一轮复习等差等比数列证明练习题

合集下载

(完整版)等差、等比数列》专项练习题

(完整版)等差、等比数列》专项练习题

《等差、等比数列》专项练习题一、选择题:1.已知等差数列{a n }中,a 1=1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{an}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) A .180 B .-180 C .90 D .-90 3.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A.18B.27C.36D.454.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1B .-21C .1或-1D .-1或21 5.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .26.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( ) A .x 2-6x +25=0 B .x 2+12x +25=0 C .x 2+6x -25=0 D .x 2-12x +25=0 7.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅ 等于A .102B .202C .162D .1528.等比数列的前n 项和S n =k ·3n +1,则k 的值为( )A .全体实数B .-1C .1D .3二、填空题:1.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d .2. 数列{a n },{b n }满足a n b n =1, a n =n 2+3n +2,则{b n }的前10次之和为 3.若{}n a 是首项为1,公差为2的等差数列,11+=n n n a a b ,则数列{}n b 的前n 项和n T= . 4.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 5.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.三、解答题:1. 设{a n }为等差数列,S n 为{a n }的前n 项和,S 7=7,S 15=75,已知T n 为数列{S nn}的前n 项数,求T n . 2.已知数列{}n a 是等差数列,其前n 项和为n S ,12,633==S a . (1)求数列{}n a 的通项公式;(2)求.nS S S 11121+++ 3.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *)(1) 求证数列{a n +1}是等比数列;(2) 求{a n }的通项公式.4.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .参考答案一、选择题:1.B 提示: 998911452s ⨯=⨯+⨯=2.A 提示:由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.3.C 提示:在等差数列{a n }中,a 2+a 8=8,∴ 198a a +=,则该数列前9项和S 9=199()2a a +=36 CAD B B二、填空题:1.答案:2提示:411==S a ,102322221=⨯+==+S a a ,62=∴a ,2=d . 2. 512提示:b n =1a n =1(n +1)(n +2) =1n +1 -1n +2∴S 10=b 1+b 2+…b n =12 -112 =512 .3.答案:69nn + 提示:)321121(21)32)(12(1,12+-+=++=+=n n n n b n a n n ,用裂项求和法求得96+=n nT n .4.2, 3·2n -2.5.251+.三、解答题:1.解:设数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧7a 1+21d =7 15a 1+105d =75, ∴⎩⎨⎧a 1=-2d =1∴S n n =a 1+12 ·(n -1)d =-2+12·(n -1) ∴S n +1n +1 -S n n =12 ∴数列{S n n }是等差数列,其首项为-2,公差为12, ∴T n =n ·(-2)+n (n -1)2·12 =14 n 2-94n .2.解:(1)设数列{}n a 的公差为d,由题意得方程组⎪⎩⎪⎨⎧=⨯+=+1222336211d a d a ,解得 ⎩⎨⎧==221d a ,∴数列{}n a 的通项公式为n d n a a n 2)1(1=-+=,即n a n 2=.(2)∵n a n 2=,∴)1(2)(1+=+=n n a a n S n n . ∴n S S S 11121+++ )1(1321211+++⨯+⨯=n n .3.(1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n -1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n-14.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由qqa a n --11=126得2-64q =126-126q ,∴q =2,由a n =a 1q n-1得2n -1=32, ∴n =6.若a 1=64,a n =2,同理可求得q =21,n =6. 综上所述,n 的值为6,公比q =2或21.。

