现场仪表避雷接地处理
仪表系统防雷工程设计及应用

仪表系统防雷工程设计及应用摘要:介绍了仪表系统防雷等级划分方法,结合高雷区仪表系统的防雷工程设计,从控制室建筑物、现场仪表系统、控制室内仪表系统几个方面阐述了仪表系统防雷工程的设计及应用。
关键词:防雷工程;电涌防护器;接地;雷电防护等级近年来,由于仪表系统遭受雷击或雷电电磁脉冲而造成生产装置、大型机组停车的情况屡有发生。
为保证仪表系统的正常运行,避免或减少雷电袭击导致的直接及间接经济损失,对仪表系统实施适宜的防雷工程是很有必要的。
1仪表系统雷电防护等级划分及防雷工程实施仪表系统雷电防护等级的划分,采用被保护系统的重要程度结合当地年平均雷暴日来分级确定,具体见表1。
被保护系统的社会、经济和安全重要程度主要根据安全等级的评价、事故可能伤亡人数及事故可能造成的经济损失来综合评定。
其分类可以参考SH/T 3164-2012《石油化工仪表系统防雷设计规范》的表3.3来确定。
举例:项目所在地年平均雷暴日53d/a,社会、经济和安全重要程度分类为第二类,因此根据表1综合评估,该项目仪表系统雷电防护等级按一级防护划分。
根据SH/T 3164-2012《石油化工仪表系统防雷设计规范》第5.1.2条,防雷等级为一级的区域和控制室应实施仪表系统防雷工程。
2仪表系统雷电综合防护仪表系统防雷工程是一项系统工程,由多专业配合完成,才能达到仪表系统的有效防护。
IEC1024-1 中提出外部防雷和内部防雷的概念,按此分类主要的雷电防护措施如下:外部雷电防护(直击雷防护)措施包括接闪器、引下线、接地装置等。
其作用是:拦截击向建筑物的雷击,把雷电电流从雷击点直接引入大地泄放。
内部雷电防护(感应雷、反击雷)措施包括等电位连接与接地、屏蔽、合理布线、设置电涌防护器以及采用高抗干扰度的仪表系统等。
以下主要从控制室防直击雷、现场仪表和控制室内仪表系统几方面来介绍仪表系统的防雷设计。
3控制室防直击雷设计控制室的防雷设计主要由建筑和电气专业参照GB50057《建筑物防雷设计规范》及电气专业的有关规范进行设计。
现场仪表接地的目的与种类以及注意事项

现场仪表接地的目的与种类以及注意事项
化工厂仪表和控制系统的接地目的是什么?其一,是为保护人身安全和电气设备的安全运行;其二,是为仪表信号的传输和抗干扰。
“接地是电流返回其源的低阻抗通道”。
仪器仪表安装之后,正确的接地能让自动化和控制系统减少不必要故障和误差的出现。
那么,现场仪表都有哪些接地呢?
