潮流能发电及潮流能发电装置

合集下载

潮汐能发电技术

潮汐能发电技术

潮汐能发电技术
潮汐能发电技术利用潮汐涨落的能量来产生电力。

主要有以下几种技术:
1. 潮汐水轮机:将潮汐涨落的水流转化为机械能,驱动水轮机转动,进而带动发电机发电。

水轮机可以是垂直轴或水平轴的,可以根据潮汐涨落的特点选择合适的类型。

2. 潮流涡轮机:利用潮汐涨落产生的潮流驱动涡轮机转动,产生电力。

潮流涡轮机通常安装在海床上,通过叶轮的旋转将水流动能转化为机械能,再通过发电机转化为电能。

3. 波浪能发电:利用波浪的起伏运动产生的机械能,驱动发电机发电。

常见的波浪能发电技术包括浮式波浪发电机、压力差发电机和摆式波浪发电机等。

4. 潮汐能发电站:通过建设大型潮汐发电站,利用潮汐涨落的能量进行发电。

发电站通常由多个水轮机或涡轮机组成,通过控制水流的流向和流量,实现持续稳定的发电。

潮汐能发电技术具有可再生、稳定可靠等优点,但也面临着技术成本高、设备易受损坏、环境影响等挑战。

目前,潮汐能发电技术正在不断发展和改进,寻求更高效、更经济、更环保的发电方式。

座底重力式潮流能发电装置结构研究及应用

座底重力式潮流能发电装置结构研究及应用

支撑结构 一 股通过焊接 方式实现框架 的全固定连接 。 2 载荷
图 l 座 底 重 力 式 塔 架 潮 流 能 发 电装 置总 体 构成 水轮发电机位 丁 - 支撑结构顺 , 监 由水轮机叶片、 传动机构和发, ! x l l L
碰底 霞力式塔梨所受的载荷主要钉_ 二类: 水轮机 丁作钱倚、 环境 载倚平 ”
能发I 装 置进 行 了研 究 荆 实 践
l 总体构成 与结构 特点 鹰底 重力式塔 梨潮流能发电装 置总体 l 包括水轮 发电机和 底诹 式 支撑结构 大 分( 图I ) 。
图2 不 同形 式 的 座 底 重 力 式 支撑 结 构
3 ) 由1 结构简 , 支撑 构规模较 小而无需 分块, 为, J ‘ 便 建造加 T,
科 学研 究
刘 H J J

( f I i l l 研 究 总 院 ,北 京 1 0 0 0 2 7 ) 要: 底 重 J 武涮流能发 I I _ I = 装置总 仆 J 包 括水轮发 } 机 和支撑 结构 部分 。该类 装 置 仃结构形式简单 ,
科学与财富
随着能源需求 的急速增长,蕴藏 巨大 i t l ‘ 乍能 的海} 丫 . 成为新能源开 发的晕要对象。潮流能, 作为} f l } 洋 能的 种, 由于 顺测性好、 稳定 m , 规 强等优坍, 开技技术正 日蕊得到 发展。使用水轮发 I 乜 机, 将水流的 动能转化为l 能, n J 以实现列潮流 能的消沽外发。 为给水轮机提供同定 支 撑, 仪据不 ¨的水深、 环境和他用条件, 需篮 歼发、 设 汁村】 适J 的支撑 构。 根据支撑结构形式的不川 , 潮流能发I 乜装置可分为- 三 类: 漂浮式 、 桩 式和 底式。 存胶南市斋堂岛附近海域的新能源示 范】 . ! i 《 I , , 对 庵底 力式潮 流

