2019年高中数学 2.1平面向量的实际背景及基本概念学案 新人教A版必修
高中数学 平面向量的实际背景及基本概念 新人教A版必修

运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
1、向量的概念:我们把既有大小又有方向的量叫向量
问题3:数学中,定义概念后,通常要用符号表示它。 怎样把你举例中的向量表示出来呢
2、向量的表示方法: ①用有向线段表示;
平面向量 复习
设计问题
学生探索
信息交流
但平是面它 向们量的的创方实设向际不背情同景境,及所基以本两概架念尝飞机试的解位决移不相同.揭示规律
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意 的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小.
设计问题 创设情境
平面向量的实际背景及基本概念
变式演练 深化提高
反思小结 观点提炼
例2: 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示 两架飞机的位移b .
A
解 位移是向量.a 虽然这两个向量的模相等, 但是它们的方向不同,所以两架飞机的位移不相同. 两架飞机位移的有向线段表示 分别为图中的有向线段a 与b.
设计问题 创设情境
平面向量的实际背景及基本概念
学生探索 尝试解决
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
力,速度,加速度——既有大小又有方向 功,速率,高度,温度——只有大小没有方向
设计问题 创设情境
平面向量的实际背景及基本概念
2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版

姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
2019版数学人教A版必修4课件:2.1 平面向量的实际背景及基本概念 .pdf

-6-
M 2.1 平面向量的实际背景 及基本概念
目标导航
UBIAODAOHANG
123
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
2.向量的表示法 (1)几何表示:用有向线段表示,此时有向线段的方向就是向量的方 向,向量的大小就是向量的长度(或称模),如向量������������ 的长度记作|������������ |. (2)字母表示:通常在印刷时,用黑体小写字母 a,b,c,…表示向量,书 写时,可写成带箭头的小写字母������, ������, ������,…,还可以用表示向量的有向 线段的起点和终点字母表示,如以 A 为起点,以 B 为终点的向量记为 ������������ .
答案:D
B.方向是由 M 指向 N D.终点是 M
-8-
M 2.1 平面向量的实际背景 及基本概念
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
123
3.有关概念
名称 定义
记法
零向量 长度为 0 的向量叫做零向量
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
1.向量和有向线段的区别与联系 剖析:向量是规定了大小和方向的量,有向线段是规定了起点和 终点的线段.它们的联系是向量可以用有向线段来表示,这条有向 线段的长度就是向量的长度,有向线段的方向就是向量的方向.它 们的区别是向量可以自由移动,故当用有向线段来表示向量时,有 向线段的起点是任意的.而有向线段是不能自由移动的,有向线段 平移后就不是原来的有向线段了.有向线段仅仅是向量的直观体现, 是向量的一种表现形式,不能等同于向量;有向线段有平行和共线 之分,而向量的平行和共线是相同的,是同一个概念.
高中数学 2.1平面向量的实际背景及基本概念教案2 新人教A版必修4

§2.1 平面向量的实际背景及基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的的主体地位和作用。
3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。
二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念。
2019年导学案2.1平面向量的实际背景及基本概念.doc

2. 1平面向量的实际背景及其基本概念导学案【学习目标】1. 通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清楚数量与向量的区别。
2.理解自由向量、相等向量、相反向量、平面向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出某一已知向量的相等向量。
【学习重点】掌握并理解向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。
【学习难点】平行向量、相等向量和共线向量的区别与联系。
【学法指导】通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清楚数量与向量的区别。
【知识链接】向量、零向量、单位向量、相等向量、共线向量【学习过程】一.预习自学1.物理学中我们学习了位移、速度、加速度、力等物理量,回顾这与我们学习过的长度、面积、体积、质量等有什么不同之处?而位移、速度、加速度、力这些量又有什么共同点?2.向量的有关概念:(1)向量:既有,又有的量叫做向量。
(2)向量的模:有向线段AB的长度,表示向量AB 的大小,也叫做向量AB的(或),记作。
(3)零向量:长度为的向量叫做零向量,记作。
(4)单位向量:长度等于的向量叫做单位向量。
(5)相等向量:且的向量叫做相等向量。
(6)平行向量(共线向量):方向的非零向量叫做平行向量,也叫做共线向量,向量 a 平行于b ,记作,规定:零向量与平行。
3.向量的表示方法:(1)用有向线段的几何表示法:①有向线段:带有素、的线段叫做有向线段,它包含三要、。
○2 向量的几何表示法:以 A 为、B 为的有向线段记为AB,如果有向线段AB表示一个向量,通常我们就说向量AB 。
(2)字母表示:可用字母表示向量,手写时通常写成带箭头的小写字母。
4、通过上上面的学习你知道向量和数量有何不同?向量和有向线段有何关系?二 . 课堂检测1.判断正误:(1)向量必须用有向线段表示(2)表示一个向量的有向线段是唯一的()()(3)若向量a与b同向,且| a | | b |,则(4)单位向量都相等a b(())(5)向量AB与CD是共线向量,则 A、B、C、D四点必在一条直线上(6)共线的向量,起点不同,则终点一定不同()()(7)四边形 ABCD是平行四边形当且仅当2.非零向量AB的长度怎样表示?非零向量ABBADC()的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?二.新知探究例 1.如图,设 O是正六边形ABCDEF的中心,分别写出图中与OA 、OB 、OC 相等的向量。
高中数学《平面向量的实际背景及基本概念》导学案新人教A版必修

