2017_2018学年高中数学第一章算法初步阶段质量检测A卷(含解析)新人教A版必修3
2017-2018学年高中数学 第一章 统计案例阶段质量检测A卷(含解析)新人教A版选修1-2

第一章 统计案例(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .可以小于0 B .大于0 C .能等于0D .只能小于0解析:选A ∵b ^=0时,则r =0,这时不具有线性相关关系,但b ^可以大于0也可以小于0.2.在一线性回归模型中,计算其相关指数R 2=0.96,下面哪种说法不够妥当( ) A .该线性回归方程的拟合效果较好B .解释变量对于预报变量变化的贡献率约为96%C .随机误差对预报变量的影响约占4%D .有96%的样本点在回归直线上解析:选D 由相关指数R 2表示的意义可知A 、B 、C 三种说法都很妥当,相关指数R2=0.96,其值较大,说明残差平方和较小,绝大部分样本点分布在回归直线附近,不一定有96%的样本点在回归直线上,故选D.3.(湖北高考)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关解析:选C 因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x+b ^+a ^,故x 与z 负相关.4.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=( )A .10.5B .5.15C .5.2D .5.25解析:选D 样本点的中心为(2.5,3.5),将其代入线性回归方程可解得a ^=5.25. 5.下面的等高条形图可以说明的问题是( )A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:选D 由等高条形图可知选项D 正确.6.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为y ^=7.19x +73.93,若用此方程预测儿子10岁时的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右解析:选D 用线性回归方程预测的不是精确值,而是估计值.当x =10时,y =145.83,只能说身高在145.83 cm 左右.7.在2×2列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )A.a a +b 与c c +d B.a c +d 与c a +b C.aa +d 与cb +cD.ab +d 与ca +c解析:选A 当ad 与bc 相差越大,两个分类变量有关系的可能性越大,此时aa +b 与cc +d相差越大.8.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是()A .相关系数r 变大B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强解析:选B 由散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.9.已知变量x ,y 之间具有线性相关关系,其回归方程为y ^=-3+b ^x ,若∑i =110x i =17,∑i =110yi=4,则b ^的值为( )A .2B .1C .-2D .-1解析:选A 依题意知,x -=1710=1.7,y -=410=0.4,而直线y ^=-3+b ^x 一定经过点(x -,y -),所以-3+b ^×1.7=0.4,解得b ^=2.10.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于( )A .3B .4C .5D .6解析:选A 列2×2列联表如下:故K 2的观测值k =-c -21c ]2+c -c≥5.024.把选项A 、B 、C 、D 代入验证可知选A.二、填空题(本大题共4小题,每小题5分,共20分) 11.给出下列关系:①人的年龄与他(她)拥有的财富之间的关系; ②曲线上的点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系; ⑤学生与他(她)的学号之间的关系. 其中有相关关系的是________(填序号).解析:利用相关关系的概念判断.①是不确定关系.②曲线上的点与该点坐标是一种对应关系,即每一个点对应一个坐标,是确定关系.⑤学生与其学号也是确定的对应关系.答案:①③④12.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线方程是________.解析:设回归直线的方程为y ^=b ^x +a ^. 回归直线的斜率的估计值是1.23,即b ^=1.23. 又回归直线过样本点的中心(4,5), 所以5=1.23×4+a ^,解得a ^=0.08, 故回归直线的方程为y ^=1.23x +0.08. 答案:y ^=1.23x +0.0813.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表.由表中数据得线性回归方程y ^=b ^x +a ^,其中b ^=-2.现预测当气温为-4℃时,用电量的度数约为________.解析:由题意可知x -=14×(18+13+10-1)=10,y -=14×(24+34+38+64)=40,b ^=-2.又回归直线y ^=-2x +a ^过点(10,40), 故a ^=60,所以当x =-4时,y ^=-2×(-4)+60=68.答案:6814.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得k ≈3.918,经查对临界值表P (K 2≥3.841)≈0.05.对此,四名同学做出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”;q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r :这种血清预防感冒的有效率为95%;s :这种血清预防感冒的有效率为5%.则下列命题中,正确的是________(填序号).①p ∧(綈q ); ②(綈p )∧q ;③(綈p ∧綈q )∧(r ∨s ); ④(p ∨綈r )∧(綈q ∨s ).解析:查对临界值表知P (K 2≥3.841)≈0.05,故有95%的把握认为“这种血清能起到预防感冒的作用”;95%仅是指“血清能起到预防感冒的作用”的可信程度,但也有“在100个使用血清的人中一个患感冒的人也没有”的可能,故p 真,其余都假.结合复合命题的真假可知,选①④.答案:①④三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)某地区在调查一种传染病与饮用水的关系时得到如下数据:饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.画出列联表,并说明能否在犯错误的概率不超过0.10的前提下认为这种疾病与饮用水有关.解:依题意得2×2列联表:k =-255×31×14×72≈5.785,由于5.785>2.706,故在犯错误的概率不超过0.10的前提下认为这种传染病与饮用不干净水有关系.16.(本小题满分12分)某同学6次考试的数学、语文成绩在班中的排名x ,y 如下表:对上述数据用线性回归方程y ^=b ^x +a ^来拟合y 与x 之间的关系.解:由于x -=4,y -=7.5,∑i =16(x i -x -)(y i -y -)=50,∑i =16(x i -x -)2=28,那么b ^=∑i =16x i -x-y i -y-∑i =16x i -x-2=5028≈1.786, a ^=y --b ^x -=7.5-1.786×4=0.356.此时可得y ^=1.786x +0.356.17.(本小题满分12分)为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25.(1)求2×2列联表中的数据x ,y ,A ,B 的值; (2)绘制发病率的条形统计图,并判断疫苗是否有效?(3)能够有多大把握认为疫苗有效? 附:K 2=n ad -bc 2a +ba+c c +d b +d,n =a +b +c +d解:(1)设“从所有试验动物中任取一只,取到‘注射疫苗’动物”为事件E ,由已知得P (E )=y +30100=25,所以y =10,B =40,x =40,A =60. (2)未注射疫苗发病率为4060=23,注射疫苗发病率为1040=14.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率,且注射疫苗的发病率小,故判断疫苗有效.(3)K 2=-250×50×40×60=503≈16.667>10.828. 所以至少有99.9%的把握认为疫苗有效.18.(本小题满分14分)在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:(1) (2)求相关指数R 2,并说明其含义; (3)给出37岁时人的脂肪含量的预测值.解:(1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.设线性回归方程为y ^=b ^x +a ^,则由计算器算得b ^≈0.576,a ^≈-0.448,所以线性回归方程为y ^=0.576x -0.448. (2)残差平方和:∑14i =1 e ^2i =∑14i =1 (y i -y ^i )2≈37.20, 总偏差平方和:∑14i =1(y i -y -)2≈644.99, R 2=1-37.20644.99≈0.942, 表明年龄解释了94.2%的脂肪含量变化.(3)当x =37时,y ^=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.。
2017-2018学年高一数学必修1全册同步课时作业含解析【人教A版】