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。

新高考数学一轮二轮复习专题-专题十一 等差数列与等比数列(原卷版)-4月5月真题汇编

新高考数学一轮二轮复习专题-专题十一   等差数列与等比数列(原卷版)-4月5月真题汇编

专题十一 等差数列与等比数列一、单选题1.(2021·全国高三专题练习(理))设数列{}n a 满足13a =,26a =,()2*129n n na a n a +++=∈N ,( )A .存在*n ∈N ,n a Q ∈B .存在0p >,使得{}1n n a pa +-是等差数列C .存在*n ∈N,n a =D .存在0p >,使得{}1n n a pa +-是等比数列2.(2021·全国高三专题练习)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( ) A .119B .121C .120D .122二、多选题3.(2021·全国高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足1114240,1n n n n a a a a a λλμ++++--==,则下列结论正确的是( )A .若11,2λμ==,则{}n a 是等差数列 B .若11,2λμ==,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1nn + C .若12,2λμ==,则{}1n a +是等比数列 D .若12,2λμ==,则122n n S n +=--第II 卷(非选择题)请点击修改第II 卷的文字说明 三、解答题4.(2021·全国高三专题练习(理))已知正项数列{}n a 的前n 项和为n S ,且22111224n n n n n n a a a a a a ----=++(2n ≥),11a =.(1)证明数列{}n a 是等差数列,并求其前n 项和n S .(2)若141n n b S =-,试求数列{}n b 的前n 项和n T .5.(2021·浙江温州市·高三二模)已知数列{}n a 的前n 项和为n S ,且2,,n n n S n n ⎧=⎨⎩为奇数为偶数.(1)求23,a a 及通项公式n a ;(2)记1n n n b a a +=+,求数列{}12n n b -⋅的前2n 项的和2n T .6.(2021·全国高三专题练习(文))已知数列{}n a 对任意的*n N ∈都满足312233333nn a a a a n ++++=. (1)求数列{}n a 的通项公式; (2)令3413431log log n n n b a a -+=,求数列{}n b 的前n 项和为n T .7.(2021·天津河西区·高三一模)已知数列{} n a 是等差数列,{} n b 是递增的等比数列,且11a =,12b =,222b a =,3331b a =-. (1)求数列{} n a 和{} n b 的通项公式;(2)若()()1211 n a n n n c b b +=--,求数列{} n c 的前n 项和n S .8.(2021·浙江宁波市·高三专题练习)在①22n n nS +=;②112n n n a a a +-=-,77428S a ==;③11n n a n a n++=,36S =这三个条件中任选一个补充在下面的问题中,并加解答.问题:设数列{}n a 的前n 项和为n S ,___________,若2n nn a a b =,求数列{}n b 的前n 项和.注:如果选择多个条件分别解答,按第一解答计分.9.(2021·全国高三专题练习)数列{}n a 的前n 项之和为n S ,11a =,11n n a pa +=+(p为常数)(1)当1p =时,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和;(2)当2p =时,求证数列{}1n a +是等比数列,并求n S .10.(2021·莆田第二十五中学高二期末)已知{}n a 为等差数列,{}n b 为等比数列,111a b ==,5435()a a a =-,5434()b b b =-.(1)求{}n a 和{}n b 的通项公式;(2)221n n n c a b +=,求数列{}n c 的前n 项和n S .11.(2021·江苏高三专题练习)由整数构成的等差数列{}n a 满足31245,2a a a a ==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 的通项公式为2nn b =,将数列{}n a ,{}n b 的所有项按照“当n 为奇数时,n b 放在前面;当n 为偶数时、n a 放在前面”的要求进行“交叉排列”,得到一个新数列{}n c ,1b ,1a ,2a ,2b ,3b ,3a ,4a ,4b ,……,求数列{}n c 的前43n +项和43n T +.12.(2020·江苏南京市·南京师大附中高三月考)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足22(2)21nn n S a n S =≥-. (1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)设1n n b S =,()211n n n n b c b b ++=⋅,求数列{}n c 的前n 项和n T . 13.(2020·江苏宿迁市·宿迁中学)已知各项均为正数的等差数列{}n a 的首项为1,且满足235621a a a =-. (1)求{}n a 的通项公式; (2)数列{}n b 的通项公式为2(1)2n n a n n a b a a +=+,其前n 项和为{}n S ,证明1n S <.14.(2020·天津静海区·高三月考)已知正项数列{}n a 的前n 项和为n S ,且n a 和n S 满足:()()2411,2,3n n S a n =+=⋅⋅⋅.(1)求{}n a 的通项公式;(2)设11n n n b a a +=⋅,求{}n b 的前n 项和n T ;(3)在(2)的条件下,对任意*n ∈N ,23n mT >都成立,求整数m 的最大值. 15.(2020·江苏南通市·高三期中)已知等差数列{}n a 的首项为1a ,公差为1(,)d a Z d Z ∈∈,前n 项的和为n S ,且7549,2426S S =<<.