密度泛函理论(DFT)的基础.ppt
密度泛函理论(DFT)

一、 计算方法密度泛函理论(DFT )、含时密度泛函理论(TDDFT )二、 计算方法原理1. 计算方法出处及原理本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。
那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程:()()22ˆˆˆˆ,2N N N i i j i i i i j H T V U V r U r r E m <⎡⎤⎡⎤ψ=++ψ=-∇++ψ=ψ⎢⎥⎣⎦⎣⎦∑∑∑ (2-3) 其中,● Ĥ, 哈密顿算符;● E , 体系总能量;● ˆT, 动能项; ● ˆV, 由带正电的原子核引起的外场势能项; ● Û, 电子电子相互作用能。
通常把 ˆT和 Û 叫做通用算符, 因为对于任何一个 N 电子体系, 表达式都相同.而势能函数 ˆV与体系密切相关。
由于电子相互作用项 Û 的存在, 复杂的多体系的薛定谔方程公式 2-3并不能拆分为简单的单电子体系的薛定谔方程。
根据 DFT 的核心理念, 对于一个归一化的波函数 Ψ, 电子的密度 n(r ) 可以定义为:333*231212()(,,)(,,)N N N n r N d r d r d r r r r r r r =⋅⋅⋅ψ⋅⋅⋅ψ⋅⋅⋅⎰⎰⎰ (2-4)更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ⋅⋅⋅就唯一确定。
也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为:[]00n ψ=ψ (2-5)既然有以上的假定, 那么对于基态的任何一个观测量ˆO, 它的数学期望就应该是0n 的泛函:[][][]000ˆO n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函:[][][]0000ˆˆˆE E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00ˆn V n ψψ可以通过基态的电子密度0n 来精确表达:300[]()()V n V r n r d r =⎰ (2-8)或者外部势能ˆVψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =⎰ (2-9)泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。
计算材料学第一性原理密度泛函理论分子动力学ppt课件

波恩-奥本海默近似
因为原子核的质量为电子的1000倍左右,因此其速度比电子慢得多; 那么,可以将电子运动分为两个部分:考虑电子运动时,原子核处于 其瞬时的位置,而考虑核的运动时不考虑电子在空间的具体分布。这 样可以将原子核与电子分离求解。
将上式代人薛定谔方程,电子部分:
哈密顿量:
23
Thomas-Fermi-Dirac近似
非自旋极化系统, 自旋极化系统,
电子气关联能的表达式,
35
交换关联函数, GGA
在L(S)DA的基础上,人们又进一步发展了广义梯度近似(GGA)。GGA 在L(S)DA的基础上,认为交换关联能 不但是电子密度的函数,而且 还是其梯度的函数。其表达式为:
--到此为止,整个过程就只有一次近似,即局域密度近似;那么这个计算 结果的正确与否就决定了LDA(GGA)的合理与否。
交换项
动能项
外场项
库仑项
丢失了很多重要的物理量,如原子的壳层信息
24
Hohenberg-Kohn 定理
定理一: 粒子数密度函数是一个决定系统基 态物理量性质的基本变量。
定理二: 在粒子数不变条件下能量泛函对密 度函数的变分就得到系统基态的能量
25
定理一
定理一: 粒子数密度函数是一个决定系统基 态物理量性质的基本变量。
33
K-S方程求解 (SCF)
求解条件:用来构造有效势的 电荷密度与解Kohn-Sham方程 得来的电荷密度一致。
解Kohn-Sham方程,这一步 计算量最大,里面需要用到许 多技巧,比如平面波展开,赝 势等。
SCF:自洽求解
34
交换关联函数, LDA
交换关联势在意义上是非局域的,我们前面提到这一部分包含两部分 交换相互作用和关联作用(即是有相互作用粒子和无相互作用粒子的
DFT(密度泛函理论)ppt课件

1. Lennard-Jones (LJ)势
最常用的描述原子间范德华力的经验势。最广泛使用的是 12-6 LJ:
V (r)
4
12
r12
6
r6
F(r)
V
r
24
r
12
2
r12
6
r6
rˆ
惰性气体的原子间相互作用仅用 LJ 就基本可以完全描述。
Perdew and Wang(PW91 or P91):改进 P86。
PW c
91
H0 t, rS , H1 t, rS ,
H0
t, rS
,
b1
f
3
ln
1
a
1
t2 At 2
At 4 A2t 4
H1
t,
rS
,
N i
i
2
2
4
Perdew and Wang (PW91)
PW91
x
LDA x
xa1 sinh1 xa2 1 xa1 sinh1
a3 xa2
a4ebx2 a5x2
x2
x
4/3
关联项
Q
tan
1
Q 2x b
2
f 1 4/3 1 4/3 2 2 21/3 1
x rS X x x2 bx cQ 4c b2
第四章 密度泛函理论(DFT)