2017-2018学年高一数学必修1 全册同步课时作业目录1.1.1-1集合与函数概念1.1.1-2集合的含义与表示1.1.1-3集合的含义与表示1.1.2集合间的包含关系1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课1.2.1函数及其表示1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课1.3.1-1单调性与最大(小)值(第1课时)1.3.1-2单调性与最大(小)值(第2课时)1.3.1-3单调性与最大(小)值(第3课时)1.3.1-4单调性与最大(小)值(第4课时)1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究第一章单元检测试卷A第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ)2.1.1-2指数与指数幂的运算(第2课时)2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时)2.2.2-3对数函数的图像与性质2.3 幂函数图像变换专题研究第二章单元检测试卷A第二章单元检测试卷B3.1.1函数的应用3.1.2用二分法求方程的近似解3.2.1函数模型及其应用3.2.2函数模型的应用实例第三章单元检测试卷A第三章单元检测试卷B全册综合检测试题模块A全册综合检测试题模块B1.1.1-1集合与函数概念课时作业1.下列说法中正确的是()A.联合国所有常任理事国组成一个集合B.衡水中学年龄较小的学生组成一个集合C.{1,2,3}与{2,1,3}是不同的集合D.由1,0,5,1,2,5组成的集合有六个元素答案 A解析根据集合中元素的性质判断.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A.3.14 B.-2 C.78 D.7答案 D解析 由题意知a 应为无理数,故a 可以为7. 3.设集合M ={(1,2)},则下列关系式成立的是( ) A.1∈M B.2∈M C.(1,2)∈M D.(2,1)∈M 答案 C4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A.1B.2C.3D.4 答案 C解析 M ={-1,2,3}.5.若2∈{1,x 2+x},则x 的值为( ) A.-2 B.1 C.1或-2 D.-1或2 答案 C解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.6.已知集合M ={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 因集合中的元素全不相同,故三角形的三边各不相同.所以△ABC 不可能是等腰三角形.7.设a ,b ∈R ,集合{1,a}={0,a +b},则b -a =( ) A.1 B.-1 C.2 D.-2 答案 A解析 ∵{1,a}={0,a +b},∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1,故选A. 8.下列关系中①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________. 答案 ①②⑥ 9.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.10.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”) 答案 是,不是11.若{a ,0,1}={c ,1b ,-1},则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1. 又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b=1,∴b =1.12.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________. 答案 a ∈R 且a ≠±1解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1. 13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或414.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值. 答案 -4解析 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,a +3≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2.∴a =-4. ►重点班·选做题15.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.解析 (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a ,即a=±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.下面有五个命题:①集合N (自然数集)中最小的数是1;②{1,2,3}是不大于3的自然数组成的集合;③a ∈N ,b ∈N ,则a +b ≥2;④a ∈N ,b ∈N ,则a·b ∈N ;⑤集合{0}中没有元素. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3答案 B解析 因为0是自然数,所以0∈N .由此可知①②③是错误的,⑤亦错,只有④正确.故选B.1.1.1-2集合的含义与表示含解析课时作业1.用列举法表示集合{x|x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}答案 B2.集合{1,3,5,7,9}用描述法表示应是( ) A.{x|x 是不大于9的非负奇数} B.{x|x ≤9,x ∈N } C.{x|1≤x ≤9,x ∈N } D.{x|0≤x ≤9,x ∈Z }答案 A3.由大于-3且小于11的偶数组成的集合是( ) A.{x|-3<x<11,x ∈Q } B.{x|-3<x<11}C.{x|-3<x<11,x =2k ,x ∈Q }D.{x|-3<x<11,x =2k ,x ∈Z }答案 D4.集合{x ∈N *|x<5}的另一种表示法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B5.设集合M ={x|x ∈R 且x ≤23},a =26,则( ) A.a ∉M B.a ∈MC.a =MD.{a|a =26}=M答案 A解析 首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a =24>23,a 不是集合M 的元素,故a ∉M.另外{a|a =26}中只有一个元素26与集合M 中元素不相同.故D 错误.6.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1表示成列举法,正确的是( ) A.{2,3} B.{(2,3)} C.{x =2,y =3} D.(2,3)答案 B7.下列集合中,不同于另外三个集合的是( ) A.{x|x =1} B.{x =1} C.{1}D.{y|(y -1)2=0}答案 B解析A,C,D都是数集.8.下列集合表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6答案 B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M中共有4个元素.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}答案 C解析坐标轴上的点的横、纵坐标至少有一个为0,故选C.11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z};④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.答案②③⑤12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.答案(1)(2)13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.答案{0,1,3}解析 ∵y =|x|,x ∈A ,∴y =1,0,3,∴B ={0,1,3}. 14.用∈或∉填空:(1)若A ={x|x 2=x},则-1________A ; (2)若B ={x|x 2+x -6=0},则3________B ; (3)若C ={x ∈N |1≤x ≤10},则8________C ; (4)若D ={x ∈Z |-2<x<3},则1.5________D. 答案 (1)∉ (2)∉ (3)∈ (4)∉ ►重点班·选做题15.用另一种方法表示下列集合. (1){x||x|≤2,x ∈Z };(2){能被3整除,且小于10的正数}; (3)坐标平面内在第四象限的点组成的集合. (4){(x ,y)|x +y =6,x ,y 均为正整数}; (5){-3,-1,1,3,5}. (6)被3除余2的正整数集合.答案 (1){-2,-1,0,1,2} (2){3,6,9}(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x>0,y<0 (4){(1,5),(2,4),(3,3),(4,2),(5,1)} (5){x|x =2k -1,-1≤k ≤3,k ∈Z } (6){x|x =3n +2,n ∈N }16.已知集合{x|x 2+ax +b =0}={2,3},求a ,b 的值. 答案 -5 6解析 ∵{x|x 2+ax +b =0}={2,3}, ∴方程x 2+ax +b =0有两实根x 1=2,x 2=3. 由根与系数的关系得a =-(2+3)=-5,b =2×3=6.1.下列集合是有限集的是( ) A.{x|x 是被3整除的数}B.{x ∈R |0<x <2}C.{(x ,y)|2x +y =5,x ∈N ,y ∈N }D.{x|x 是面积为1的菱形}答案 C解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.2.已知集合A ={x|x 2-2x +a>0},且1∉A ,则实数a 的取值范围是( ) A.{a|a ≤1}B.{a|a ≥1}C.{a|a≥0}D.{a|a≤-1}答案 A解析因为1∉A,所以当x=1时,1-2+a≤0,所以a≤1,即a的取值范围是{a|a≤1}.1.1.1-3集合的含义与表示课时作业(三)1.设x ∈N ,且1x ∈N ,则x 的值可能是( )A.0B.1C.-1D.0或1答案 B解析 首先x ≠0,排除A ,D ;又x ∈N ,排除C ,故选B.2.下面四个关系式:π∈{x|x 是正实数},0.3∈Q ,0∈{0},0∈N ,其中正确的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确. 3.集合{x ∈N |-1<x<112}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 C解析 ∵x ∈N ,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C.4.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 答案 D解析 ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A. 5.集合M ={(x ,y)|xy<0,x ∈R ,y ∈R }是( ) A.第一象限内的点集 B.第三象限内的点集 C.第四象限内的点集 D.第二、四象限内的点集 答案 D解析 根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.6.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A.矩形 B.平行四边形 C.菱形D.梯形答案 D解析 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.7.集合A ={x|x ∈N ,且42-x ∈Z },用列举法可表示为A =________.