化工厂常见现场仪表接地举例
流量计接地
变送器与热电阻接地
变送器接地
压力变送器接地
远传液位计接地
流量计接地
电磁流量计接地
仪表接地分类
仪表接地分类有保护接地、工作接地、本安系统接地、防静电接地、防雷接地。
保护接地
也称为安全接地,是为人身安全和电气设备安全而设置的接地。
各种用电仪表的金属外壳及自控设备正常情况不带电的金属部分,由于非正常现象的出现(如绝缘破损等),而有可能使其带有危险电压,对这样的设备,均应实施保护接地。
保护接地就是给危险电压提。
石油化工仪表系统的防雷隐患及防雷技术分析

石油化工仪表系统的防雷隐患及防雷技术分析发布时间:2023-03-06T06:50:39.508Z 来源:《工程管理前沿》2022年第20期作者:贾洪双[导读] 化工是促进我国国民经济快速增长的主要产业之一贾洪双中国石油哈尔滨石化公司黑龙江哈尔滨150056摘要:化工是促进我国国民经济快速增长的主要产业之一,仪表系统是石油化工生产的中心,对整个企业的生产运行起着极为重要的作用。
为了保证石油化工正常生产运转,需要做好仪表系统的保护工作,尤其是加强雷电防御措施。
在开展雷电防御过程中,应先认真分析雷电灾害对石油化工生产的影响和仪表控制系统存在的防雷隐患,再根据不同的问题制定科学合理的解决策略,在此基础上合理安装浪涌保护器和规范布线,使仪表系统更具安全可靠性,从而保证整个系统的正常运转,为石油化工生产奠定良好的基础。
关键词:石油化工仪表系统;防雷隐患;防雷技术引言雷电属于自然现象,因此石油化工产业在仪表防雷方面要有足够的重视,能够清楚认识到其对石油化工生产活动带来的危害,从而根据当前的防护措施制定更加完善的防雷策略,将雷电对石油化工生产带来的损害降到最低。
1石油化工仪表系统的防雷隐患分析1.1雷击的基本类型雷击大致可以分为两类:直击雷和感应雷。
下面对直击雷和感应雷引起的仪器损坏进行分析。
(1)直击雷是指雷电在空中产生的电荷,能以闪电的形式直接击中各种人、动物、树木和大型建筑物。
直击雷的技术特点之一是能量巨大,中等强度的直击累电流为10~80kA。
其通过强烈的热电辐射和电磁机械效应,对人类和动植物造成致命伤亡,破坏建筑物。
如果现场仪表、电线/缆和一些其他信号传输线设备遭到雷击,在各种极端条件下,几乎所有的仪表系统都会因触电而严重损坏。
(2)感应雷。
感应雷是指雷电脉冲瞬时放电而产生的与其对应电压大小相同的感应脉冲电压,使其靠近物体带电。
感应电压可以通过其感应导体,并迅速传输到各种相关的电子控制仪表以及相关的设备,从而对各种自动化仪表及控制系统造成严重的危害。
仪表接地规范

1 总则1.0.1 本规范适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。
本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。
1.0.2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。
1.0.3 执行本规范时,尚应符合现行有关标准规范的要求。
2 保护接地2.0.1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。
它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。
2.0.2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。
2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。
3 工作接地3.0.1 仪表、PLC、DCS、计算机系统等,应作工作接地。
工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。
3.0.2 当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。
3.0.3 当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。
3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。
除信号源本身接地者外,屏蔽接地应在控制室侧实施。