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项的和为T n ,求T n .16.(2020·陕西西安市·长安一中高二期中(文))正项数列{}n a 满足:2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前n 项和n T .17.(2021·山东高三专题练习)已知数列{}n a 中10a =,且1210n n a a ---=,()*2,n n N ≥∈.(1)求证:数列{}1n a +为等比数列;(2)设()1n n b n a =+,求数列{}n b 的n 项和n T .18.(2021·全国高三专题练习)数列{}n a 的前n 项和为n S ,已知11a =,()()12123n n n a n S +-=+(1n =,2,3,…). (1)证明:数列21n S n ⎧⎫⎨⎬-⎩⎭是等比数列; (2)求数列{}n S 的前n 项和n T .19.(2020·黑龙江哈尔滨市·哈尔滨三中高三期中(理))数列{}n a 中,12a =,()121n n n a a n++=.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)设n n n b a n=-,数列{}12nn n b b +的前n 项和为n S .求证:1n S <. 20.(2021·全国)已知数列{}n a 的前n 项和为n S ,()*112n n a S n =+∈N . (1)求n S ;(2)若21log 2n n n n b a a ⎛⎫=+⎪⎝⎭,求数列{}n b 的前n 项和n T .21.(2020·咸阳市高新一中高三月考(理))已知数列{}n a 是递增的等差数列,23a =,若13181,,a a a a a -+成等比数列. (1)求数列{}n a 的通项公式; (2)若13n n n b a a +=,数列{}n b 的前n 项和n S ,求n S . 22.(2021·江西新余市·高二其他模拟(理))等比数列{}n a 中,12a =,且2,21a +,3a 成等差数列,(1)求{}n a 的通项公式;(2)数列{}n b 满足122nb n a a a ⋅⋅⋅=,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和nS .23.(2020·湖南永州市·高三月考)设数列{}n a 的前n 项和为n S ,已知11a =,*11()n n a S n N +=+∈.(1)求数列{}n a 的通项公式; (2)若n a ,1b ,2b ,,n b ,1n a +组成一个2n +项的等差数列,记其公差为n d ,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .24.(2020·天津滨海新区·高三其他模拟)已知数列{}n a 的前n 项和为n S ,()2*n S n n N =∈,数列{}n b 为等比数列,且21a +,41a +分别为数列{}n b 第二项和第三项.(1)求数列{}n a 与数列{}n b 的通项公式;(2)若数列11n n n n n c a b a a +=+,求数列{}n c 的前n 项和n T . 25.(2020·宁夏银川一中高三月考(理))已知数列{}n a 满足114a =,112n n n n a a a a ---=⋅(2n ≥,*n N ∈),0n a ≠ (1)证明数列11n a ⎧⎫-⎨⎬⎩⎭*()n N ∈为等比数列,求出{}n a 的通项公式; (2)数列{}n a 的前项和为n T ,求证:对任意*n N ∈,23n T <. 26.(2020·湖北武汉市·高二期末)已知数列{}n a 满足11a =,13(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,说明理由;并求{}n a 的通项公式.27.(2020·重庆高二月考)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,214a b =,22n n S a =-,()211n n nb n b n n +-+=+()*n N ∈.(1)求数列{}n a 的通项公式; (2)证明n b n ⎧⎫⎨⎬⎩⎭为等差数列. (3)若数列{}n c 的通项公式为,2,4n nn n n a b n c a b n 为奇数为偶数⎧-⎪⎪=⎨⎪⎪⎩,令212n n n P c c -=+.n T 为{}n P 的前n 项的和,求n T .28.(2020·河北保定市·高碑店一中高一月考)已知数列{}n a 的前n 项和为n S ,且满足()112n n S a n N *+=∈(1)求数列{}n a 的通项公式n a ;(2)设()()113log 1n n b S n N *+=-∈,令12231111nn n Tb b b b b b +=++⋅⋅⋅+,求n T . 29.(2021·湖北荆州市·沙市中学高二期末)已知等差数列{}n a 的前n 项和为()*n S n N ∈,{}n b 的通项公式为3411142,2,11n n b b a a S b ==-=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}221n n a b -的前n 项和()*n T n N∈.30.(2020·广东河源市·中山高级中学高二期中)已知等差数列{}n a 满足253,25a S ==. (1)求数列{}n a 的通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n S . 31.(2020·黑龙江哈尔滨市第六中学校高二开学考试(理))已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{1}n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足3log (1)n n b a =+,n T 为数列{}·(1)n n b a +的前n 项和,求n T . 32.(2019·广东湛江市·高二期末(文))已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且11S a +,33S a +,22S a +成等差数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n nnb a =,求数列{}n b 的前n 项和n T . 