方林锋 小升初 数量关系 经典几何问题

合集下载

小升初数学图形问题难题精选

小升初数学图形问题难题精选

小升初数学图形问题难题精选1、【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。

这本书的插图中正方形最多有_____个。

【答案】40个2、【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】123、【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。

【答案】5、【面积】【2】求出图中梯形ABCD的面积。

其中BC=10厘米。

【答案】50平方厘米6、【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。

【答案】18平方厘米图中的阴影部分面积是正方形面积的。

3×3÷2×4=18(㎝2)7、【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。

【答案】√8、【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】729、【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。

【答案】40.5平方厘米10、【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。

甲三角形的面积比乙三角形的面积多多少平方分米?【答案】9611、【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米12、【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】6.513、【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】14【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.【答案】6cm215、【等高模型】【3】如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。

小升初考试中常见的立体几何题解题技巧

小升初考试中常见的立体几何题解题技巧

小升初考试中常见的立体几何题解题技巧知识点:小升初考试中常见的立体几何题解题技巧一、基本概念与性质1. 立体几何的研究对象:空间中的点、线、面及其之间的位置关系。

2. 空间点、线、面的位置关系:a) 点在线上:过一点作直线,有且只有一条直线与已知直线平行。

b) 点在线外:过一点作已知直线的平行线,有且只有一条直线与已知直线平行。

c) 点在面内:过一点作平面,有且只有一个平面与已知平面平行。

d) 点在面外:过一点作已知平面的平行平面,有且只有一个平面与已知平面平行。

3. 立体几何中的公理与定理:a) 公理:如公理1(平行公理)、公理2(公理的传递性)等。

b) 定理:如欧拉定理、斯图尔特定理、余弦定理等。

二、立体几何的基本图形1. 棱柱:上下底面平行,侧面为矩形的立体图形。

2. 棱锥:一个顶点出发,连接多个顶点的立体图形。

3. 圆柱:上下底面为圆,侧面为矩形的立体图形。

4. 圆锥:一个顶点出发,连接多个顶点的立体图形,底面为圆。

5. 球体:所有点到一个固定点的距离相等的立体图形。

三、立体几何的计算公式1. 体积计算公式:a) 棱柱体积 = 底面积 × 高b) 棱锥体积 = (底面积 × 高) / 3c) 圆柱体积 = 底面积 × 高d) 圆锥体积 = (底面积 × 高) / 3e) 球体体积 = (4/3)πR³2. 表面积计算公式:a) 棱柱表面积 = 2 × 底面积 + 侧面积b) 棱锥表面积 = 底面积 + 侧面积c) 圆柱表面积 = 2 × 底面积 + 侧面积d) 圆锥表面积 = 底面积 + 侧面积e) 球体表面积 = 4πR²四、立体几何题解题技巧1. 画图:在解题过程中,画出立体图形,有助于直观地理解题意和找到解题思路。

2. 分解:将复杂的立体几何问题分解为简单的部分,逐步求解。

3. 数形结合:利用立体图形的性质,结合数学公式,进行计算。

小升初数学分类专项复习——图形与几何(含答案)

小升初数学分类专项复习——图形与几何(含答案)

