩阵YX ,n n P ⨯∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,A (k X )=k BXC k kXB ==)()(A X ,故A 是nn P⨯上的线性变换。

2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换,证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2,并检验(AB )2=A 2B 2是否成立。

解任取一向量a=(x,y,z),则有A B C (AB-BA ))(x f =AB )(x f -BA )(x f =A ())(x xf -B ('f ))(x =;)(xf x f +)(x -'xf )(x =)(x f 所以AB-BA=E 。

4.设A,B 是线性变换,如果AB-BA=E ,证明:A kB-BA k=k A 1-k (k>1)。

证采用数学归纳法。

当k=2时A 2B-BA 2=(A 2B-ABA)+(ABA-BA 2)=A(AB-BA)+(AB-BA)A=AE+EA=2a ,结论成立。

归纳假设m k=时结论成立,即A m B-BA m =m A 1-m 。

则当1+=m k 时,有A1+m B-BA1+m =(A1+m B-A m BA)+(A m BA-BA1+m )=A m (AB-BA)+(A m B-BA m )A=A m E+m A1-m A=)1(+m A m。

即1+=m k 时结论成立.故对一切1>k 结论成立。

5.证明:可逆变换是双射。

证设A 是可逆变换,它的逆变换为A1-。

若a ≠b ,则必有A a ≠A b ,不然设Aa=A b ,两边左乘A 1-,有a=b ,这与条件矛盾。

其次,对任一向量b ,必有a 使A a=b ,事实上,令A1-b=a 即可。

因此,A 是一个双射。

6.设1ε,2ε,K ,n ε是线性空间V 的一组基,A 是V 上的线性变换。

证明:A 是可逆变换当且仅当AA 可,Bε微分变换D 在基i ε(i=1,2,K ,6)下的矩阵;5) 已知P 3中线性变换A 在基1η=(-1,1,1),2η=(1,0,-1),3η=(0,1,1)下的矩阵是⎪⎪⎪⎭⎫⎝⎛-121011101,求A 在基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)下的矩阵; 6) 在P 3中,A 定义如下:⎪⎩⎪⎨⎧--=-=-=)9,1,5()6,1,0()3,0,5(321ηηηA A A , 其中⎪⎩⎪⎨⎧-==-=)0,1,3()1,1,0()2,0,1(321ηηη,22)=⎪⎭ ⎝203)因为)!1()]2([)1(,,!2)1(,,11210----=-===-n n x x x x x x n K K εεεε, 所以A 0110=-=ε,A 01)1(εε=-+=x x , A )!1()]2([)1()!1()]3([)1(1---------=-n n x x x n n x x x n K K ε=)!1()]3([)1(----n n x x x K {)]2([)1(---+n x x }=2-n ε,所以A 在基0ε,1ε,K ,1-n ε下的矩阵为A =⎪⎪⎪⎪⎫⎛11010KK K。

45⎪⎭ ⎝-111(1ε,2ε,3ε)=(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛---101110111=(1η,2η,3η)X ,故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211。

6)因为(1η,2η,3η)=(1ε,2ε,3ε)⎪⎪⎪⎭⎫ ⎝⎛--012110301,所以A (1η,2η,3η)=A (1ε,2ε,3ε)⎪⎪⎪⎭⎫ ⎝⎛--012110301,⎫⎛--5057所以A (1η,2η,3η)=(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛-0121101-⎪⎪⎪⎭⎫⎝⎛--963110 =(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛---011101532。

8.在P22⨯中定义线性变换A 1(X )=⎪⎪⎭⎫⎝⎛d c b a X,A 2(X )=X ⎪⎪⎭⎫ ⎝⎛d c b a ,A 2(X )=⎪⎪⎭⎫ ⎝⎛d c b a X ⎪⎪⎭⎫⎝⎛d c b a ,求A 1,A 2,A 3在基E 11,E 12,E 21,E 22下的矩阵。

解因A 1E 11=a E 11+c E 12,A 1E 12=a E 12+c E 22,A 1E 21=b E 11+d E 21,A 1E 22=b E 21+d E 22,A 故A 3在基E 11,E 12,E 21,E 22下的矩阵为⎪⎪⎪⎪⎭⎝=2223d bdcd bc cd ad c ac bd b adab A 。