33.(2020·苏州市相城区望亭中学高二月考)已知等差数列{}n a 的公差d 大于0,且满足3655a a =,2716a a +=.数列{}n b 满足231222n b b a b =++1(*)2nn b n -++∈N . (1)求数列{}n a ,{}n b 的通项公式; (2)设121n n n n n a a a c b +++=,求n c 取得最大值时n 的值.34.(2020·湖北荆州市·沙市中学高二期末)已知等差数列{a n }满足a 1+a 4+a 7=0,a 3+a 6+a 9=﹣18,前n 项和为S n . (1)求S 9(2)记b n =|a n |,求数列{b n }的前9项和T 9.35.(2020·福清西山学校高三期中(文))数列{}n a 中,n S 为前n 项和,且*23()n n S na n n N =+∈.(1)求证:{}n a 是等差数列; (2)若25,n a b ==,n T 是{}n b 的前n 项和,求n T .36.(2020·大同市煤矿第四中学校高三期中(理))已知数列{}n a 成等差数列,各项均为正数的数列{}n b 成等比数列,132,8b b ==,且2323a a b -=,3433a a b -=. (1)求数列{}n a 和{}n b 的通项公式; (2)设2211log n n n c a b +=⋅,求数列{}n c 的前n 项和n S .37.(2020·陕西西安市·西安中学高二月考(理))已知数列{}n a 的前n 项和为n S ,且1111,(1,2,3,)2n n a a S n +===.(1)求数列{}n a 的通项公式;(2)设()312log 3n n b a +=时,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 38.(2020·湖南长沙市·高二月考)已知数列{}n a 的前n 项和为n S ,10a =,1n n S a n +=-,*n ∈N .(1)求证:数列{}1n a +是等比数列; (2)设数列{}n b 的前n 项和为n T ,已知1n n n b a =+,若不等式922n nT m a ≥-+对于*n ∈N 恒成立,求实数m 的最大值.39.(2020·长沙市湖南师大第二附属中学有限公司高三月考)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,且13a =,11b =,3212b S +=,5322a a b -=.(1)求数列{}n a 和{}n b 的通项公式;(2)若2(()n n nn S c b n 为奇数)为偶数⎧⎪=⎨⎪⎩,设{}n c 的前n 项和为n T ,求2n T .40.(2020·江苏省江阴市第一中学高二期中)设数列{}n a 的前n 项和为n S ,已知11a =,*13 1 (N )n n S S n +-=∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:31log n n b a +=,{}n b 的前n 项和为n T ,求12100111T T T +++的值.41.(2020·山西省长治市第二中学校高三月考(理))已知等差数列{}n a 的前n 项和为n S ,47a =,525S =,数列{}n b 满足113b =,113n n n b b n++=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n b 的前n 项和n T .42.(2020·武威第六中学高三月考(文))已知数列{}n a 的前n 项和为n S ,且()2*32n n nS n N -=∈,正项等比数列{}n b 满足11b a =,56b a =. (1)求数列{}n a 与{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 前n 项和n T . 四、填空题43.(2020·通榆县第一中学校高三月考(文))已知数列{}n a 的前n 项和为n S ,且364n n S a =-,若()*11,m k a a m k k N ⋅=≤<∈,则k 的取值集合是__________.44.(2020·桃江县第一中学高三期中)已知函数()1()1f x x -=+,数列{}n a 是正项等比数列,且10111a =,()()()()()32020202112f a f a f f a a f a +⋅⋅⋅++++=________.45.(2020·上海浦东新区·上外浦东附中高二月考)取出数列{},(4)n a n ≥的任意连续四项,若其中奇数项之和,偶数项之和均为同一个常数h (如连续四项1a ,2a ,3a ,4a ,满足1324a a a a h +=+=),则称数列{},(4)n a n ≥为错位等和数列,其中常数h 是公和.若n S 表示{}n a 的前n 项和,有如下命题: (1)若一个等差数列是错位等和数列,则1n a a =;(2)若一个等比数列是错位等和数列,则2n nh S =; (3)若12a a ≠,则错位等和数列一定是最小正周期为4的周期数列; (4)在错位等和数列{}n a 中,5h =,且201320146a a +=,若n 是偶数,则104,4210,4n k n k S k n k -=-⎧=⎨=⎩;其中,真命题的序号是________46.(2020·湖北省武昌实验中学高一月考)数列{}n a 的前n 项和为n S ,已知115a =,且对任意正整数,m n ,都有m n m n a a a +=⋅,若n S t <恒成立,则实数t 的最小值为________.47.(2020·四川攀枝花市·高三月考(文))正项等比数列{}n a 满足1354a a +=,且22a ,412a ,3a 成等差数列,设*1()n n nb a a n N +=∈,则12n b b b ⋅⋅取得最小值时的n 值为_________.48.(2020·安徽省太和第一中学高三月考(理))已知数列{}n a 的前n 项和为n S ,且22n n S a =-,则数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T =______.。