小升初数学分类专项复习——图形与几何一、填空。

(每空1分,共18分)1.经过两点能画出()条直线,过一点可以画()条射线,过两点可以画()条线段。

2.长方形有()条对称轴,等腰三角形有()条对称轴,圆有()条对称轴。

3.3时整的时候,钟面上分针和时针的夹角是()°。

4.一个三角形的三个内角的度数比是 1 ∶1 ∶2,这个三角形是()三角形。

5.一个底边长8厘米,高4厘米的平行四边形,它的面积是()平方厘米,一个与它等底等高的三角形的面积是()平方厘米。

6.两个圆的半径分别是2厘米和4厘米,它们面积的比是()。

7.一个圆柱和一个圆锥等底等高,圆柱和圆锥的体积之和是40立方米,圆柱的体积是()立方米,圆锥的体积是()立方米。

8.用48 cm长的铁丝焊成一个正方体框架(接口处不计),这个正方体框架的棱长是() cm,体积是()cm3,表面积是()cm2。

9.一个长方形的周长是20分米,它的长与宽的比是3 ∶2,它的面积是()平方分米。

10.把一个棱长6分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是()立方分米。

二、判断。

(对的打“√”,错的打“×”)(每题2分,共10分)1.在同一平面内,两条不相交的直线一定平行。

()2.两个面积相等的梯形一定能拼成一个平行四边形。

() 3.周长相等的两个长方形,它们的面积一定相等。

() 4.圆柱的底面积不变,它的高扩大到原来的2倍,体积也扩大到原来的2倍。

() 5.三个完全一样的正方体拼成一个长方体后,这个长方体的表面积就等于三个正方体表面积的和。

() 三、选择。

(把正确答案的字母填在括号里)(每题3分,共15分) 1.下面的图形中,()是正方体的展开图。

2.下面各组线段中,能围成三角形的是()。

A.1 cm 1 cm 2 cm B.1 cm 2.5 cm 3 cm C.0.9 cm 1 dm 2 dm D.4 m7 m 2 m 3.如右图所示,在等腰梯形中,甲和乙的面积相比,结果是()。

小升初几何专题复习

小升初几何专题复习

小升初几何问题一、平面图形基础知识常用计算公式:长方形面积:,周长:__________________________________平行四边形面积:,周长:______________________________梯形面积:__________________ ,周长:_____________三角形面积:________________ ,周长:_____________圆面积:,周长:__________________________________扇形面积:,周长:____________________________________例题解析(1)1、图(下)是某居民小区的一块长方形的空地,经小区领导研究决定,在这块地的四边向内5米宽的区域内栽上树苗,进行绿化。

请你先画出绿化的区域并涂上阴影,再计算出阴影部分的面积是多少平方米?2、图(下)是一块长方形草地,长方形的长是16米,宽是10米,中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分(阴影)的面积有多大?3、用12米长的篱笆靠着一段墙围一个高为3米的直角梯形小菜园,菜园的面积是多少平方米?4、如图,某工厂的一座新厂房建筑在一块边长是25米的正方形场地上,厂房的横竖都宽5米。

求:(1)工字形新厂房的周长是多少米?⑵工字形新厂房的面积是多少平方米?5、如图是一个大正方形和一个小正方形拼成的图形,已知小正方形的边长是66、如图,在一块长60米,宽40米的长方形庭院正中央,设计了“丁字形”甬路. 已知甬路宽2米,横甬路到两边的距离相等,竖甬路到两边距离也相等。

求:(1) “丁字形”甬路的周长是多少米?⑵“丁字形”甬路的面积是多少平方米?7、有一个正方形白手绢,边长为30厘米,里面横竖各有两道彩条,如右图所8、在一个长50米,宽30米的小花园,有一条宽2米的弯曲小路,准备在小路两边铺上草坪。