3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。
3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一起。
4 仪表系统防雷接地4.0.1 位于多雷击区或强雷击区内的石油化工装置,当控制室内PLC、DCS、计算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。
仪表接地国家规范

竭诚为您提供优质文档/双击可除仪表接地国家规范篇一:仪表接地规范1总则1.0.1本规范适用于石油化工企业自动控制工程的仪表、plc、dcs、计算机系统等的接地设计,装置的改造可参照执行。
本规范不适用于操作控制室、dcs机房、计算机机房等的防静电接地设计。
1.0.2接地系统按功能可分为保护接地、工作接地与仪表系(仪表接地国家规范)统防雷接地。
1.0.3执行本规范时,尚应符合现行有关标准规范的要求。
2保护接地2.0.1用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。
它们包括:仪表盘、仪表柜、仪表箱、plc及dcs机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。
2.0.224V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。
2.0.3安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。
3工作接地3.0.1仪表、plc、dcs、计算机系统等,应作工作接地。
工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。
3.0.2当仪表、plc、dcs、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。
3.0.3当plc、dcs、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。
3.0.4仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。
除信号源本身接地者外,屏蔽接地应在控制室侧实施。
3.0.5本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。
3.0.6本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一起。
4仪表系统防雷接地4.0.1位于多雷击区或强雷击区内的石油化工装置,当控制室内plc、dcs、计算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。
HGT20513-2000仪表系统接地设计规定

嘟裂那 率刘轰 1娜胃
5 接地连接方法
5 . 1 现场仪表 接地连接方法 5 . 1 . 1 对于现场仪表电 缆槽、 仪表电 缆保护管以 及3 6 V以 上的 仪表外壳的保护接地, 每隔 3 0 米用接地连接线与就近已 接地的 金属构件相联, 并应保证其接 地的可靠性及电 气的连续性。 严禁利用储存、 输送可燃性介质的 金属设备、 管道以 及与之相关的 金属构件进行接
3 计算机系 统机柜和 操作台; 4 供电 盘、 供电 箱、 用电仪表外壳、 电缆桥架 ( 托盘) 、 穿线管、 接 线盒和 恺装电缆 的 恺装护层 ; 5 其它各种自 控辅助设备。 2 . 0 . 2 安 装在非爆炸危险场所的 金属表盘上的按钮、 信号灯、 继电 器等小型 低压电 器 的 金属外壳, 当与已 作保护接地的金 属表盘框架电气接触 良 好时, 可不作保护接地。 2 . 0 . 3 低于 3 6 V 供电的 现场仪表、 变送器、 就地开 关等, 若无特殊需要时可 不作保护
接地b
2 . 0 . 4 凡已 作了保护接地的 地方即 可认为已作了静电接地。 在控制室内 使用防 静电 活动地板时, 应作静电接地。
静 电接地 可与保护接地合用接地 系统 。
2 56
3 工作接地
3 . 1 一般规定
3 . 1 . 1 为保证 自 动 化系统正常可 靠地工作, 应予工作接地。 工作接地的内容为信号回
接地干线 接 地总干 线