2020届高三(文理)数学一轮复习《等比数列及前n项和》专题测试(学生版)

2020届高三(文理)数学一轮复习《等比数列及前n项和》专题测试(学生版)

《等比数列及其前n 项和》专题题型一 等比数列基本量的运算 1、在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为2、已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=3、在等比数列{a n }中,a 1=2,公比q =2,若a m =a 1a 2a 3a 4(m ∈N +),则m =4、在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=5、在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.6、等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=7、设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=8、在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为9、设{a n }是公比为正数的等比数列,S n 为{a n }的前n 项和,若a 1=1,a 5=16,则数列{a n }的前7项和为10、已知等比数列{a n }的公比为正数,且a 5·a 7=4a 24,a 2=1,则a 1=11、等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=12、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=13、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.14、在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.15、已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于 16、等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 17、若等比数列{a n }的前n 项和为S n ,且S n =m ·5n +1,则实数m =________.18、已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.19、已知等比数列{a n }满足a 1=1,a 3a 7=16,则该数列的公比为20、已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于21、已知等比数列{a n }的公比为-2,且S n 为其前n 项和,则S 4S 2等于22、数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n等于23、已知等比数列{a n }的前n 项和为S n ,且a 1=2 018,a 2+a 4=-2a 3,则S 2 019=________.24、已知各项均为正数的等比数列{a n }满足a 1=12,且a 2a 8=2a 5+3,则a 9=________. 25、设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=________.26、等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .题型二 等比数列的性质类型一 等比数列项的性质1、已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=2、在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于3、等比数列{a n }各项均为正数,a 3a 8+a 4a 7=18,则1+2+…+10= _____4、已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为5、等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.6、等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.7、在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为 8、已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.9、递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,前n 项和S n =42,则n 等于 类型二 等比数列前n 项和的性质1、设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6= 2、设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于3、设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=________. 4、已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于5、设等比数列{a n }的前n 项和为S n ,S 2=-1,S 4=-5,则S 6等于6、已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N). 题型三 等比数列的判定与证明1、已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n ,且a 1=8.(1)证明:数列{a n -3n }为等比数列,并求数列{a n }的通项公式;(2)记b n =a n 3n ,求数列{b n }的前n 项和T n .2、设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.设b n =a n +1-2a n ,证明:数列{b n }是等比数列;3、已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N +. (1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求数列{a n }的通项公式.题型四 等差、等比数列的综合问题1、在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .2、设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.3、在数列{a n }中,a 1=2,a n +1=n +12n a n(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n 4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2.。

高考数学(理)一轮复习考点训练:考点23等比数列及其前n项和

高考数学(理)一轮复习考点训练:考点23等比数列及其前n项和

2020高三一轮基础达标 考点23等比数列及其前n 项和一、选择题1.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .802.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .243.在等比数列{a n }中,已知a 1=1,a 4=8,则a 5=( ) A .16 B .16或-16 C .32 D .32或-324.等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 355.在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A .-2 B .- 2 C .±2D. 26.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11=( ) A .10 B .25 C .50 D .757.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .108.已知等比数列{a n }的公比为正数,且a 2a 6=9a 4,a 2=1,则a 1的值为( ) A .3 B .-3 C .-13 D .139.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n -1C .2n -1D .2n -110.已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b =( )A .-3B .-1C .1D .3 11.若等比数列{a n }满足a n a n +1=16n ,则公比为( )A .2B .4C .8D .16 12.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B .73C .310D .1或213.设{a n }是由正数组成的等比数列,公比q =2,且a 1a 2a 3·…·a 30=230,则a 3a 6a 9·…·a 30=( )A .210B .220C .216D .215 二、填空题14.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1)(n ≥2,n ∈N *),则这个数列的前4项和S 4=________.15.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=________. 16.等比数列的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.三、解答题17.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.18.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n -a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.参考答案1. 答案:A解析:由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝⎛⎭⎫323=135. 2. 答案:A解析:由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.3. 答案: A解析: 由a 4=a 1q 3,则q =2,所以a 5=a 4q =16.故选A . 4. 答案:B解析:由题a 5a 6+a 4a 7=18,所以a 5a 6=9,log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=5log 39=10.5. 答案:B解析: 根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,因为a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0.又a 3a 7=a 25,所以a 5=-a 3a 7=- 2.6. 答案: B解析: 因为a 7a 12=a 8a 11=a 9a 10=5, 所以a 8a 9a 10a 11=52=25.故选B . 7. 答案: B解析:设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2· a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n ,即7292=3n ,所以n =12. 8. 答案: D解析: 设数列{a n }的公比为q ,由a 2·a 6=9a 4,得a 2·a 2q 4=9a 2q 2,解得q 2=9,所以q =3或q =-3(舍去),所以a 1=a 2q =13.故选D .9. 答案: D解析: 因为⎩⎨⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q3=2,解得q =12,代入①得a 1=2,所以a n =2×⎝⎛⎭⎫12n -1=42n ,S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , 所以S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1.故选D.10. 答案: A解析: ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3,∴(2a )2=(a +b )×6a ,解得a b=-3.故选A . 11. 答案: B 解析: 由a n a n +1=a 2n q =16n >0知q >0,又a n +1a n +2a n a n +1=q 2=16n +116n =16,所以q =4.故选B .12. 答案: B解析: 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k3k =73,故选B . 13. 答案: B解析: 因为a 1a 2a 3=a 32,a 4a 5a 6=a 35,a 7a 8a 9=a 38,…,a 28a 29a 30=a 329,所以a 1a 2a 3a 4a 5a 6a 7a 8a 9…a 28a 29a 30=(a 2a 5a 8…a 29)3=230.所以a 2a 5a 8…a 29=210.则a 3a 6a 9…a 30=(a 2q )(a 5q )(a 8q )…(a 29q )=(a 2a 5a 8·…·a 29)q 10=210×210=220,故选B .14. 答案: 27解析: 由已知n ≥2时,a n =2S n -1,a n +1=2S n ,∴a n +1-a n =2a n ,即a n +1=3a n (n ≥2),∴a n =⎩⎪⎨⎪⎧1,n =1,2×3n -2,n ≥2, ∴S 4=1+2+6+18=27. 15. 答案:18解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.16. 答案: 5解析: 由等比数列的性质可知a 1a 5=a 2a 4=a 23,于是由a 1a 5=4得a 3=2,故a 1a 2a 3a 4a 5=32,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 232=5.17.解析:(1)由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.18. 解析:(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.。