2.1《平面向量的实际背景及基本概念》导学案【学习目标】1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,初步认识现实生活中的向量和数量的本质区别.3.通过对向量与数量的识别能力的训练,培养认识客观事物的数学本质的能力.【导入新课】情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了. 分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量. 引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?新授课阶段(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1.数量与向量有何区别?2.如何表示向量?3.有向线段和线段有何区别和联系?分别可以表示向量的什么?4.长度为零的向量叫什么向量?长度为1的向量叫什么向量?5.满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6.有一组向量,它们的方向相同或相反,这组向量有什么关系?7.如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?注意:1.数量与向量的区别:2.向量的表示方法: A B C D A(起点) B (终点)a①用表示;②用(黑体,印刷用)等表示;③;④ .3.有向线段:具有方向的线段就叫做有向线段,三个要素:.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4.零向量、单位向量概念:①叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5.平行向量定义:①叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6.相等向量定义:叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点........无关...7.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段.....的起点无关).......说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.例1 书本86页例1.例2 判断:(1)平行向量是否一定方向相同?()(2)不相等的向量是否一定不平行?()(3)与零向量相等的向量必定是什么向量?()(4)与任意向量都平行的向量是什么向量?()(5)若两个向量在同一直线上,则这两个向量一定是什么向量?()(6)两个非零向量相等的当且仅当什么?()(7)共线向量一定在同一直线上吗?()例3 下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解析:例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC 相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?变式训练:1.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当AB=DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.课堂小结1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.作业课本88页习题2.1第3、5题拓展提升1.下列各量中不是向量的是()A.浮力B.风速C.位移D.密度2.下列说法中错误..的是()A.零向量是没有方向的B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()A.一条线段B.一段圆弧C.圆上一群孤立点D.一个单位圆4.已知非零向量b a //,若非零向量a c //,则c 与b 必定 .5.已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 .6.设在平面上给定了一个四边形ABCD ,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中点,则_______,||=________=参考答案1、数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ① 有向线段② 字母a、b③有向线段的起点与终点字母:AB ;④向量的模,记作|AB |.3.起点、方向、长度.4.零向量、单位向量概念:①长度为0的向量②长度为1个单位长度的向量5.平行向量定义:①方向相同或相反的非零向量6.相等向量定义:长度相等且方向相同的向量例1 书本86页例1.例2(1) (不一定)(2) (不一定)(3) (零向量)(4) (零向量)(5) (平行向量)(6) (长度相等且方向相同)(7) (不一定)例3解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题A(起点) B (终点)a来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4变式一: (11个)变式二: (存在)变式三: (FE DO CB ,,)变式训练解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上. ②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.拓展提升1.D2.A3.D4.平行5.不共线6. ||NM ,NM。
高中数学必修四(2.1平面向量的实际背景及基本概念)教案新人教A版必修4

样特征呢 ?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特
征的量呢?
②新的概念是对这些具有共同特征的量的描述 , 应怎样定义这样的量呢?
③数量与向量的区别在哪里? 活动 : 教师指导学生阅读教材 , 思考讨论并解决上述问题 , 学生讨论列举与位移一样的一
些量 . 物体受到的重力是竖直向下的 , 物体的质量越大 , 它受到的重力越大;物体在液体中受
④满足什么条件的两个向量是相等向量?单位向量是相等向量吗
?
⑤有一组向量 , 它们的方向相同或相反 , 这组向量有什么关系?怎样定义平行向量 ?
⑥如果把一组平行向量的起点全部移到一点
O, 它们是不是平行向量?这时各向量的终点之
间有什么关系 ?
⑦数量与向量有什么区别 ?
⑧数学中的向量与物理中的力有什么区别 ?
要素 : 起点、方向、长度 .
知道了有向线段的起点、方向和长度 用有向线段表示向量的方法是 :
图2 , 它的终点就唯一确定 .
1°起点是 A, 终点是 B 的有向线段 , 对应的向量记作 : AB .
这里要提醒学生注意 AB 的方向是由点 A 指向点 B, 点 A 是向量的起点 .
2°用字母 a, b, c, …表示 .( 一定要学生规范书写 : 印刷用黑体 a, 书写用 a )
第二章 平面向量
2.1 平面向量的实际背景及基本概念
情境导入 ) 如图 1, 在同一时刻 , 老鼠由 A 向西北方向的 C 处逃窜 , 猫在 B 处向正
东方向的 D 处追去 , 猫能否追到老鼠呢?学生马上得出结论 : 追不上 , 猫的速度再快也没用 ,
因为方向错了 . 教师适时设问 : 如何从数学的角度来揭示这个问题的本质?由此展开新课
【课件】平面向量的实际背景与概念(说课)+课件高一下学期数学人教A版(2019)必修第二册