答案 {0,1,3,4,6}解析 注意到42-x ∈Z ,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x ∈N ,∴x =0,1,3,4,6.8.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素. 答案 1解析 这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 9.点P(1,3)和集合A ={(x ,y)|y =x +2}之间的关系是________. 答案 P ∈A解析 在y =x +2中,当x =1时,y =3,因此点P 是集合A 的元素,故P ∈A. 10.用列举法表示集合A ={(x ,y)|x +y =3,x ∈N ,y ∈N *}为________. 答案 {(0,3),(1,2),(2,1)}解析 集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}.11.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B =________. 答案 {4,9,16}解析 由题意可知集合B 是由集合A 中元素的平方构成,故B ={4,9,16}.12.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)|⎩⎪⎨⎪⎧x +y =3,x -y =1},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个. 答案 2解析 因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合.13.设A 是满足x<6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值. 解析 ∵a ∈A 且3a ∈A ,∴a<6且3a<6,∴a<2. 又∵a 是自然数,∴a =0或1.14.已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解析 本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a =-1. ►重点班·选做题15.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B.解析 当⎩⎪⎨⎪⎧a =0,b ≠0或⎩⎪⎨⎪⎧a ≠0,b =0时,x =0; 当⎩⎪⎨⎪⎧a =2,b =5或⎩⎪⎨⎪⎧a =5,b =2时,x =10; 当⎩⎪⎨⎪⎧a =2,b =10或⎩⎪⎨⎪⎧a =10,b =2时,x =20; 当⎩⎪⎨⎪⎧a =5,b =10或⎩⎪⎨⎪⎧a =10,b =5时,x =50. 所以B ={0,10,20,50}.1.已知A ={x|3-3x>0},则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A答案 C解析 因为A ={x|3-3x>0}={x|x<1},所以0∈A.2.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.解析 三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.3.数集M 满足条件:若a ∈M ,则1+a 1-a ∈M(a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析 ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M.∴1-131+13=12∈M ,∴1+121-12=3∈M.即M =⎩⎨⎧⎭⎬⎫3,-2,-13,12.4.设集合A ={x ,y},B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.5.集合A ={x|⎩⎪⎨⎪⎧y =x ,y =x 2}可化简为________. 以下是两位同学的答案,你认为哪一个正确?试说明理由.学生甲:由⎩⎪⎨⎪⎧y =x ,y =x 2,得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}. 解析 同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =1,y =1.故同学甲正确.1.1.2集合间的包含关系课时作业(四)1.数0与集合∅的关系是()A.0∈∅B.0=∅C.{0}=∅D.0∉∅答案 D2.集合{1,2,3}的子集的个数是()A.7B.4C.6D.8答案 D3.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}答案 D解析∵A,B,C中分别表示的集合为{0},{x|x>0},{0},∴不是空集;又∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.4.已知集合P={1,2,3,4},Q={y|y=x+1,x∈P},那么集合M={3,4,5}与Q的关系是()A.M QB.M QC.Q MD.Q=M答案 A5.下列六个关系式中正确的个数为()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.A.6B.5C.4D.3个及3个以下答案 C解析其中①②⑤⑥是正确的,对于③应为∅ {∅}或∅∈{∅};对于④应为{0} ∅.6.若集合A={-1,2},B={x|x2+ax+b=0},且A=B,则有()A.a=1,b=-2B.a=2,b=2C.a=-1,b=-2D.a=-1,b=2答案 C解析由A=B知-1与2是方程x2+ax+b=0的两根,∴⎩⎪⎨⎪⎧-1+2=-a ,(-1)×2=b ,∴⎩⎪⎨⎪⎧a =-1,b =-2. 7.集合P ={x|y =x 2},Q ={y|y =x 2},则下列关系中正确的是( ) A.P Q B.P =Q C.P ⊆Q D.P Q答案 D解析 P ,Q 均为数集,P ={x|y =x 2}=R ,Q ={y|y =x 2}={y|y ≥0},∴Q P ,故选D. 8.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 的个数为( ) A.6 B.5 C.4 D.3答案 B解析 A ={1},{3},{1,2},{1,3},{2,3}共5个.9.若A ={(x ,y)|y =x},B ={(x ,y)|yx =1},则A ,B 关系为( )A.A BB.B AC.A =BD.A B答案 B10.已知集合A ={-1,3,m},集合B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,A ={-1,3,m},∴m =4.11.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A.符合上述要求的集合A 的个数是________. 答案 3解析 由“若x ∈A ,则5-x ∈A ”可知,1和4,2和3成对地出现在A 中,且A ≠∅.故集合A 的个数等于集合{1,2}的非空子集的个数,即3个.12.设集合A ={x ∈R |x 2+x -1=0},B ={x ∈R |x 2-x +1=0},则集合A ,B 之间的关系是________. 答案 B A解析 ∵A ={-1-52,-1+52},B =∅,∴B A.13.已知M ={y|y =x 2-2x -1,x ∈R },N ={x|-2≤x ≤4},则集合M 与N 之间的关系是________. 答案 N M14.设A ={x ∈R |-1<x<3},B ={x ∈R |x>a},若A B ,求a 的取值范围. 答案 a ≤-1解析 数形结合,端点处单独验证.15.设集合A ={1,3,a},B ={1,a 2-a +1},B ⊆A ,求a 的值.解析 因为B ⊆A ,所以B 中元素1,a 2-a +1都是A 中的元素,故分两种情况. (1)a 2-a +1=3,解得a =-1或2,经检验满足条件. (2)a 2-a +1=a ,解得a =1,此时A 中元素重复,舍去. 综上所述,a =-1或a =2. ►重点班·选做题16.a ,b 是实数,集合A ={a ,ba ,1},B ={a 2,a +b ,0},若A =B ,求a 2 015+b 2 016.答案 -1解析 ∵A =B ,∴b =0,A ={a ,0,1},B ={a 2,a ,0}.∴a 2=1,得a =±1.a =1时,A ={1,0,1}不满足互异性,舍去;a =-1时,满足题意.∴a 2015+b 2 016=-1.1.设a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 ∵a ≠0,∴a +b =0,∴ba =-1.∴b =1,a =-1,∴b -a =2,故选C.2.设集合A ={x|-3≤x ≤2},B ={x|2k -1≤x ≤k +1}且B ⊆A ,求实数k 的取值范围. 解析 ∵B ⊆A ,∴B =∅或B ≠∅.①B =∅时,有2k -1>k +1,解得k>2. ②B ≠∅时,有⎩⎪⎨⎪⎧2k -1≤k +1,2k -1≥-3,k +1≤2,解得-1≤k ≤1.综上,-1≤k ≤1或k>2.1.1.3-1集合的基本运算(第1课时)课时作业(五)1.(2014·广东)已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( ) A.{0,1} B.{-1,0,2} C.{-1,0,1,2} D.{-1,0,1}答案 C解析 M ∪N ={-1,0,1,2}.2.若集合A ={x|-2<x<1},B ={x|0<x<2},则集合A ∩B =( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 答案 D3.设A ={x|1≤x ≤3},B ={x|x<0或x ≥2},则A ∪B 等于( ) A.{x|x<0或x ≥1} B.{x|x<0或x ≥3} C.{x|x<0或x ≥2} D.{x|2≤x ≤3} 答案 A4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A.1 B.3 C.4 D.8答案 C解析 ∵A ={1,2},A ∪B ={1,2,3},∴B ={3}或{1,3}或{2,3}或{1,2,3},故选C.5.设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 答案 B解析 集合M ={-2,-1,0,1},集合N ={-1,0,1,2,3},M ∩N ={-1,0,1}. 6.若A ={x|x2∈Z },B ={y|y +12∈Z },则A ∪B 等于( )A.BB.AC.∅D.Z答案 D解析 A ={x|x =2n ,n ∈Z }为偶数集,B ={y|y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 7.已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B解析集合B含有整数-1,0,故A∩B={-1,0}.8.如果A={x|x=2n+1,n∈Z},B={x|x=k+3,k∈Z},那么A∩B=()A.∅B.AC.BD.Z答案 B9.