[ ] 1 2
∇
2
+
v
'(r
)
ψ
' i
(r
)
=
ε
i'ψ
' i
(r
)
(4.23)
N
2
∑ n '(r) =
ψ
' i
(r
)
i =1
(4.24)
16
Kohn-Sham方程
N
N
∑ ∑ ∴
ε
' i
=
DFT: n(r) 3维空间。
也许,在有机化学、生物 技术(爱滋病)、合金物 理、表面科学、磁性等领 域DFT最为重要。
8
4.3 Hohenberg-Kohn定理-I
1. 定理1:对于一个共同的外部势v(r), 相互作用的多粒子系统的 所有基态性质都由(非简併)基态的电子密度分布n(r)唯一地 决定。 简并Ref
Hohenberg-Kohn定理的证明
• HK定理的证明:外部势v(r)是n(r)的唯一泛函。即由n(r)唯一决 定。换句话说,如果有另一个v’(r),则不可能产生同样的n(r).
反证法:设有另一个v’(r) ,其基态Ψ’也会产生相同的n(r).
∵ v(r)≠v’(r) ,∴ Ψ≠Ψ’(除非v’(r)-v (r)=const).
同理,T和U也是n(r) 的唯一泛函。可定义:
F[n(r)] = (Ψ, (T + U )Ψ)
(4.12)
式(4.12)是一个普适函数,适于任何粒子系和任何外部势。于是 整个系统的基态能量泛函可写为:
第四章 密度泛函理论(DFT)

Hartree单位 外部势
∫
U
=
1 2
r
1 −r′
ψ
+
(
r
)ψ
+
(
r
′)ψ
(r
′)ψ
(
r
)drdr
′
(4.1) (4.2) (4.3)
(4.4)
电子密度算符 nˆ(r) = ψˆ + (r)ψˆ (r)
(4.5)
电子密度分布n(r)是nˆ(r) 的期待值:
n(r) = (Ψ, nˆ(r)Ψ) (即 Ψ nˆ(r) Ψ ) (4.6) 9
∵ Ψ 与 Ψ’满足不同的Schrödinger 方程:
HΨ=EΨ
Hˆ = Tˆ + Vˆ + Uˆ
H’Ψ’ = E’Ψ’ Hˆ ′ = Tˆ + Vˆ′ + Uˆ = H + V ′ − V
(4.7) (4.8)
• 利用基态能量最小原理,有
E′ = (Ψ′, Hˆ ′ Ψ′)
< (Ψ,
H
'
Ψ)
DFT: n(r) 3维空间。
也许,在有机化学、生物 技术(爱滋病)、合金物 理、表面科学、磁性等领 域DFT最为重要。
8
4.3 Hohenberg-Kohn定理-I
1. 定理1:对于一个共同的外部势v(r), 相互作用的多粒子系统的 所有基态性质都由(非简併)基态的电子密度分布n(r)唯一地 决定。 简并Ref
我们将在第五章详细介绍LDA,本章只直 接引用以便建立Kohn-Sham方程。
14
局域密度近似(LDA)
LDA: 对于缓变的n(r) 或/和高电子密度情况,可采用如下近似:
密度泛函理论

密度泛函理论导言密度泛函理论(Density Functional Theory, DFT)是一种用于计算量子力学体系中电子密度的方法。
它是由Hohenberg 和Kohn于1964年首次提出,并在Kohn和Sham于1965年进行进一步发展。
密度泛函理论在固体物理、化学和生物物理等领域中得到了广泛的应用,并成为计算材料科学的重要工具。
基本原理密度泛函理论的基本思想是通过电子密度来描述体系的基态性质。
根据Hohenberg和Kohn的第一定理,任何物质的基态性质都可以通过其基态电子密度唯一确定。
而根据第二定理,存在一个能泛函,即总能量泛函,使得该能泛函在给定的电子密度下取得最小值。
根据Kohn和Sham的工作,总能量泛函可以分解为以下三个部分:动能泛函、外势能泛函和电子间排斥能泛函。
•动能泛函是电子动能的泛函,它可以用Kohn-Sham 方程的非相互作用的体系的Kohn-Sham轨道来表示。
该方程可以看作是一组单电子Schrödinger方程,其中电子之间的相互作用通过有效的外势能来描述。
•外势能泛函是不包括电子间相互作用的外势能的泛函,它可以通过实验数据或密度泛函理论本身得到。
•电子间排斥能泛函是电子之间的库伦相互作用的泛函,其一般采用Coulomb势能或同时考虑交换-相关作用的LDA(局域密度近似)或GGA(广义梯度近似)泛函来表示。
密度泛函理论的实现在实际计算中,密度泛函理论的实现包括以下几个关键步骤:1.选择适当的泛函:根据系统的性质选择合适的泛函,其中包括局域密度近似(LDA)和广义梯度近似(GGA)等方法。
2.确定电子密度:通过求解Kohn-Sham方程或自洽场方法确定电子密度。
3.计算物理性质:利用求解得到的电子密度计算相应的物理性质,如能带结构、吸附能等。
4.校正方法研究误差:对于一些复杂体系,密度泛函理论可能存在误差,可以通过校正方法如GW近似、自洽微扰理论等来提高计算的精度。
第三章_密度泛函理论(DFT)