y
o
x
平面向量的实际背景与概念
一、教材分析
基 本
二、学情分析 三、教法学法
流
四、教学过程
程
五、板书设计
六、教学反思
地位与作用
本节课的内容是选自人教版普通高
中数学必修第二册第六章第一节
“平面向量的实际背景与概
教 材
念”.向量是沟通代数,几何与三 角函数的一种工具,有着极其丰富
延
B
A
伸
学生自主思考
O
C
F
D
E
知识应用 实战演练
建立适当的坐标,利用两点间 的距离求向量的模。
(3)思考:除了上面的方法方法,还有
哪些方法可以求出
AD
?
一个概念
课堂小结
两种关系
三种思想
向量 概念
关系
方法 思想
定义 表示 模
平行 相等 类比 一题 数形 向量 向量 归纳 多解 结合
评价应贯穿于课堂的始终Fra bibliotek问题1:上述三个实例中涉及哪些物理量?
学生自主思考
回答,引出向量
问题2:这些量与我们日常生活中的面积、体积、的概念
质量、身高、长度、年龄等有什么区别?
学习流程
向量的概念 相等向量 共线向量
向量的表示
零向量 单位向量
平行向量
重点 内容
知识引入
共线向量: 任一组平行向量都可平移到同一直线上. 即平行向量也叫做共线向量.
分
的实际背景,在数学和物理学中具
析
有广泛的应用.平面向量的基本概念
是在学生了解了物理学中的力,位
移,速度,加速度等矢量概念的基
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学 2.1平面向量的实际背景及基本概念学案 新人教A 版必
修
一、预习目标 通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
二、预习内容
(一)、情景设置:
如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追
到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
(二)、新课预习:
1、向量的概念:我们把既有大小又有方向的量叫向量
2、请同学阅读课本后回答:
1) 数量与向量有何区别?
2) 如何表示向量?
3) 有向线段和线段有何区别和联系?分别可以表示向量的什么?
4) 长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5) 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6) 有一组向量,它们的方向相同或相反,这组向量有什么关系?
7) 如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究学案
一、学习目标
1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
二、学习过程 A B C D
1、数量与向量的区别?
2.向量的表示方法?
①
②
③ ④向量的大小――长度称为向量的模,记作 。
3.有向线段:具有方向的线段就叫做有向线段,三个要素: 。
向量与有向线段的区别:
4、零向量、单位向量概念:
① 叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
② 叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
① 叫平行向量;②我们规定0与 任意向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、 叫相等向量。
说明:(1)向量a与b相等,记作a=b;
(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..
向线段的起点无关........
. 7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为 (与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 三、理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?
(2)不相等的向量是否一定不平行?
(3)与零向量相等的向量必定是什么向量?
(4)与任意向量都平行的向量是什么向量?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量? A(起点) B (终点)
a
(6)两个非零向量相等的当且仅当什么?
(7)共线向量一定在同一直线上吗?
例3、下列命题正确的是(
A.a与b共线,b与c共线,则a与c
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.
D.有相同起点的两个非零向量不平行
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?
变式二:是否存在与向量长度相等、方向相反的向量?
变式三:与向量OA共线的向量有哪些?
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量AB与CD是共线向量,则A、B、C、D
④四边形ABCD是平行四边形当且仅当AB=
⑤一个向量方向不确定当且仅当模为0
⑥共线的向量,若起点不同,则终点一定不同.
2.书本88页练习
课后练习与提高
1.下列各量中不是向量的是()
A.浮力
B.风速
C.位移
D.密度
2.下列说法中错误
..的是()
A.零向量是没有方向的
B.零向量的长度为0
C.零向量与任一向量平行
D.零向量的方向是任意的
3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆
4.已知非零向量//,若非零向量//,则与必定 .
5.已知、是两非零向量,且与不共线,若非零向量与共线,则与必定 . 6. 设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,则
=
|=________
_______,
|
课堂练习答案:
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.
④、⑤正确.
⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.
课后练习与提高参考答案:
|,
1.D
2.A
3.D
4.平行
5.不共线
6. |。