满足条件M∪{1}={1,2,3}的集合M的个数是________.答案 2解析M={1,2,3}或M={2,3}.10.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的为________.答案②③④解析①是错误的,a∈(A∪B)时可推出a∈A或a∈B,不一定能推出a∈A.11.已知集合P,Q与全集U,下列命题:①P∩Q=P,②P∪Q=Q,③P∪Q=U,其中与命题P⊆Q等价的命题有______个.答案 2解析①②都等价.12.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是________.答案a≤-113.若集合P满足P∩{4,6}={4},P∩{8,10}={10},且P⊆{4,6,8,10},求集合P. 解析由条件知4∈P,6∉P,10∈P,8∉P,∴P={4,10}.14.已知集合A={x|x+3≤0},B={x|x-a<0}.(1)若A∪B=B,求a的取值范围;(2)若A∩B=B,求a的取值范围.解析(1)∵A∪B=B,∴A⊆B,∴a>-3.(2)∵A∩B=B,∴B⊆A,∴a≤-3.►重点班·选做题15.已知A={x|2a<x≤a+8},B={x|x<-1或x>5},若A∪B=R,求a的取值范围.解析∵B={x|x<-1或x>5},A∪B=R,∴⎩⎪⎨⎪⎧2a<-1,a +8≥5,解得-3≤a<-12.1.若A ={x|x 2-5x +6=0},B ={x|x 2-6x +8=0},则A ∪B =________,A ∩B =________. 答案 A ={2,3},B ={2,4}, ∴A ∪B ={2,3,4},A ∩B ={2}.2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A.∅ B.{x|x<-12}C.{x|x>53}D.{x|-12<x<53}答案 D解析 S ={x|x>-12},T ={x|x<53},在数轴上表示出S 和T ,可知选D.3.设集合A ={x|-5≤x<1},B ={x|x ≤2},则A ∩B 等于( ) A.{x|-5≤x<1} B.{x|-5≤x ≤2} C.{x|x<1} D.{x|x ≤2} 答案 A4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 15.已知A ={|a +1|,3,5},B ={2a +1,a 2+2a ,a 2+2a -1},若A ∩B ={2,3},则A ∪B =________.答案 {2,3,5,-5}解析 由|a +1|=2,得a =1或-3,代入求出B ,注意B 中不能有5.6.已知M ={x|x ≤-1},N ={x|x>a -2},若M ∩N ≠∅,则a 的范围是________. 答案 a<1课时作业(六)1.1.3-2集合的基本运算(第2课时)1.已知U={1,3},A={1,3},则∁U A=()A.{1,3}B.{1}C.{3}D.∅答案 D2.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}答案 C3.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(∁U A)∪(∁U B)=()A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}答案 C解析∵∁U A={4,5},∁U B={1,2},故选C.4.若集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}答案 D5.设P={x︱x<4},Q={x︱x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P答案 B6.已知全集U=Z,集合A={x|x=k3,k∈Z},B={x|x=k6,k∈Z},则()A.∁U A ∁U BB.A BC.A=BD.A与B中无公共元素答案 A解析∵A={x|x=26k,k∈Z},∴∁U A ∁U B,A B.7.设全集U={2,3,5},A={2,|a-5|},∁U A={5},则a的值为()A.2B.8C.2或8D.-2或8答案 C解析∁U A={5}包含两层意义,①5∉A;②U中除5以外的元素都在A中.∴|a-5|=3,解得a=2或8.8.设全集U=Z,A={x∈Z|x<5},B={x∈Z|x≤2},则∁U A与∁U B的关系是()A.∁U A ∁U BB.∁U A ∁U BC.∁U A=∁U BD.∁U A ∁U B答案 A解析∵∁U A={x∈Z|x≥5},∁U B={x∈Z|x>2}.故选A.9.设A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁R B,则有()A.a=0B.a≤2C.a≥2D.a<2答案 C解析A={x|-2<x<2},∁R B={x|x≤a},在数轴上把A,B表示出来.10.已知全集U={1,2,3,4,5},S U,T U,若S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5},则有()A.3∈S∩TB.3∉S但3∈TC.3∈S∩(∁U T)D.3∈(∁U S)∩(∁U T)答案 C11.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.答案③④12.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________. 答案∁U A ∁U B解析∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A ∁U B.13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解析 借助韦恩图,如右图所示, ∴U ={1,2,3,4,5,6,7,8,9}. ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.14.设集合U ={1,2,3,4},且A ={x ∈U|x 2-5x +m =0},若∁U A ={2,3},求m 的值. 解析 ∵∁U A ={2,3},U ={1,2,3,4}, ∴A ={1,4},即1,4是方程x 2-5x +m =0的两根. ∴m =1×4=4.15.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a. 解析 ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(∁S A)∩(∁S B)等于( ) A.∅ B.{1,3} C.{4} D.{2,5}答案 A解析 ∵∁S A ={2,5},∁S B ={1,3}, ∴(∁S A)∩(∁S B)=∅.2.设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∩(∁U Q)等于()A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案 A解析 ∵∁U Q ={1,2},∴P ∩(∁U Q)={1,2}.3.设全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,7},B ={3,5},则正确的是( ) A.U =A ∪B B.U =(∁U A)∪B C.U =A ∪(∁U B) D.U =(∁U A)∪(∁U B)答案 C解析 ∵∁U B ={1,2,4,6,7}, ∴A ∪(∁U B)={1,2,3,4,5,6,7}=U.4.已知A ={x|x<3},B ={x|x<a}.若A ⊆B ,问∁R B ⊆∁R A 是否成立? 答案 成立5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案126.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.答案{0,1,3,4,5}解析∵S={x∈N|x<6}={0,1,2,3,4,5},∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.课时作业(七)1.1习题课含解析(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A , ∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.课时作业(八) 1.2.1函数及其表示含解析1.下列集合A 到集合B 的对应f 是函数的是( ) A.A ={-1,0,1},B ={0,1},f :A 中的数平方 B.A ={0,1},B ={-1,0,1},f :A 中的数开方 C.A =Z ,B =Q ,f :A 中的数取倒数D.A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},下图所示4个图形中能表示集合M 到集合N 的函数关系的个数是( )A.0B.1C.2D.3答案 B3.函数f(x)=1+x +x1-x的定义域( ) A.[-1,+∞) B.(-∞,-1] C.R D.[-1,1)∪(1,+∞)答案 D解析 由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1.故定义域为[-1,1)∪(1,+∞),故选D. 4.设函数f(x)=3x 2-1,则f(a)-f(-a)的值是( ) A.0 B.3a 2-1 C.6a 2-2 D.6a 2答案 A解析 f(a)-f(-a)=3a 2-1-[3(-a)2-1]=0.5.四个函数:①y=x+1;②y=x3;③y=x2-1;④y=1x.其中定义域相同的函数有()A.①②和③B.①和②C.②和③D.②③和④答案 A6.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1) 答案 C7.已知f(x)=π(x∈R),则f(π2)等于()A.π2B.πC.πD.不确定答案 B解析因为π2∈R,所以f(π2)=π.8.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)答案 B9.将下列集合用区间表示出来.(1){x|x≥1}=________;(2){x|2≤x≤8}=________;(3){y|y=1x}=________.答案(1)[1,+∞)(2)[2,8] (3)(-∞,0)∪(0,+∞)10.若f(x)=5xx2+1,且f(a)=2,则a=________.答案12或211.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.答案{-1,1,5,11}12.设函数f(n)=k(n∈N*),k是π的小数点后的第n位数字,π=3.141 592 653 5…,则f(3)=________.答案 113.若函数y =1x -2的定义域为A ,函数y =2x +6的值域是B ,则A ∩B =________. 答案 [0,2)∪(2,+∞)解析 由题意知A ={x|x ≠2},B ={y|y ≥0},则A ∩B =[0,2)∪(2,+∞). 14.已知函数f(x)=x +3+1x +2.