1 0 一 2 5 m m 2 1 6 - 5 0 m m 2
7 . 2 接地汇流排 、 联 结板 规格
7 . 2 . 1 接地汇流 排宜采 用2 5 m m 2 x 6 m m 2 的铜 条制作。 也可用连 接端子 组合而成。 7 . 2 . 2 接地汇总 板和总接地板应采用铜板制作。 铜板厚度不应小于 6 m m , 长宽尺寸按
防雷接地施工方案

防雷接地专项施工方案编制:审核:审批:日期:目录第一章编制依据与防雷、接地工程概况 (3)第一节适用范围 (3)第二节编制依据 (3)第三节设计概况 (3)第二章施工准备 (5)第一节技术准备 (5)第二节材料准备 (5)第三节施工机具准备 (5)第三章施工工艺 (6)第一节基础接地施工工艺 (6)第二节屋面防雷施工工艺 (7)第三节等电位、局部等电位联接施工工艺 (8)第四节引下线施工工艺 (10)第四章接地电阻测试 (11)第五章质量保证措施 (13)第一节质量标准 (13)第二节应注意的质量问题 (14)第三节质量记录 (15)第六章安全保证措施 (15)第七章应急预案 (16)第一节应急准备 (16)第二节触电事故应急准备响应预案 (16)第三节高空坠落事故应急准备响应预案 (19)第八章现场文明体系及施工措施 (21)第一节阶段策划 (22)第二节文明施工 (22)第三节施工现场垃圾清除安排 (24)第九章绿色施工 (24)第一节绿色施工环境管理方针、目标及工程环境管理体系 (24)第二节资源节约 (25)第三节环境保护 (26)第一章编制依据与防雷、接地工程概况第一节适用范围适用于东海富汇豪庭地块项目防雷接地安装工程。
第二节编制依据1. 电气、给排水、燃气、人防等施工图纸2. 依据《建筑电气工程施工质量验收规范》(GB50303-2015)5.依据《建筑物电子信息系统防雷技术规范》(GB50343-2012)6.依据《电气装置安装工程接地装置施工及验收规范》(50169-2016)5.依据《建筑物防雷设计规范》(GB50057-2010)3. 参见《防雷接地安装图集》(D501-1~4)4. 参见《等电位安装图集》(04D501-2)第三节设计概况本工程本建筑按二类防雷建筑设防,防雷击电磁脉冲防护等级为D级。
年平均雷暴日Td=73.9天,年预计雷击次数N=0.5070次。
本工程沿屋面周圈采用∅12镀锌圆钢构筑不大于10m×10m或12m×8m的金属网格作为接闪带。
施工现场接地与防雷管理

施工现场接地与防雷管理5.1 一般规定5.1.1 在施工现场专用变压器的供电的TN-S接零保护系统中,电气设备的金属外壳必须与保护零线连接。
保护零线应由工作接地线、配电室(总配电箱)电源侧零线或总漏电保护器电源侧零线处引出(图5.1.1)。
图5.1.1 专用变压器供电时TN-S接零保护系统示意1--工作接地;2--PE线重复接地;3--电气设备金属外壳(正常不带电的外露可导电部分);L1、L2、L3一相线;N—工作零线;PE—保护零线;DK--总电源隔离开关;RCD---总漏电保护器(兼有短路、过载、漏电保护功能的漏电断路器);T--变压器5.1.2 当施工现场与外电线路共用同一供电系统时,电气设备的接地、接零保护应与原系统保持一致。
不得一部分设备做保护接零,另一部分设备做保护接地。
采用TN系统做保护接零时,工作零线(N线)必须通过总漏电保护器,保护零线(PIE线)必须由电源进线零线重复接地处或总漏电保护器电源侧零线处,引出形成局部TN-S接零保护系统(图5.1.2)。
图5.1.2 三相四线供电时局部TN-S接零保护系统保护零线引出示意1--NPE线重复接地;2--PE线重复接地;L1、L2、L3--相线;N--工作零线;PE--保护零线;DK--总电源隔离开关;RCD--总漏电保护器(兼有短路、过载、漏电保护功能的漏电断路器) 5.1.3 在TN接零保护系统中,通过总漏电保护器的工作零线与保护零线之间不得再做电气连接。
5.1.4 在TN接零保护系统中,PE零线应单独敷设。
重复接地线必须与PE 线相连接,严禁与N线相连接。
5.1.5 使用一次侧由50V以上电压的接零保护系统供电,二次侧为50V及以下电压的安全隔离变压器时,二次侧不得接地,并应将二次线路用绝缘管保护或采用橡皮护套软线。
当采用普通隔离变压器时,其二次侧一端应接地;且变压器正常不带电的外露可导电部分应与一次回路保护零线相连接。