一轮复习等差等比数列证明练习题

一轮复习等差等比数列证明练习题

4 4n1n +1 nna a +2 n2S - 1 n S ⎭ ⎧⎬1.已知数列{a }是首项为a = 1 ,公比 q = 1的等比数列,b n 1 n + 2 = 3log1 4an(n ∈ N *) ,数列 {c }满足 c = a ⋅ b .n nnn(1)求证:{b n}是等差数列;{a }a = 2, a= a 2 + 6a + 6(n ∈ N * )2.数列满足,设 c n = log 5 (a n + 3).(Ⅰ)求证: {c n }是等比数列;3.设数列 { n}的前 n 项和为 Sn,已知 a + 2a + 3a +1 2 3+ na = (n - 1)S + 2n (n ∈ N * ) .n n(2)求证:数列{S + 2}是等比数列;n4.数列{a } 满足 a = 1, a n 1 n +1= 2 n +1 ann (n ∈ N ) +2 n(1)证明:数列{ } 是等差数列;an5.数列 {a }首项 a n 1 2S 2= 1 ,前 n 项和 S 与 a 之间满足 a = ( n ≥ 2)n n n n(1)求证:数列 ⎨ 1 ⎫ 是等差数列⎩ n6.数列{ a }满足 a = 3 , a n 1n +1 = 2a + 1n,(1)求证:{ a n - 1} 成等比数列;a + 2n7.已知数列{a } 满足 ann +1= 3a + 4 , (n ∈ N * ) 且 a = 1 ,n 1(Ⅰ)求证:数列{a + 2}是等比数列;nn +1= ,n=1,2,…⎧ S ⎬是等差数列,并求 S ; n ⎭⎧a 3 (Ⅰ)证明:数列 ⎨ n ⎬ 为等差数列;=aa(1)求证: ⎨⎧ 1 + ⎬ 是等比数列,并求 {a }的通项公式 a ; ⎩ a n 2 ⎭, a = ,且当 n ≥ 2 时,2 48. 数列{a } 满足: a = 1, n ⋅ an1n +1= (n + 1) ⋅ a + n ⋅ (n + 1), n ∈ N *na(1)证明:数列{ n } 是等差数列;n9.已知数列{a n }的首项 a 1= 2 3, a2ana + 1 n(1)证明:数列 ⎨ 1⎫- 1⎬ 是等比数列;⎩ a n⎭10.已知数列{a } 的前 n 项和为 S , a = nn 11 2, S = n 2a - n (n - 1),n = 1,2,L . n n(1)证明:数列 ⎨ n + 1⎩ n⎫n11.(16 分)已知数列{a } 的前 n 项和是 S ,且 S = 2a - nnnnn(1)证明: { + 1}为等比数列;n12.数列{a } 满足: a = 2, a = 3, an12n +2= 3an +1- 2a (n∈ N *) n(1)记 d = a n n +1 - a n ,求证:数列{d n } 是等比数列;13.已知数列{a } 的相邻两项 a , ann n +1 是关于 x 方程 x 2 - 2n x + b = 0 的两根,且 a = 1 .n 11(1)求证:数列{a - ⋅ 2n } 是等比数列;n14.(本题满分 12 分)已知数列{a } 中, a = 5 且 a = 2an1n⎧ a - 1 ⎫⎩ 2n ⎭n -1+ 2n - 1 ( n ≥ 2 且 n ∈ N* ).15.已知数列 {n }中, a 1 = 1, a n a + 3 n(n ∈ N * )1 ⎫n n16.设数列{a }的前 n 项和为 S nn, n ∈N *.已知 a = 1 , a =1 23 534Sn +2+ 5S= 8S nn +1+ S n -1 .