9.设三维线性空间V 上的线性变换A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a , 1) 求A 在基123,,εεε下的矩阵;2) 求A 在基321,,εεεk 下的矩阵,其中且; 3) 求A 在基3221,,εεεε+下的矩阵。

解1)因A 3ε=333εa +a +223ε13a 1ε,A 2ε=+332εa +222εa 112εa , A 1ε=+331εa +221εa 111εa ,故A 基3221,,εεεε+下的矩阵为⎪⎪⎪⎭⎫⎝⎛+----+-=333232311323122212112221131212113a a a a a a a a a a a a a a a a B 。

10.设A 是线性空间V 上的线性变换,如果Aε1-k ≠0,但A εk =0,求证:ε,A ε,,ΛA ε1-k (k >0)线性无关。

证设有线性关系0121=+++-εεεk k Al A l l Λ,用A1-k 作用于上式,得1l A ε1-k =0(因A 0=εn 对一切n k ≥均成立),又因为Aε1-k ≠0,所以01=l ,于是有01232=+++-εεεk k A l A l A l Λ,再用A2-k 作用之,得2l Aε1-k =0.再由,可得2l =0.同理,继续作用下去,便可得⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010O O 。

12.设V 是数域P 上的维线性空间,证明:与V 的全体线性变换可以交换的线性变换是数乘变换。

证因为在某组确定的基下,线性变换与n 级方阵的对应是双射,而与一切n 级方阵可交换的方阵必为数量矩阵kE ,从而与一切线性变换可交换的线性变换必为数乘变换K 。

13.A 是数域P 上n 维线性空间V 的一个线性变换,证明:如果A 在任意一组基下的矩阵都相同,那么是数乘变换。

证 设A 在基n εεε,,,21Λ下的矩阵为A=(ij a ),只要证明A 为数量矩阵即可。

设X 为任一非退化方阵,且(n ηηη,,21)=(n εεε,,,21Λ)X ,则12,,,n ηηηL 也是V 的一组基,且A 在这组基下的矩阵是AX X 1-,从而有AX=XA ,这说明A 与一切nn a a a ===Λ2211。

故A 为数量矩阵,从而A 为数乘变换。

14.设321,,εεε,4ε是四维线性空间V 的一组基,已知线性变换A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201, 1) 求A 在基42112εεη+-=,4443343222,,3εηεεηεεεη=+=--=下的矩阵;2) 求A 的核与值域;3) 在A 的核中选一组基,把它扩充为V 的一组基,并求A 在这组基下的矩阵; 4) 在A 的值域中选一组基,把它扩充为V 的一组基,并求A 在这组基下的矩阵。

解1)由题设,知(4321,,,ηηηη)=(321,,εεε,4ε)⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001,=⎩⎨⎧=+++-=++032024321431x x x x x x x , 可求得基础解系为X 1=)0,1,23,2('--,X 2=)1,0,2,1('--。

若令1α=(321,,εεε,4ε)X 1,2α=(321,,εεε,4ε)X 2, 则12,αα即为A1-(0)的一组基,所以A1-(0)=12(,)L αα。

再求A 的值域A V 。

因为A 1ε=43212εεεε++-, A 2ε=432222εεε-+, A 3ε=432152εεεε+++, A 4ε3ε=4321253εεεε-++,A V 的⎪⎪⎪⎪⎪⎭⎫0000(A 1ε,A 2ε,43,εε)=(321,,εεε,4ε)⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001,故A 在基A 1ε,A 2ε,43,εε下的矩阵为C=11021012100210001-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001=⎪⎪⎪⎪⎪⎫⎛00002231291225。

A(321,,ηηη)=(1e ,2e ,3e )⎪⎪⎪⎭⎫ ⎝⎛----111122=(1e ,2e ,3e )B=(1e ,2e ,3e )A 1-B , 故由基321,,εεε到基321,,ηηη的过度矩阵为X=A 1-B=1101110121-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----111122221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232。

相关文档
最新文档