以上变压器尚应采取防直接接触带电体的保护措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现场流量仪表的防雷接地
营销中心张宇1、雷击的危害
雷电的破坏主要是由于云层间或云和大地之间以及云和空气间的电位差达到一定程度(25—30kV/cm)时,所发生的猛烈放电现象。
通常雷击有三种形式,直击雷、感应雷、球形雷。
直击雷是带电的云层与大地上某一点之间发生迅猛的放电现象。
感应雷是当直击雷发生以后,云层带电迅速消失,地面某些范围由于散流电阻大,出现局部高电压,或在直击雷放电过程中,强大的脉冲电流对周围的导线或金属物产生电磁感应发生高电压、而发生闪击现象的二次雷。
球形雷是球状闪电的现象。
1.1直击雷破坏
当雷电直接击在建筑物上,强大的雷电流使建(构)筑物水份受热汽化膨胀,从而产生很大的机械力,导致建筑物燃烧或爆炸。
另外,当雷电击中接闪器,电流沿引下线向大地泻放时,这时对地电位升高,有可能向临近的物体跳击,称为雷电“反击”,从而造成火灾或人身伤亡。
1.2感应雷破坏
感应雷破坏也称为二次破坏。
它分为静电感应雷和电磁感应雷两种。
由于雷电流变化梯度很大,会产生强大的交变磁场,使得周围的金属构件产生感应电流,这种电流可能向周围物体放电,如附近有可燃物就会引发火灾和爆炸,而感应到正在联机的导线上就会对设备产生强烈的破坏性。
由于近年来我们公司在全国水资源监控及供水行业的用量越来越多,用户对产品的智能化程度越来越高,许多的户外表上都采用了无线GPRS远传设备,将偏远的现场流量数据传到数据平台,现场流量计和无线GPRS设备遭雷击的现象时有发生,所以如何解决雷击对我们设备的危害就成为我们的首要任务,对此我们进行分析发现对我们设备产生的破坏主要来自电磁感应雷,当雷击发生在我们设备附近时,或击在避雷针上会产生强大的交变电磁场,此交变电磁场的能量将感应于线路并最终作用到设备上。
由于避雷针的存在,建筑物上落雷机会反倒增加,内部设备遭感应雷危害的机会和程度一般来说是增加了,对用电设备造成极大危害。
为了避免这种危害,就必须保证避雷针引下线通体要有良好的导电性,
接地体一定要处于低阻抗状态,才能保证良好的避雷效果,那么接地线及防雷设备如何实施配置,才能保证最佳的防雷效果呢?答案就在下面:
2、主设备防雷接地
现场无线GPRS设备有无线收发信息的天线系统,易受雷击。
能否有效地保护无线收发设备不受雷击的干扰和损坏,是必须考虑的问题之一。
2.1流量计电路设计
所有接口使用响应速度极快的半导体防雷器件。
采用具有高压ESD保护的接口器件。
采用浪涌抑制电路,滤除接口窜入的电磁干扰。
所有外部接口采用光隔离技术。
所有通信接口均采用TVS(瞬态抑制二极管)保护。
需供电的传感器采用隔离电源模块供电,防止干扰从电源通道进入电路板。
数字地、模拟地分开。
2.2选用合适的避雷设备
采用信号线(励磁信号、485信号)避雷器、电源避雷器等。
2.3室外机箱设计
金属全密闭机箱有利于保护内部终端设备。
内部设有放电接线柱,有利于防雷。
机箱外壳设有防雷接地点(应与地网以最短距离良好连接)。
3、避雷接地系统
3.1屋顶安装避雷针,地下埋设接地体,保证接地电阻<10Ω。
本系统接地地网均为组合接地体装置,根据地形条件采用“一”字形地网或“U”字形等形式进行防雷接地,但要求水平接地带长度不少于18米,垂直接地带长度不少于15米(每根1.5米),垂直接地体采用50×50×5mm角钢,长度为2.5米,水平接地体采用40×4×4mm扁铁连接,全部采用焊接方法连接,埋设深度必须>0.5米。
为减少相邻接地体的屏蔽作用,水平接地体,垂直接地体的间距不小于5米,接地体埋设位置应距建筑物3米以外,接地体采用不小于6毫米的镀锌钢筋或25平方铝绞线引到天线塔杆焊接相连。
土壤电阻率太大时,需采用局部换土或减少土壤电阻率(如填降阻剂)等措施。
3.2设备接地均接在地网末端。
3.3避雷针及施工规范
组装避雷针,并将节点处焊接牢固。
避雷针体长度应大于3m,顶端为30°锥角,材料为圆钢,直径为25mm,避雷针必须高于天线最高点2~3m以上,使天线位于45°避雷针安全区内,同避雷针之间要绝缘,将避雷针竖直放,底部支架用膨胀螺丝固定。
避雷针设计图
所谓天线45°避雷针安全区域就是避雷针45°所覆盖的范围
3.4地网设计
主站安装良好的接地网。
示意如图:
4.现场防雷的效果
现场实践表明,通过采用上述现场防雷措施后,防雷效果显著,基本上杜绝了雷击对现场设备的损坏。