(1)求函数的定义域; (2)求f(-3),f(23)的值;(3)当a>0时,求f(a),f(a -1)的值.解析 (1)使根式x +3有意义的实数x 的集合是{x|x ≥-3},使分式1x +2有意义的实数x 的集合是{x|x ≠-2},所以这个函数的定义域是{x|x ≥-3}∩{x|x ≠-2}={x|x ≥-3,且x ≠-2}. (2)f(-3)=-3+3+1-3+2=-1; f(23)=23+3+123+2=113+38=38+333. (3)因为a>0,故f(a),f(a -1)有意义. f(a)=a +3+1a +2;f(a -1)=a -1+3+1(a -1)+2=a +2+1a +1.15.已知f(x)=13-x 的定义域为A ,g(x)=1a -x的定义域是B. (1)若B A ,求a 的取值范围; (2)若A B ,求a 的取值范围. 解析 A ={x|x<3},B ={x|x<a}.(1)若B A ,则a<3,∴a 的取值范围是{a|a<3}; (2)若A B ,则a>3,∴a 的取值范围是{a|a>3}.1.下列函数f(x)和g(x)中,表示同一函数的是( ) A.y =f(x)与y =f(x +1) B.y =f(x),x ∈R 与y =f(t),t ∈R C.f(x)=x 2,g(x)=x 3xD.f(x)=2x +1与g(x)=4x 2+4x +1答案 B2.下列式子中不能表示函数y =f(x)的是( ) A.x =2yB.3x +2y =1C.x =2y 2+1D.x =y答案 C3.已知函数f(x)=2x -1,则f(x +1)等于( ) A.2x -1 B.x +1 C.2x +1 D.1答案 C4.若f(x)=x 2-1x ,则f(x)的定义域为________.答案 {x|x ≤-1或x ≥1}5.下列每对函数是否表示相同函数? (1)f(x)=(x -1)0,g(x)=1; (2)f(x)=x ,g(x)=x 2; (3)f(t)=t 2t ,g(x)=|x|x .答案 (1)不是 (2)不是 (3)是6.已知A =B =R ,x ∈A ,y ∈B 对任意x ∈A ,x →y =ax +b 是从A 到B 的函数,若输出值1和8分别对应的输入值为3和10,求输入值5对应的输出值.解析 由题意可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1,b =-2,所以对应关系f :x →y =x -2,故输入值5对应的输出值为3.7.已知f(x)=11+x ,求[f(2)+f(3)+…+f(2 016)]+[f(12)+f(13)+…+f(12 016)].答案 2 015解析 f(x)+f(1x )=11+x+11+1x=11+x +x1+x =1,则原式=⎣⎡⎦⎤f (2)+f (12)+⎣⎡⎦⎤f (3)+f (13)+…+⎣⎡⎦⎤f (2 016)+f (12 016)=2 015.8.已知函数g(x)=x +2x -6,(1)点(3,14)在函数的图像上吗? (2)当x =4时,求g(x)的值; (3)当g(x)=2时,求x 的值.答案(1)不在(2)-3(3)14课时作业(九)1.2.2-1函数的表示法(第1课时)1.下列结论正确的是( )A.任意一个函数都可以用解析式表示B.函数y =x ,x ∈{1,2,3,4}的图像是一条直线C.表格可以表示y 是x 的函数D.图像可表示函数y =f(x)的图像答案 C2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y 不是考试次数x 的函数B.成绩y 是考试次数x 的函数C.考试次数x 是成绩y 的函数D.成绩y 不一定是考试次数x 的函数答案 B3.函数f(x)=x +|x|x的图像是下图中的( )答案 C4.从甲城市到乙城市t min 的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]为t 的整数部分,则从甲城市到乙城市5.5 min 的电话费为( ) A.5.04元 B.5.56元 C.5.84元 D.5.38元答案 A解析 g(5.5)=1.06(0.75×5+1)=5.035≈5.04.。
2017-2018学年高中数学(人教A版一)学业分层测评:第1章1.3.1第1课时函数的单调性含解析

学业分层测评(九)(建议用时:45分钟)[学业达标]一、选择题1.如图13。
1是定义在区间[-5,5]上的函数y=f(x)的图象,则下列关于函数f(x)的说法错误的是( )图1.3.1A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性【解析】若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接.如0〈5,但f(0)>f(5),故选C。
【答案】C2.下列函数中,在区间(0,2)上为增函数的是( )A.y=3-x B.y=x2+1C.y=1x D.y=-|x|【解析】A.y=3-x=-x+3,是减函数,故A错误;B.∵y=x2+1,y为偶函数,图象开口向上,关于y轴对称,当x>0时,y为增函数,故B正确;C.∵y=错误!,当x>0时,y为减函数,故C错误;D.当x>0时,y=-|x|=-x,为减函数,故D错误.故选B。
【答案】B3.若函数y=x2+(2a-1)x+1在区间(-∞,2]上是减函数,则实数a的取值范围是( )A.错误!B。
错误!C.(3,+∞)D.(-∞,-3]【解析】∵函数y=x2+(2a-1)x+1的图象是开口方向朝上,以直线x=错误!为对称轴的抛物线,又∵函数在区间(-∞,2]上是减函数,故2≤错误!,解得a≤-错误!,故选B.【答案】B4.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(8(x -2))的解集是( )A.(0,+∞) B.(0,2)C.(2,+∞) D.错误!【解析】由f(x)是定义在(0,+∞)上的增函数得,错误!⇒2<x<错误!,故选D.【答案】D5.已知函数f(x)=4x2-m x+5在区间[-2,+∞)上是增函数,则f(1)的范围是( )A.f(1)≥25 B.f(1)=25C.f(1)≤25 D.f(1)>25【解析】由y=f(x)的对称轴是x=错误!,可知f(x)在错误!上递增,由题设只需错误!≤-2,即m≤-16,∴f(1)=9-m≥25。
2017-2018学年高中数学阶段质量检测(一)新人教A版必修4

函数 f (x ) = tanx +亍的单调增区间为阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中, 只有一项是符合题目要求的 )1.在0°〜360°的范围内,与一510°终边相同的角是( )A. 330° B . 210 C. 150° D . 30°.右 sinB .C.C.5.化简,1+ 2sin ( n - 2 )• cos ( n - 2 )得( )A. sin 2 + cos 2 B . cos 2 — sin 2 C. sin 2 — cos 2 D . ± cos 2 — sin 23. 已知弧度数为2的圆心角所对的弦长也是 2, 则这个圆心角所对的弧长是(A.C. 2sin 1 D . sin 24. 的图象的一条对称轴是A.nX = 4 B . x = 2A. )函数 f (x ) = siiA. j k n —牙,k n+今,k € ZB. (k n , (k + 1) n ) , k € ZC. k n —苧,k 冗 + 才,k € ZD. k n — 4, k n7.已知sina=F ,则sin—a 的值为(A £B .12 C.A. C. 9.a 是第三象限第一象限B .第二象限 第三象限D .第四象限函数 y = cos 2x + sin x cosa acos 2,则2的终边所在的象限是()-6 <x 违的最大值与最小值之和为3 3 A.2B . 2 C . 0D. 4 10 .将函数y =sin x —;的图象上所有点的横坐标伸长到原来的 32倍(纵坐标不变),n再将所得的图象向左平移n 个单位,得到的图象对应的解析式为(31 1 n A. y = sin B . y = sin i ?x — q,1 n 、C. y = sin 2x —石Ic n ■D . y = sin 2x —石11 .已知函数y = A sin(w x+ $ )(A>0, w >0, | $ |< n )的一段图象如图所示,则函数的解析式为()44A. y = 2sin i 2x ―专B. C .D.y = 2sin |2x — -4 或 y = 2sin j 2x +y = 2sin 2x + 苧y = 2si n 2x —茅3n~T12 .函数 f (x ) = A sin 3 x ( w >0),对任意 x 有 f i x —,且f么f 4等于()A. a B . 2aC. 3a D . 4a二、填空题(本大题共4小题,每小题5分,共20分)13.已知 tan a =— 3, nn <a <n,那么 cos a — sin a 的值是14.设 f (n ) = cos n+ 4,贝V f (1) + f (2) + f (3) +•••+ f (2 015)等于15 •定义运算a *b 为a *b =a (a wb ),例如1*2 = 1,则函数f (x ) = sin x *cos x 的值 b(a >b ),域为 (n 、 16.给出下列4个命题:①函数y = sin 严―丿的最小正周期是nn ;②直线x =令是函数y = 2sin 3x — ~的一条对称轴;③若 Sin a + cos a = — 5,且a 为第二象限角,则tan a- 2 —4;④函数y = cos (2 — 3x )在区间, 3上单调递减.其中正确的是出所有正确命题的序号)•三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、 证明过程或演算步骤)tan a,亠17. (10分)已知=—1,求下列各式的值:tan a — 1sin a — 3cos a2⑴sin a+ cos a ;⑵"血从迹"2"18. (12 分)已知函数 f (x ) = 2sin g x —才,x € R【勺值;(1)用五点法画出它在一个周期内的闭区间上的图象;⑵写出f (x )的值域、最小正周期、对称轴,单调区间.x + $ ) , x € R 其中 0W $ <nn 的图象与 y 轴交于点(0,1).(1) 求$的值;Cj Cj⑵ 求函数f (x )的单调递增区间.(nx+~43-1 -2-32LTT Sir 3rr 7TT 2TT 11 2 44 2 420. (12 分)如图,函数 y = 2sin( n⑵求函数y = 2sin( n x+ $ )的单调递增区间;(3)求使y》1的x的集合.21. (12 分)已知函数f(x) = A sin( co x+Q )( A>0, co >0, | $ |< n ),在同一周期内,当x=誇时,f (x)取得最大值3;当x =彳2时,f(x)取得最小值一3.(1) 求函数f (x)的解析式;(2) 求函数f(x)的单调递减区间;n n(3) 若x€ |- —, y 时,函数h( x) = 2f (x) + 1 —m的图象与x轴有两个交点,求实数m 的取值范围.n、22. (12 分)如图,函数y= 2cos( o x + 0 )(x€ R, o >0, 0< 0 < y 的图象与y 轴交于点(0 , 3),且该函数的最小正周期为n .(1)求0和o的值;1 .解析:选B因为一510 °答=—360 °案X 2 + 210。