一种用于潮流发电的中空涡轮发电装置

一种用于潮流发电的中空涡轮发电装置

电力通用机械 铷
GM i lcr o e nE etcP w r i
由图 1 7以看 出 ,中空 涡轮潮流 发 电装 置的转轮 叶 片数较多 ,且叶片 的外 端有外轮缘支撑 ,这种结构 增加
了叶片的强度和 刚度 ,为扩 展转轮直径提供 了条件 , 目
传统 的发 电机 定子铁 心是 由开 槽 的齿状硅 钢 片叠 片组成 ,定子 绕组 缠绕在铁心上 。中空涡轮的定子铁心
图5 定子线 圈电路
中空涡 轮采 用这种 特殊 结构 的定子 设计 具有 如下
优点 :
()极大地 降低 了定子 的成本和 复杂性 1
传统 的
发 电机 定子铁 心是 硅钢 片经 冲压形 成的 齿状 叠片组成
的 ,硅钢 片的成 本和冲模 的费用很高 ,而且用来制造 该
图3 中空涡轮定子剖面
空腔可以设置成完全 围绕外环形轮缘的单个空腔 ,也可
以设置成并排或首尾相连关 系的 多个腔 。如果使用 多个 腔 ,则它们绕周 向均衡地布置 ,以使转子的旋转不会受 到不均匀质量力的影响 。浮力空腔可填充有空气或其他
气体 、液体或轻 型刚性 件或密 度为 1 0 g 更小 ×1 / 或 k m 的材料 ,但可优选地填充聚合物泡沫 ( 如聚亚安酯 ),
腔 ,并 在空腔 内填充 密度为 1 0k / 或更小 的材料 ×1 gm。
=二
{ = 二
水向 流 方
来增大转子的浮力 ,从而抵消转子的大重量所导致的消 极重力效应 ,减小转子的起动 阻力矩 ,缩短转子开始转
动的时 间。具有浮 力空腔 的转 子结构如 图6 示。浮力 所
一∥ I
大的摩擦 作用的不利影响 ,从而 降低 了涡轮机 的效率。 此外 ,积聚 的碎片可能损坏转子或定子壳体 的内表 面 , 这对于装在 涡轮机 外轮缘和定子壳体 内表面上 的磁 极和

潮汐能发电在海洋工程中的应用案例

潮汐能发电在海洋工程中的应用案例

潮汐能发电在海洋工程中的应用案例潮汐能发电是一种可再生能源的形式,利用海洋潮汐运动来产生电力。

这种能源形式在海洋工程中有着广泛的应用,为地球上不同地区的能源需求提供了可持续发展的解决方案。

本文将介绍一些潮汐能发电在海洋工程领域中的应用案例。

1. 潮流发电计划潮流发电计划是英国一个重要的潮汐能发电项目。

该项目位于苏格兰的苏利文湾,利用人工安装的潮汐涡轮机将潮汐能转化为电能。

这个计划的主要目标是测试和改进潮汐能发电技术,同时为苏利文湾地区提供可持续的清洁能源。

通过该项目的实施,潮汐能发电在海洋工程中得到了进一步的推广和应用。

2. 应用于岛屿供电塞班岛是太平洋上一个人口较多的岛屿,过去主要依靠柴油发电机供电。

然而,柴油发电机不仅昂贵而且对环境造成污染。

为了解决这个问题,塞班岛引入了潮汐能发电技术。

通过在周围海域安装潮汐涡轮机,岛上居民可以利用潮汐能发电机组的清洁能源来满足电力需求。

这项工程为岛上提供了可持续、环保的电力解决方案。

3. 海岸线防洪工程潮汐能发电在海岸线防洪工程中也有着重要的应用。

潮汐能发电装置可以与防洪设施结合使用,既能够发挥潮汐能发电的作用,又能够有效地减少洪水灾害的发生。

通过安装潮汐涡轮机,波浪和潮汐的能量可以转化为电能,并且在需要时可以调节发电装置的运行方式,减缓洪水的影响。

这种应用方式在一些沿海城市和岛屿上得到了广泛的采用。

4. 水下航行器充电站潮汐能发电还可以应用于水下航行器充电站的建设。

水下航行器是进行海洋科学研究和资源勘察的重要工具,但是其电池容量有限,需要进行频繁的充电。

潮汐能发电装置可以在海洋中为这些航行器提供可持续的电力。

通过设置水下充电站,航行器可以在需要时进行电池充电,从而延长使用时间和提高工作效率。

总结:以上是几个潮汐能发电在海洋工程中的应用案例。

这些案例展示了潮汐能发电作为一种可再生能源,在海洋工程领域中的广泛应用和潜力。

随着技术的不断进步和环境意识的提高,相信潮汐能发电将在未来发挥更大的作用,为我们提供更清洁、可持续的能源解决方案。

潮流能发电及潮流能发电装置汇总

潮流能发电及潮流能发电装置汇总

潮流能发电及潮流能发电装置戴庆忠摘要 潮流能发电是利用潮汐动能的一种发电方式。

由于潮流能发电不需要筑坝 拦水,具有对环境影响小等许多优点。

因此,近年来潮流能发电引起许多国家 重视,潮流能发电技术发展很快。

本文从分析潮流能的特点入手,介绍了国内外潮 流能发电的近况,重点介绍目前出现的各种潮流能发电装置,包括水平轴潮流能水轮 机、竖井潮流能水轮机、振荡水翼式潮流能装置等。