(1)求 a 的值;4(2)证明: ⎨a- a ⎬ 为等比数列; S - 3n (1)求证:数列 ⎨ n ⎬ 是等比数列; n 1.(1)见解析;(2) S =2- ⨯ ( )n ;(3) m ≥ 1或 m ≤ -5 3 3 44 52n - 94.(1)详见解析;(2) a =;(3) (2n - 3)2n +1 + 6n + 15.(1)详见解析;(2)∴ a = ⎨ 2;(3) 3 . ⎪ (2n - 1)(2n - 3)⎧ ⎩ n +1 1 ⎫2 n⎭17.设数列 {a }的前 n 项和为 S nn ,且首项 a ≠ 3, a 1n +1= S + 3n (n ∈ N * ) .n(Ⅰ)求证:{ }是等比数列; n18.(本小题满分 10 分)已知数列 {an}满足 a1 = -1 , a n +1 =(3n + 3)a + 4n + 6n n, n ∈ N * .⎧ a + 2 ⎫ ⎩ ⎭参考答案(3n + 2) 1 n2.(Ⅰ)见解析;(Ⅱ)a = 52n -1 n- 3.;(Ⅲ) 1 1T =- - n.3.(1)a = 4, a = 82 3;(2)见解析;(3)52nn⎧1(n = 1) ⎪ 2 n - ( n ≥ 2) 3⎩6.(1)证明{ a n - 1} 成等比数列的过程详见试题解析;a + 2n2 = 1 ,对 n ≥ 2 成立.又S = 1,nn - 11⎩ n n ⎭ nn + 1 n 3 + 3n 2(n + 1)(n + 3) 2 n + 1 n + 3,2 2 43 5 n n + 2 n + 1 n + 3 2 6 n + 2 n + 3 1211.(1)见解析;(2)解析;(3)存在, ⎨ 或 ⎨ 或 ⎨ . m = 18 m = 5 m = 2 -n 为偶数⎪⎪ 3 3- 1 n 为奇数 ⎪ 2 n +1 (2n - 1)⨯ ⎛ 1 ⎫⎪ .78⎝ 2 ⎭⎩1 - 33 - 1 ≤ t ≤.(2)实数 t 的取值范围为 227.详见解析(2n - 1)⋅ 3n +1 + 38.(1)见解析;(2) S =4nn n (n + 1)9.(1)详见解析(2) S = 2 -1- +2n2nn -110 .( 1 ) 由 S = n 2 a - n (n - 1) 知 , 当 n ≥ 2 时 , S = n 2 (S - Snnnnn -1) - n (n - 1) , 即(n 2 - 1)S - n 2 Snn -1= n (n - 1),所以n + 1 n 1 + 1 S - Sn n -1 1⎧ n + 1 ⎫n + 1 所以 ⎨ S ⎬ 是首项为 1 ,公差为 1 的等差数列.所以 S = 1 + (n - 1)⋅ 1,即 nn 2S =.n(2 )因 为 b =S n n1 1 1 1= = ( - )所 以1 1 1 1 1 1 1 1 1 1 5 1 1 5b + b + L + b = ( - + - + L + - + - ) = ( - - ) < 1 2 n.⎧k = 18 ⎧k = 6 ⎧k = 4⎩⎩⎩12.(1) d = 1⨯ 2n -1 (2) a = 2n -1 + 1n n⎧2n +1 213.(1)见解析;(2) S = ⎨,(3) (-∞,1)n⎪ 3314.(Ⅰ)详见解析(Ⅱ) S = n ⋅ 2n +1n 15.(1)证明详见解析;(2) -2 < λ < 3.n -116.(1);(2)证明见解析;(3) a =n17.(Ⅰ)详见解析; (Ⅱ) (-9,3) ⋃ (3, +∞)。