2017_2018版高中数学第一章算法初步1.1.2第2课时条件结构学业分层测评新人教A版必修320

1.1.2 第二课时条件结构(建议用时:45分钟)[学业达标]一、选择题1.下列算法中含有条件结构的是()A.求点到直线的距离B.已知三角形三边长求面积C.解一元二次方程x2+bx+4=0(b∈R)D.求两个数的平方和【解析】A、B、D均为顺序结构,由于解一元二次方程时需判断判别式值的符号,故C 选项要用条件结构来描述.【答案】 C2.下列关于条件结构的描述,不正确的是()A.条件结构的出口有两个,但在执行时,只有一个出口是有效的B.条件结构的判断条件要写在判断框内C.条件结构只有一个出口D.条件结构根据条件是否成立,选择不同的分支执行【解析】条件结构的出口有两个,算法的流程根据条件是否成立有不同的流向.【答案】 C3.若f(x)=x2,g(x)=log2x,则如图1122所示的程序框图中,输入x=0.25,输出h(x)=()图1122A.0.25B.2C.-2D.-0.25【解析】h(x)取f(x)和g(x)中的较小者.g(0.25)=log20.25=-2,1f(0.25)=0.252=.16【答案】 C4.若输入-5,按图1123中所示程序框图运行后,输出的结果是()图1123A.-5 B.0C.-1 D.1【解析】因为x=-5,不满足x>0,所以在第一个判断框中执行“否”,在第2个判断框中,由于-5<0,执行“是”,所以得y=1.【答案】 D5.下列算法中,含有条件结构的是()A.求两个数的积B.求点到直线的距离C.解一元二次方程D.已知梯形两底和高求面积【解析】解一元二次方程时,当判别式Δ<0时,方程无解,当Δ≥0时,方程有解,由于分情况,故用到条件结构.【答案】 C二、填空题6.如图1124所示,是求函数y=|x-3|的函数值的程序框图,则①处应填________,②处应填________.图1124【解析】∵y=|x-3|=Error!∴①中应填x<3?又∵若x≥3,则y=x-3.∴②中应填y=x-3.【答案】x<3?y=x-37.如图1125所示的算法功能是________.图1125【解析】根据条件结构的定义,当a≥b时,输出a-b;当a<b时,输出b-a.故输出|b-a|的值.【答案】计算|b-a|8.如图1126是求某个函数的函数值的程序框图,则满足该程序的函数的解析式为________.图1126【解析】由框图可知f(x)=Error!【答案】f(x)=Error!三、解答题9.写出输入一个数x,求分段函数y=Error!Error!的函数值的程序框图.【解】程序框图如图所示:10.设计一个程序框图,使之能判断任意输入的数x是奇数还是偶数.【解】程序框图如下:[能力提升]1.根据图1127中的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则()图1127A.①框中填“是”,②框中填“否”B.①框中填“否”,②框中填“是”C.①框中填“是”,②框中可填可不填D.①框中填“否”,②框中可填可不填【解析】当x≥60时,应输出“及格”;当x<60时,应输出“不及格”.故①中应填“是”,②中应填“否”.【答案】 A2.执行如图1128所示的程序框图,如果输入t∈[-1,3],则输出的s属于()图1128A.[-3,4]B.[-5,2]C.[-4,3] D.[-2,5]【解析】因为t∈[-1,3],当t∈[-1,1)时,s=3t∈[-3,3);当t∈[1,3]时,s=4t-t2=-(t2-4t)=-(t-2)2+4∈[3,4],所以s∈[-3,4].【答案】 A3.某程序框图如图1129所示,若输出的结果是8,则输入的数是________.图1129【解析】由程序框图知,Error!或Error!解得x=-2 2或x=2.【答案】-2 2或24.如图1130所示是某函数f(x)给出x的值,求相应函数值y的程序框图.图1130(1)写出函数f(x)的解析式;(2)若输入的x取x1和x2(|x1|<|x2|)时,输出的y值相同,试简要分析x1与x2的取值范围.【解】(1)f(x)=Error!(2)画出y=f(x)的图象:∪(1,2].。
2017-2018学年高中数学人教A版1练习:第一章阶段质量检测含解析

(时间90分钟,满分120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-1=0},则下列式子表示正确的有( )①1∈A②{-1}∈A③∅⊆A④{1,-1}⊆AA.1个B.2个C.3个D.4个解析:A={x|x2-1=0}={1,-1}.∴①③④均正确.答案:C2.设全集U=R,M={x|x<-2,或x>2},N={x|1〈x<3},则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x〈2}解析:阴影部分所表示集合是N∩(∁U M),又∵∁U M={x|-2≤x≤2},∴N∩(∁U M)={x|1<x≤2}.答案:C3.f(x)=错误!则f(f(f(-2)])=() A.0 B.πC.π2D.4解析:f(-2)=0,f(0)=π,f(π)=π2。
答案:C4.给出下列集合A到集合B的几种对应:其中,是从A到B的映射的有()A.(1)(2) B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)解析:由映射定义可知(3)(4)不是映射.答案:A5.(2011·浙江高考)若P={x|x<1},Q={x|x>-1},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P解析:∵P={x|x<1},∴∁R P={x|x≥1},又Q={x|x>-1},∴∁R P⊆Q.答案:C6.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f(-错误!)与f(a2+2a+错误!)的大小关系是( )A.f(-错误!)>f(a2+2a+错误!)B.f(-错误!)≥f(a2+2a+错误!)C.f(-错误!)<f(a2+2a+错误!)D.f(-错误!)≤f(a2+2a+错误!)解析:∵a2+2a+52=(a+1)2+错误!≥错误!,又函数f(x)为偶函数,f(-错误!)=f(错误!),f(x)在(0,+∞)上为减函数.∴f(-错误!)≥f(a2+2a+错误!).答案:B7.下列四个命题:(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a〈0且a>0;(3)y=x2-2|x|-3的递增区间为[1,+∞).其中正确命题的个数是( )A.0 B.1C.2 D.3解析:(1)反例:f(x)=-错误!;(2)不一定a>0,开口向下也可;(3)画出图像可知,递增区间有[-1,0]和[1,+∞).答案:A8.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是( )A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2或a≥2。
2017-2018学年高中数学 综合质量评估(含解析)新人教A版选修1-1

综合质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若A B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A.0B.2C.3D.4【解析】选B.原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.2.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有( )A.f(x)>0B.f(x)<0C.f(x)=0D.不能确定【解析】选A.因为f(x)在(a,b)上为增函数,所以在(a,b)内f(x)>f(a)≥0.3.设命题p:∀x∈R,x2+1>0,则p为( )A.∃x0∈R,+1>0B.∃x0∈R,+1≤0C.∃x0∈R,+1<0D.∀x∈R,x2+1≤0【解析】选B.全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题p的否定为“∃x0∈R,+1≤0”.4.已知双曲线-y2=1(a>0)的右焦点与抛物线y2=8x的焦点重合,则此双曲线的渐近线方程是( )A.y=±xB.y=±xC.y=±xD.y=±x【解析】选D.因为y2=8x焦点是(2,0),所以双曲线-y2=1的半焦距c=2,又虚半轴长b=1且a>0,所以a==,所以双曲线的渐近线方程是y=±x.【补偿训练】(2017·邯郸高二检测)抛物线的准线方程为y=-4,则抛物线的标准方程为( )A.x2=16yB.x2=8yC.y2=16xD.y2=8x【解析】选A.由题意可知抛物线的焦点在y轴的正半轴,设抛物线标准方程为:x2=2py(p>0), 因为抛物线的准线方程为y=-4,所以-=-4,所以p=8,所以抛物线的标准方程为:x2=16y.5.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”.故“x=2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.6.设函数f(x)=x-lnx(x>0),则y=f(x) ( )A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内无零点,在区间(1,e)内有零点D.在区间内有零点,在区间(1,e)内无零点【解析】选C.由题意得f′(x)=,令f′(x)>0,得x>3;令f′(x)<0,得0<x<3;f′(x)=0得x=3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x=3处有极小值1-ln3<0;又f(1)=>0,f(e)=-1<0,f=+1>0.故选C.7.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x 0∈R,+2ax0+2-a=0”.若命题“(p)∧q”是真命题,则实数a的取值范围是( )A.a≤-2或a=1B.a≤2或1≤a≤2C.a>1D.-2≤a≤1【解析】选C.命题p为真时a≤1;“∃x0∈R,+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(p)∧q为真命题,即p真且q真,即a>1.8.设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=(x+c)与椭圆的一个交点为M,若∠MF1F2=2∠MF2F1,则椭圆离心率为( )A. B.2- C. D.-1【解析】选D.如图所示,直线y=(x+c)的斜率k=,所以倾斜角α=60°,因为∠MF1F2=2∠MF2F1,所以∠MF2F1=30°,所以∠F1MF2=90°,设=m,=n,则有解得e==-1.【补偿训练】设F1,F2是椭圆+=1(a>b>0)的左、右焦点,P为直线x=a上一点,△F2PF1是底角为30°的等腰三角形,则椭圆的离心率e为( )A. B. C. D.【解析】选C.因为△F2PF1是底角为30°的等腰三角形,所以=,因为P为直线x=a上一点,所以2=2c,所以椭圆的离心率为e==.9.