关键词 潮汐 潮流能 潮流能水轮机 潮流能发电1 前言1.1 潮流能的特点潮流主要是指伴随潮汐现象而产生的有规律的海水流,潮流每天两次改变其大小和方向。

而潮流能发电则是直接利用涨落潮水的水流冲击叶轮等机械装置进行发电。

众所周知,潮汐是海水在月球、太阳等引力作用下形成的周期性海水涨落现象。

潮汐现象伴随两种运动形态:一是涨潮和落潮引起的海水垂直升降,即通常所指的潮汐;二是海水的水平运动,即潮流。

前者(海水垂直升降)所携带的能量(潮汐能)为势能;而后者所携带的能量(潮流能)为动能。

可以说,两者是与潮汐涨落相伴共生的孪生兄弟。

对前者,可以采用类似河川水力发电的方式,筑坝蓄水发电;而对本文所介绍的潮流能,可以采用类似于海流发电方式,利用潮流的动能发电。

与常规能源比较,潮流能有以下特点:(1) 潮流能是一种可再生的清洁能源。

(2) 潮流能的能量密度较低(但远大于风能和太阳能),但总储量较大。

(3) 与海流能不同,潮流能是一种随时间、空间而变化的能源,但其变化有规律可循, 并可提前预测预报。

(4) 潮流能发电不拦海建坝,且发电机组通常浸没在海中,对海洋生物影响较小,也不 会对环境产生三废污染,不存在常规水电建设中头疼的占用农田、移民安置等诸多问题。

(5) 与陆地电力建设相比,潮流能开发环境恶劣,一次性投资大,设备费用高,安装维 护和电力输送等都存在一系列关键技术问题。

1.2 潮流能水轮机输出功率的计算潮流能机组输出功率的计算公式为: P=ηρ23AV式中 P ——功率,Wρ——海水密度,1025kg/m 3A ——潮流水轮机转子扫掠面积,m 2V ——潮流速度,m/sη——效率从上述可以看出,潮流能机组的输出功率很大程度决定于潮流速度。