高考数学一轮复习全套课时作业6-3等比数列

高考数学一轮复习全套课时作业6-3等比数列

题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知数列{}n a 是首项为114
a =,公比1
4q =
の等比数列,2n b +=14
3log n a (*)n N ∈,数列{}n c 满足n n n c a b =⋅.
(1)求证:{}n b 是等差数列;
2.数列{}n a 满足21
12,66()n n n a a a a n N *
+==++∈, 设
5log (3)n n c a =+.
(Ⅰ)求证:
{}n c 是等比数列;
3.设数列{}n a の前n 项和为n S ,已知12323(1)2n n a a a na n S n ++++=-+ *
()n N ∈. (2)求证:数列{}2n S +是等比数列; 4.数列}{n a 满足)(2
2,111
1+++∈+==N n a a a a n
n n
n n (1)证明:数列}2{n
n
a 是等差数列;
5.数列{}n a 首项11a =,前n 项和n S 与n a 之间满足2
2 (2)21
n n n S a n S =≥-
(1)求证:数列1n S ⎧⎫

⎬⎩⎭
是等差数列 6.数列{n a }满足13a =,12
1
n n a a +=
+, (1)求证:1
{
}2
n n a a -+成等比数列; 7.已知数列}{n a 满足134n n a a +=+,*
()n N ∈且11=a ,
(Ⅰ)求证:数列{}2n a +是等比数列;
8. 数列}{n a 满足:*11),1()1(,1N n n n a n a n a n n ∈+⋅+⋅+=⋅=+ (1)证明:数列}{
n
a n
是等差数列; 9.已知数列{a n }の首项a 1=
23,121
n n n a a a +=+,n=1,2,… (1)证明:数列11n a ⎧⎫
-⎨
⎬⎩⎭
是等比数列; 10.已知数列{a }n の前n 项和为n S ,211
,(1),1,2,2
n n a S n a n n n ==--=L . (1)证明:数列1n n S n +⎧⎫

⎬⎩⎭
是等差数列,并求n S ; 11.(16分)已知数列{}n a の前n 项和是n S ,且n a S n n -=2 (1)证明:{}1+n a 为等比数列;
12.数列}{n a 满足:)(23,3,21221*∈-===++N n a a a a a n n n (1)记n n n a a d -=+1,求证:数列}{n d 是等比数列;
13.已知数列{}n a の相邻两项n a ,1n a +是关于x 方程220n n x x b -+=の两根,且11a =. (1)求证:数列1{2}3
n n a -⋅是等比数列;
14.(本题满分12分)已知数列{}n a 中,15a =且1221n n n a a -=+-(2n ≥且*n ∈N ).
(Ⅰ)证明:数列12n n a -⎧⎫
⎨⎬⎩⎭为等差数列;
15.已知数列{}n a 中,)(3
,1*11N n a a a a n n
n ∈+=
=+ (1)求证:⎭
⎬⎫
⎩⎨
⎧+211n a 是等比数列,并求{}n a の通项公式n a ; 16.设数列{}n a の前n 项和为n S ,n *
∈N .已知11a =,232a =
,35
4
a =,且当2n ≥时,211458n n n n S S S S ++-+=+.
(1)求4a の值;
(2)证明:112n n a a +⎧⎫
-
⎨⎬⎩⎭
为等比数列; 17.设数列{}n a の前n 项和为n S ,且首项113,3()n n n a a S n N *+≠=+∈.
(Ⅰ)求证:{}
3n
n S -是等比数列;
18.(本小题满分10分)已知数列{}n a 满足11a =-,*1(33)46
,n n n a n a n N n
++++=∈.
(1)求证:数列2n a n +⎧⎫⎨⎬⎩⎭
是等比数列;
参考答案
1.(1)见解析;(2)2(32)1()334
n
n n S +=
-⨯;(3)1m ≥或5m ≤- 2.(Ⅰ)见解析;(Ⅱ)
1
25 3.n n a -=-;(Ⅲ)
211
.
459n n T =--- 3.(1)
234,8a a ==;
(2)见解析;(3)5
4.(1)详见解析;(2)21
n n a n =+;(3)()1
2326n n +-+
5.(1)详见解析;(2) 1 (1)
2
(2)(21)(23)n n a n n n =⎧⎪
∴=⎨-≥⎪--⎩
;(3)332. 6.(1)证明1
{
}2
n n a a -+成等比数列の过程详见试题解析;
(2)实数t の取值范围为1331
22
t --≤≤
. 7.详见解析
8.(1)见解析;(2)()121334
n n
n S +-⋅+=
9.(1)详见解析(2)()1112222
n n n n n n S -+=-
-+ 10.(1)由2(1)n n S n a n n =--知,当2n ≥时,2
1()(1)n n n S n S S n
n -=---,即221(1)(1)n n n S n S n n ---=-,所以
1111n n n n S S n n -+-=-,对2n ≥成立.又111
11
S +=,所以1n n S n +⎧⎫

⎬⎩⎭
是首项为1,公差为1の等差数列.所以11(1)1n n S n n +=+-⋅,即2
1
n n S n =+.

2



32
1111
()3(1)(3)213
n n S b n n n n n n =
==-+++++,所以
1211111111115115
()()22435213262312
n b b b n n n n n n +++=
-+-++-+-=--<+++++L L .
11.(1)见解析;(2)解析;(3)存在,1818k m =⎧⎨=⎩
或65k m =⎧⎨=⎩或4
2k m =⎧⎨=⎩.
12.(1)112n n d -=⨯ (2)121n n a -=+
13.(1)见解析;(2)⎪⎪⎩⎪⎪⎨⎧--=++为奇数为偶数n n S n n n 313
23
2
321
1,(3))1,(-∞
14.(Ⅰ)详见解析(Ⅱ)12n n S n +=⋅ 15.(1)证明详见解析;(2)23λ-<<.
16.(1)78;(2)证明见解析;(3)()1
1212n n a n -⎛⎫
=-⨯ ⎪
⎝⎭

17.(Ⅰ)详见解析; (Ⅱ)(9,3)(3,)-⋃+∞
18.(1)详见解析(2)详见解析。

相关文档
最新文档