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2都有≥2恒成立,则a的取值范围是( )A.(-1,+∞)B.(2,+∞)C.[1,+∞)D.(1,+∞)【解析】选C.因为f(x)=alnx+x2(a>0),对任意两个不等的正实数x1,x2都有≥2恒成立,所以f′(x)=+x≥2(x>0)恒成立,所以a≥2x-x2恒成立,令g(x)=2x-x2=-(x-1)2+1,则a≥g(x)max,因为g(x)=2x-x2=-(x-1)2+1为开口方向向下,对称轴为x=1的抛物线,所以当x=1时,g(x)=2x-x2取得最大值g(1)=1,所以a≥1.即a的取值范围是[1,+∞).10.设O为坐标原点,F1,F2是-=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=a,则该双曲线的渐近线方程为( )A.x±y=0B.x±y=0C.x±y=0D.x±y=0【解析】选D.如图所示,因为O是F1F2的中点,+=,所以(+)2=(2)2.即||2+||2+2||·||·cos60°=4||2.又因为|PO|=a,所以||2+||2+||||=28a2. ①又由双曲线定义得|PF1|-|PF2|=2a,所以(|PF1|-|PF2|)2=4a2.即|PF1|2+|PF2|2-2|PF1||PF2|=4a2. ②由①-②得|PF1|·|PF2|=8a2,所以|PF1|2+|PF2|2=20a2.在△F1PF2中,由余弦定理得cos60°=,所以8a2=20a2-4c2.即c2=3a2.又因为c2=a2+b2,所以b2=2a2.即=2,=±.所以双曲线的渐近线方程为x±y=0.11.(2015·全国卷Ⅰ)设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是( )A. B.C. D.【解析】选 D.设g(x)=e x(2x-1),y=ax-a,由题意知存在唯一的整数x0,使得g(x0)在直线y=ax-a的下方.因为g′(x)=e x(2x+1),所以当x<-时,g′(x)<0,当x>-时,g′(x)>0,所以,当x=-时,[g(x)]min=-2.当x=0时,g(0)=-1,g(1)=e,直线y=ax-a恒过点(1,0),且斜率为a,故-a>g(0)=-1,且g(-1)=-3e-1≥-a-a,解得≤a<1.12.已知a,b∈R,直线y=ax+b+与函数f(x)=tanx的图象在x=-处相切,设g(x)=e x+bx2+a,若在区间[1,2]上,不等式m≤g(x)≤m2-2恒成立,则实数m( ) A.有最小值-e B.有最小值eC.有最大值eD.有最大值e+1【解析】选D.注意到函数f(x)=tanx=,所以f′(x)==,即得a=f′=2,又点在直线y=ax+b+上,所以-1=2·+b+,得b=-1,又g(x)=e x-x2+2,所以g′(x)=e x-2x,g″(x)=e x-2,当x∈[1,2]时,g″(x)≥g″(1)=e-2>0,所以g′(x)在[1,2]上单调递增,所以g′(x)≥e-2>0,所以g(x)在[1,2]上单调递增,根据不等式恒成立的意义可得所以m≤-e或e≤m≤e+1,所以m的最大值为e+1,无最小值.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.若f(x)在(a,b)内存在导数,则“f′(x)<0”是“f(x)在(a,b)内单调递减”的____________条件.【解析】对于导数存在的函数f(x),若f′(x)<0,则f(x)在区间(a,b)内单调递减,反过来,函数f(x)在(a,b)内单调递减,不一定恒有f′(x)<0,如f(x)=-x3在R上是单调递减的,但f′(x)≤0.答案:充分不必要14.(2017·广安高二检测)椭圆+=1(a>b>0)的一个焦点为F,该椭圆上有一点A,满足△OAF是等边三角形(O为坐标原点),则椭圆的离心率为________.【解析】椭圆+=1(a>b>0)焦点在x轴上,设A.将x=代入椭圆方程得+=1,解得y=±,因为△OAF为等边三角形,则tan∠AOF=,所以=×,化为:e4-8e2+4=0,0<e<1,所以e2=4-2,由0<e<1,解得e=-1.答案:-115.用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为________.【解析】设截去的小正方形的边长为xcm,铁盒的容积为Vcm3,由题意,得V=x(48-2x)2(0<x<24).V′=12(24-x)(8-x),令V′=0,则在(0,24)内有x=8,故当x=8时,V有最大值.答案:816.下列语句:①“x2=1”是“x=1”的充分不必要条件;②“x=2时,x2-3x+2=0”的否命题为真命题;③命题“∃x0∈R,使得+x0+1<0”的否定是:“∀x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.其中说法错误的是__________. 【解析】因为当x=1成立时有x2=1成立;当x2=1时,不一定有x=1,所以“x2=1”是“x=1”的必要不充分条件,故①错误;“x=2时,x2-3x+2=0”的否命题为“x≠2时,有x2-3x+2≠0”,而x=1时,x2-3x+2=0,故②错误;命题“∃x0∈R,使得+x0+1<0”的否定应为:“∀x∈R,均有x2+x+1≥0”,故③错误;命题“若x=y,则sinx=siny”的逆否命题为“若sinx≠siny,则x≠y”是真命题,故④正确. 答案:①②③【误区警示】“否命题”与“命题的否定”如果原命题是“若p则q”,那么这个命题的否命题是“若非p,则非q”,而这个命题的否定是“若p则非q”.可见,否命题既否定条件又否定结论,而命题的否定只否定结论.一个命题与它的否定形式是完全对立的.两者之间有且只有一个成立.“都是”的否定是“不都是”,“不都是”包含“都不是”,“至少有一个”的否定是“一个都没有”,“所有的”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”,“至多有n个”的否定是“至少有n+1个”,“任意两个”的否定是“某两个”.“p且q”的形式,其否定应该为“非p或非q”,“p或q”的形式,其否定应该为“非p且非q”.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)命题p:方程+=1,(k∈R)表示双曲线,命题q:函数y=log2(kx2+kx+1)的定义域为R,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.【解题指南】首先分别求出命题p,q为真命题时,实数k的取值范围,然后由真值表并结合已知条件命题p,q的关系可得,命题p,q为一真一假,最后根据补集的思想可得出实数k的取值范围.【解析】命题p:由(k-3)(k+3)<0,得-3<k<3,命题q:令t=kx2+kx+1,由t>0对x∈R恒成立.(1)当k=0时,1>0,所以k=0符合题意.(2)当k≠0时,解得所以q:0≤k<4,又因为p∨q为真命题,p∧q为假命题,所以或所以-3<k<0或3≤k<4.18.(12分)如图,已知中心在原点O,焦点在x轴上的椭圆C的离心率为,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为.(1)求椭圆C的标准方程.(2)已知点E(3,0),设点P,Q是椭圆C上的两个动点满足EP⊥EQ,求·的取值范围. 【解析】(1)由离心率e==,得==,所以a=2b. ①因为原点O到直线AB的距离为,直线AB的方程为bx-ay-ab=0,所以=. ②将①代入②,得b2=9,所以a2=36.则椭圆C的标准方程为+=1.(2)因为EP⊥EQ,所以·=0,所以·=·(-)=.设P(x,y),则y2=9-,所以·==(x-3)2+y2=x2-6x+9+9-=(x-4)2+6.因为-6≤x≤6,所以6≤(x-4)2+6≤81.故·的取值范围为[6,81].19.(12分)已知函数f(x)=2lnx-x2+ax(a∈R).(1)当a=2时,求f(x)的图象在x=1处的切线方程.(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围. 【解析】(1)当a=2时,f(x)=2lnx-x2+2x,f′(x)=-2x+2,切点坐标为(1,1),切线的斜率k=f′(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.(2)g(x)=2lnx-x2+m,则g′(x)=-2x=.因为x∈,所以当g′(x)=0时,x=1.当<x<1时,g′(x)>0;当1<x<e时,g′(x)<0.故g(x)在x=1处取得极大值g(1)=m-1.又g=m-2-,g(e)=m+2-e2,g(e)-g=4-e2+<0,则g(e)<g,所以g(x)在上的最小值是g(e).g(x)在上有两个零点的条件是解得1<m≤2+,所以实数m的取值范围是.20.(12分)(2017·广州高二检测)某食品厂进行蘑菇的深加工,每千克蘑菇的成本20元,并且每千克蘑菇的加工费为t元(t为常数,且2≤t≤5),设该食品厂每千克蘑菇的出厂价为x 元(25≤x≤40),根据市场调查,日销售量q与e x成反比,当每千克蘑菇的出厂价为30元时,销售量为100千克.(每日利润=日销售量×(每千克出厂价-成本价-加工费)).(1)求该工厂的每日利润y元与每千克蘑菇的出厂价x元的函数关系式.(2)若t=5,当每千克蘑菇的出厂价x为多少元时,该工厂的每日利润y最大,并求最大值. 【解析】(1)设日销售量q=,则=100,所以k=100e30,所以日销售量q=,所以y=(25≤x≤40,2≤t≤5).(2)当t=5时,y=,y′=.由y′≥0得x≤26,由y′≤0得x≥26,所以y在[25,26]上单调递增,在[26,40]上单调递减,所以当x=26时,y max=100e4.当每千克蘑菇的出厂价为26元时,该工厂的利润最大,最大值为100e4元.21.(12分)(2015·北京高考)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值.(2)证明若f(x)有零点,则f(x)在区间(1,)上仅有一个零点.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=x-=.因为k>0,所以令f′(x)=0得x=,列表如下:) (- +减区间为(0,),增区间为(,+∞).当x=时,取得极小值f()=.(2)当≤1,即0<k≤1时,f(x)在(1,)上单调递增,f(1)=,f()=-=>0,所以f(x)在区间(1,)上没有零点.当1<<,即1<k<e时,f(x)在(1,)上递减,在(,)上递增,f(1)=>0,f()=>0,f()==>0,此时函数没有零点.当≥,即k≥e时,f(x)在(1,)上单调递减,f(1)=>0,f()=<0.所以f(x)在区间(1,)上仅有一个零点.综上,若f(x)有零点,则f(x)在区间(1,)上仅有一个零点.22.(12分)(2017·银川高二检测)已知椭圆的一个顶点为A(0,-1),焦点在x轴上,离心率为.(1)求椭圆的方程.(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N,当=时,求m的取值范围.【解题指南】(1)首先设出椭圆的标准方程为+=1(a>b>0),然后由已知可得a,b,c之间的关系,求解即可.