潮流能发电原理

潮流能发电原理

潮流能发电原理潮流能发电是一种利用海洋潮汐能转化为电能的可再生能源技术。

潮汐是由于地球受到月球和太阳的引力作用而产生的规律性海洋水位变化。

潮汐是一种相对固定的自然现象,能够稳定地提供能量。

因此,利用潮汐能发电具有持续稳定的特点,被视为一种可靠的清洁能源。

潮流能发电的原理是利用海洋潮汐能转化为动力能,再将动力能转化为电能。

具体来说,主要包括潮汐动力装置和发电装置两部分。

潮汐动力装置是将潮汐能转化为机械能的装置。

一种常见的潮汐动力装置是潮流涡轮机。

潮流涡轮机通过将水流引入涡轮机,利用水流的动能带动涡轮旋转,进而驱动涡轮机内部的发电机发电。

涡轮机通常设在海底,以最大限度地利用潮流能。

发电装置是将机械能转化为电能的装置。

一般情况下,潮流涡轮机会通过传动系统将动力传递给内部的发电机。

发电机利用电磁感应原理,将旋转的机械能转化为电能。

由于潮流涡轮机的运行受到潮汐的影响,因此发电装置需要具备一定的调节和控制系统,以保证发电的稳定性和可控性。

潮流能发电具有一些独特的优势。

首先,潮汐能是一种可再生的能源,不会像化石能源一样耗尽。

其次,潮汐能是一种稳定的能源,潮汐的周期性和规律性使得发电系统能够提前计划和调度发电。

再次,潮流能发电是一种清洁能源,不会产生二氧化碳等温室气体和污染物,对环境没有直接的负面影响。

此外,潮流能发电的设备通常位于海洋中,不会占用大量陆地资源。

然而,潮流能发电也存在一些挑战和问题。

首先,由于潮汐能的利用需要特定的地理环境和条件,因此潮流能发电的可行性和适用性受到一定限制。

其次,潮流能发电设备的建设和维护成本较高,需要大量的投资。

此外,潮流能发电还面临着对海洋生态环境的影响和冲击,需要进行充分的环境评估和监测。

潮流能发电技术还处于发展初期,尚未广泛商业化应用。

但随着清洁能源的需求和发展,潮流能发电作为一种可持续的能源选择,具有重要的发展前景。

未来,随着技术的进一步突破和经济的进一步成熟,潮流能发电有望成为海洋能源领域的重要组成部分。

海水资源开发利用实践——潮流能发电

海水资源开发利用实践——潮流能发电

海水资源开发利用实践——潮流能发电由于引潮力的作用,海水不断地涨潮、落潮。

涨潮时,大量海水汹涌而来,具有很大的动能;同时,水位逐渐升高,动能转化为势能。

落潮时,海水奔腾而归,水位陆续下降,势能又转化为动能。

海水在涨潮和落潮时所具有的动能和势能统称为潮汐能。

潮汐能是一种蕴藏量极大、取之不尽用之不竭、不需开采和运输、洁净无污染的可再生能源。

目前潮汐能最成熟的利用形式是潮汐发电。

2022年4月29日上午,位于岱山县秀山岛海域的LHD海洋潮流能发电平台,目前世界最大单机容量潮流能发电机组“奋进号”正在潮流的带动下平稳运转,源源不断地输送出绿色电能。

截至2022年7月底,该电站已连续运行超过62个月,累计发电总量超过293万千瓦时。

一、潮流能资源的基本介绍潮流能是指月球和太阳的引潮力使海水产生周期性的往复水平运动而形成的动能,发电原理是将水流中的动能通过装置转化为机械能,进而将机械能转化为电能。

适宜开发潮流能的区域通常是指流速峰值大于2m/s的位置,发电装置通常在潮流流速为0.8m/s时启动。

开阔海域的潮流速度通常仅为0.1m/s,但潮波与邻近陆块之间的岬角、岛屿和狭窄海峡等海岸地形的相互作用可使得流速超过2m/s。

因此,合适的地点位于沿海水域且高度局部化。

根据亚特兰蒂斯能源公司的报告,潮流能在全球范围内储量超过120GW。

二、潮流能发电技术(一)潮流能发电装置潮流能发电装置在开发过程中,逐渐研发出多种不同的结构形式,其中根据来流的流向与水轮机装置转动轴的位置关系,可分为水平轴式水轮机和垂直轴式水轮机,还有通过支撑臂摆动来获能的振荡水翼技术等;现有的多数潮流能装置采用直接固定于海底的方法,这样更有利于获能的稳定,但如果需要在离岸较远、水位较深的地方安装装置,则需采用漂浮式结构以便于安装和节约成本。

利用天然潮流所带来的动能推动装置发电的技术可以避免如潮汐发电站或水电站需要修建堤坝与配套设施,能减少相应的投资,且水轮机装置对生态环境影响小。

海洋能技术及应用

海洋能技术及应用

海洋能技术及应用随着全球能源消费的迅速增长,能源安全问题和能源环境问题越来越成为国内各界和国际社会高度关注的问题。

传统能源储量的减少和开发难度的日益增大使人类困扰于前所未有的能源危机,大部分传统能源的利用过程往往也伴随着相当程度的污染,这对人类的生存环境造成了严重的破坏,因此开发清洁而安全的新能源是解决目前能源与环境困境的有效办法之一。

各国科学家都在努力研究,开发利用新的能源。

海洋能是一种洁净的新能源,我国拥有丰富的海洋能,开发海洋能对沿海地区及海域的经济发展与节能减排工作都具有重要意义。

一.海洋能简介海洋能是一种蕴藏在海洋中的重要的可再生清洁能源,主要包括潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能,更广义的海洋能还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。

从成因上来看,海洋能是由太阳能加热海水、太阳月球对海水的引力、地球自转力等因素的影响下产生的,因而是一种取之不尽、用之不竭的可再生能源,而且开发海洋能不会产生废水、废气,也不会占用大片良田,更没有辐射污染,因此,海洋能被称为21世纪的绿色能源,被许多能源专家看好。

海洋能的全球储量达1500亿千瓦,其中便于利用的有70亿千瓦。

据估算.全球海洋能固有功率以温差能、盐差能以及海洋风能和太阳能最大.波浪能和潮汐能居中,海流能相对较小。

1981年联合国教科文组织统计资料显示,技术上海洋能可利用功率达64亿kW.是当时全球发电装机容量的2倍。

二.海洋能特点海洋能源与常规能源相比具有以下特点:1.海洋能在海洋总水体中的蕴藏量巨大,能量密度低而单位体积、单位面积、单位长度所拥有的能量较小。

这就是说,要想得到大能量,就得从大量的海水中获得。

海洋能广泛地存在于占地球表面积71%的海洋上,所以其总蕴藏量却是巨大的。

据国外学者们计算,全世界各种海洋能固有功率的数量以温差能和盐差能最大为1010KW,波浪能和潮汐能居中均为1O9KW,海流能最小为1O8KW。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档