问需购买多少平方米的草皮?例题解析(2)1、计算下图阴影部分的周长。

小升初重点数学几何题

小升初重点数学几何题

小升初重点数学几何题在小升初考试中,数学几何题是一个重要的考察内容。

本文将为大家介绍几个常见的小升初重点数学几何题,并提供解答方法和技巧。

1. 平行线之间的关系:在平行线之间的关系中,常见的问题包括平行线与交线夹角问题、平行线之间的长度比问题等。

解决这类问题时,可利用平行线性质和相似三角形性质。

根据平行线之间的夹角关系,可以得到相应角度的对应关系,从而得到所求的角度。

对于平行线之间的长度比问题,可利用相似三角形的性质,通过设置方程求解未知长度。

2. 三角形的面积与相似三角形问题:在解决三角形的面积问题时,可以利用三角形面积公式,即面积等于底乘以高的一半。

但在有些情况下,给定的问题可能无法直接应用该公式。

这时可借助相似三角形的性质,利用比例关系求解。

通过找到两个相似三角形之间的对应边长关系,可以建立方程并求解未知数,得到所求的面积。

3. 直角三角形相关问题:直角三角形是小升初数学几何题中的一个重要内容。

相关问题主要包括勾股定理的应用、特殊直角三角形的性质等。

对于勾股定理的应用,要根据给定的边长关系判断是否构成直角三角形,然后利用勾股定理求解未知边长或角度。

关于特殊直角三角形,例如30°-60°-90°及45°-45°-90°三角形,具有特殊的边长比例关系,掌握这些特殊三角形的性质和边长比例是解答题目的关键。

以上是小升初数学几何题的一些重点内容和解题技巧。

通过掌握平行线之间的关系、三角形的面积与相似三角形问题以及直角三角形相关问题的解题方法,可以提高解题的准确性和效率。

希望同学们能够多加练习和巩固,提前适应并掌握这些重要的数学几何题。

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。

A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。

A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。

A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。

A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。

B.三角形的底和高扩大2倍,它的面积也扩大2倍。

C.相邻两个非0的自然数,其中一定有一个是合数。

9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。

①2厘米长的线段向上平移10厘米,线段的长还是2厘米。

②8080008000这个数只读出一个“零”。

③万级包括亿万、千万、百万、十万、万五个数位。

④三位数乘两位数,积不可能是六位数。

A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。

13.是由几个拼成的。

;;。

14.在横线上填上“平移”或“旋转”。

汽车行驶中车轮的运动是现象;推拉门被推开是现象。

15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。

小升初几何高频考点汇总与方法总结(上)

小升初几何高频考点汇总与方法总结(上)

小升初几何高频考点汇总与方法总结(上)几何是小升初数学中的重要内容之一。

掌握几何的高频考点是提高学生成绩的关键。

本文将汇总小升初几何的高频考点,并总结一些解题方法。

1. 直线、线段与射线- 直线:没有端点的线段。

- 线段:由两个端点确定的部分。

- 射线:由一条直线和一个端点组成的部分。

2. 角的基本概念- 锐角:小于90度的角。

- 直角:等于90度的角。

- 钝角:大于90度但小于180度的角。

- 平角:等于180度的角。

3. 三角形- 等边三角形:三条边都相等的三角形。

- 等腰三角形:两条边相等的三角形。

- 直角三角形:有一个90度角的三角形。

4. 平行线和垂直线- 平行线:在同一个平面上,永远不相交的直线。

- 垂直线:相交成直角的两条线。

5. 长方形和正方形- 长方形:四个角都是直角的四边形。

- 正方形:四条边和四个角都相等的四边形。

解题方法总结1. 画图:根据题目条件,画出几何图形,有助于理清思路和找出解题方法。

2. 角的性质:利用角的性质分析题目,包括角的大小关系、角的补角和余角等。

3. 图形分割:将复杂的几何图形分割成简单的几何图形,利用简单图形的性质解题。

4. 度量关系:利用已知条件和角的度量关系求解未知量。

5. 图形相似:利用图形相似的性质,推导出未知量的关系式,求解题目。

以上是小升初几何的高频考点和解题方法的总结,希望能对学生在几何方面的研究和备考有所帮助。

参考资料:- 教材《小学数学》- 教辅资料《小升初数学模拟试卷》注意:以上内容仅为个人总结,不能确认是否完全准确。

如有不妥之处,请以正式教材为准。

小升初民办初中必考知识点之典型应用题

小升初民办初中必考知识点之典型应用题

小升初民办初中必考知识点之典型应用题
一、典型应用题
1.植树问题
①开放型与封闭型
②间隔与株数的关系
2.方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3.列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题
车长=速度和×相遇时间
车长=速度差×追及时间
4.年龄问题
差不变原理
5.鸡兔同笼
假设法的解题思想
6.牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7.平均数问题
8.盈亏问题
分析差量关系
9.和差问题
10.和倍问题
11.差倍问题
12.逆推问题
还原法,从结果入手
13.代换问题
列表消元法
等价条件代换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档