(2)首先联立直线与椭圆的标准方程,并消去y可得一元二次方程(1+3k2)x2+6kmx+3m2-3=0,然后由直线与椭圆相交于不同的两点可得其判别式Δ>0,再设M(x1,y1),N(x2,y2),由根与系数的关系可得x1+x2,x1x2的值,即可得出MN的中点P 的坐标,并结合已知条件可得等式3k2=2m-1,最后得出m的取值范围即可.【解析】(1)因为椭圆的焦点在x轴上,故设椭圆的方程为:+=1(a>b>0),又椭圆的一个顶点为A(0,-1),离心率为,所以b=1,e==,即b=1,c=a,又a2=b2+c2,所以a2=1+a2,所以a2=3,所以椭圆的方程为:+y2=1.(2)联立消y得(1+3k2)x2+6kmx+3m2-3=0,因为直线与椭圆相交于不同的两点,设M(x1,y1),N(x2,y2),所以Δ=(6km)2-4(1+3k2)(3m2-3)>0,得:3k2-m2+1>0,①所以x1+x2=-,x1x2=,所以y1+y2=kx1+m+kx2+m=k(x1+x2)+2m=,取MN的中点P,则点P,又=,则AP⊥MN,所以由直线MN的斜率k≠0知直线AP的斜率必存在,所以k AP·k=·k=-1,化简得3k2=2m-1,代入①式得2m-1-m2+1>0,所以m2-2m<0,所以0<m<2,所以m的取值范围是(0,2).【补偿训练】(2017·梅州高二检测)如图所示,椭圆C:x2+=1(0<m<1)的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.(1)若点P的坐标为,求m的值.(2)若椭圆C上存在点M,使得OP⊥OM,求m的取值范围.【解题指南】(1)由题意知M是线段AP的中点,由中点坐标公式可得点M坐标,代入椭圆方程即可得到m值.(2)设M(x0,y0)(-1<x0<1),则+=1,①由中点坐标公式可用M坐标表示P点坐标,由OP⊥OM得·=0②,联立①②消去y0,分离出m用基本不等式即可求得m的范围.【解析】(1)依题意,M是线段AP的中点,因为A(-1,0),P,所以,点M的坐标为,由于点M在椭圆C上,所以+=1,解得m=.(2)设M(x0,y0)(-1<x0<1),则+=1,①因为M是线段AP的中点,所以P(2x0+1,2y0).因为OP⊥OM,所以⊥,所以·=0,即x0(2x0+1)+2=0.②由①,②消去y0,整理得m=,所以m=1+≤-,当且仅当x0=-2+时,上式等号成立.所以m的取值范围是.。
2017-2018学年高中数学(人教A版一)学业分层测评:第1章1.3.2奇偶性含解析

学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.函数f(x)=错误!-x的图象关于( )A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称【解析】∵f(-x)=-错误!+x=-f(x),∴f(x)=错误!-x是奇函数,∴f(x)的图象关于原点对称,故选C。
【答案】C2.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【解析】∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选C.【答案】C3.已知f(x)是偶函数,且在区间(0,+∞)上是增函数,则f(-0。
5),f(-1),f(0)的大小关系是()A.f(-0。
5)<f(0)<f(1)B.f(-1)<f(-0.5)<f(0)C.f(0)<f(-0.5)<f(-1)D.f(-1)<f(0)<f(-0。
5)【解析】∵函数f(x)为偶函数,∴f(-0.5)=f(0。
5),f(-1)=f(1).又∵f(x)在区间(0,+∞)上是增函数,∴f(0)<f(0。
5)<f(1),即f(0)<f(-0。
5)<f(-1),故选C。
【答案】C4.一个偶函数定义在区间[-7,7]上,它在[0,7]上的图象如图13。
6,下列说法正确的是()图13.6A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7D.这个函数在其定义域内有最小值是-7【解析】根据偶函数在[0,7]上的图象及其对称性,作出在[-7,7]上的图象,如图所示,可知这个函数有三个单调增区间;有三个单调减区间;在其定义域内有最大值是7;在其定义域内最小值不是-7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 算法初步
(时间90分钟,满分120分)
一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *A
A .0个
B .1个
C .2个
D .3个
解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.
2.计算机执行下面的程序段后,输出的结果是( )
a =1
b =3a =a +b b =a -b
PRINT a ,b
A .1 3
B .4 1
C .0 0
D .6 0
解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180
D .179
解析:选 D 10 110 011(2)=1×27
+0×26
+1×25
+1×24
+0×23
+0×22
+1×21
+1×20
=128+32+16+2+1=179.
4.下图是计算函数y =⎩⎪⎨⎪
⎧
-x , x ≤-1,0, -1<x ≤2
x 2, x >2的值的程序框图,则在①、②和③处应
分别填入的是( )
A.y=-x,y=0,y=x2
B.y=-x,y=x2,y=0
C.y=0,y=x2,y=-x
D.y=0,y=-x,y=x2
解析:选B 当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为( )
A.17 B.19
C.21 D.23
解析:选C第一次循环,i=3,S=9,i=2;
第二次循环,i=4,S=11,i=3;
第三次循环,i=5,S=13,i=4;
第四次循环,i=6,S=15,i=5;
第五次循环,i=7,S=17,i=6;
第六次循环,i=8,S=19,i=7;
第七次循环,i=9,S=21,i=8.
此时i=8,不满足i<8,故退出循环,输出S=21,结束.
6.下面的程序运行后,输出的值是( )
i =0DO
i =i +1
LOOP UNTIL 2^i >2 000 i =i -1PRINT i END
A .8
B .9
C .10
D .11
解析:选C 由题意知,此程序为循环语句,当i =10时,210
=1 024;当i =11时,211
=2 048>2 000,输出结果为i =11-1=10.
7.下列程序框图运行后,输出的结果最小是( )
A .2 015
B .2 014
C .64
D .63
解析:选D 由题图知,若使
n n +
2
>2 015,n 最小为63.
8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )
A .7
B .12
C.17 D.34
解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.
9.执行如图所示的程序框图,输出的结果为( )
A.55 B.89
C.144 D.233
解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y=3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y=13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x=34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.
10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的
《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算
法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实
例.若输入n,x的值分别为3,2,则输出v的值为( )
A.9 B.18
C.20 D.35
解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,
第一次循环:v=4,i=1;
第二次循环:v=9,i=0;
第三次循环:v=18,i=-1.
结束循环,输出当前v的值18.故选B.
二、填空题(本大题共4小题,每小题5分,共20分)
11.459与357的最大公约数是________.
解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.
答案:51
12.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝ ⎛⎭
⎪⎫12-2
=________.
解析:log 28<⎝ ⎛⎭
⎪⎫12-2
,
由题图,知log 28⊗⎝ ⎛⎭⎪⎫12-2
=3⊗4=4-13=1.
答案:1
13.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.
解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:3
14.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.
解析:S =4不满足S≥6,S =2S =2×4=8,n =1+1=2; n =2不满足n >3,S =8满足S≥6,则S =8-6=2,n =2+1=3; n =3不满足n >3,S =2不满足S≥6,则S =2S =2×2=4, n =3+1=4;
n =4满足n >3,输出S =4. 答案:4
三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.) 15.(本小题满分12分)如图是求1+12+13+…+1
100
的算法的程序框图.
(1)标号①②处应分别是什么?
(2)根据框图用“当”型循环语句编写程序. 解:(1)①k <101?(k <=100?) ②S =S +1
k .
(2)程序如下:
16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.
解:算法语句每一步骤对应于程序框图的步骤,其框图如下:
17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.
解:程序框图如图所示:
18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).
(1)若程序运行中输出的一个数组是(9,t),求t的值;
(2)程序结束时,共输出(x,y)的组数为多少?
(3)写出程序框图的程序语句.
解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;
(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;
(3)程序框图的程序语句如下:。