(3.11)
j (r) dr 1
2
(3.12)
为了定义一个完整的反对称波函数,我们用反对称算符作用 在Hartree product上,于是多体波函数可以用行列式的形式 被写出,并可用代数的技巧来处理它。这个行列式波函数就 称为Slater 行列式:
5。原子波函数复杂性的估算
考虑实空间有10x10x10=1000个离散点。 对于He原子,只有2个电子,按上述公式,离散 的波函数将由1000x999/2=500x999~5x105的一组 成员来定义。这使得Schrödinger方程的离散方式 是一个有5x105个矢量的本征矢问题。 对于C,有6个电子,问题的维数是: 1000x999x998x997x996x995/(6x5x4x3x2)~1015。 如果考虑的离散点更多,将更为复杂。
2。所有的方法都将与波函数有关联,或者与由波函数 导出的量相关。例如密度矩阵或密度,这些将在前2 -6节详述。另一个重要的概念是变分原理,将在第 7节介绍。
2
3.2 外部势场中的电子体系
1。如果研究的对象是固体中的电子,这里外部势场不是指 外加的电磁场,而是核和其它电子构成的势场。这时体系 的Hamiltonian和Schrödinger方程如下:
N amp M! M ( M 1)...( M N 1)( M N )! M N = N !( M N )! N !( M N )! N!
(3.10)
用这个公式计算时,通常M比N大许多,所以它变成MN/(N!)。 对于实际的体系,需要考虑自旋自由度,上述讨论尚需做适 当修改。但不必担心这个,我们只需对此问题的size有一定观 念即可。 7
密度泛函理论(DFT)的基础.ppt

用二次量子化和场算符概念推导
N-粒子波函数 把2-粒子波函数推广到N-粒子情形,其波函数写成
1 ( r ,, r , r ) 0 ( r ) ( r ) () r
i 12 N
N !
1
2
N
(3.26)
b b b 其中 是N个粒子状态各不相同的情形。 k 21 0 N 对于费米子,式(3.26)写成单粒子波函数的表达式,就是 著名的Slater行列式:
e l E ( RURER ) ( ) () n N n
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 e l (3.2) V ( r ) ( r , . . . r ) E ( r , . . . r ) i n 1 N nn 1 N r 2i r 1 i 1 i jN r i j
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。
( r , r , . . . r ) ( r )( r ) . . .( r )
14
3。Hartree 乘积波函数对比完全的波函数要简单得多。 如果空间有M个离散点,则(3.11)的参数的数目为 MxN,因为M个值就由每一个one-body波函数描述。 这比起前面给的MN/(N!)要小得多。 4。利用Hartree 乘积波函数求其中一个粒子在一个点上 的几率振幅,并不依赖于其它粒子处在什么地方,粒 子之间是没有相互依赖性的。 5。利用Slater行列式波函数求一个粒子在某一个点上的 几率振幅,将依赖于其它粒子的位置,因为有反对称 的要求。 6。这种依赖性的形式比较简单,它被称为交换效应。 7。还有一种依赖性是由无限制的反对称波函数关于 Slater行列式的附加维数带来的,被称为关联效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3.11)
第三章 密度泛函理论(DFT)的基础 -密度矩阵与多体效应
3.1 引言 3.2 外部势场中的电子体系 3.3 多体波函数 3.4 Slater行列式 3.5 一阶密度矩阵和密度 3.6 二阶密度矩阵和2-电子密度 3.7 变分原理 3.8 小结
1
3.1 引 言
1。为了计算电子体系所涉及的量,我们需要处理电子 多体问题的理论和技术。本章将首先解释处理多体 问题的某些重要概念(如多体波函数、交换和关联 效应等),然后简短地给出不同的从头算方法,重 点是审查DFT的基础,回答为何DFT可以用电子密 度作为基本变量,并阐述DFT的物理基础。
其中,N 现在是电子数。而
V(r)
j NN
Zj r Rj
(3.3)
是电子-离子相互作用势。
4
3.3 多体波函数
1。一项简化:为了处理问题简单和便于解释物理概念,本 章的绝大部分篇幅都忽略自旋波函数和自旋指标。加上它 是直接的,这将在本章最后作一简述。 2。多体波函数的反对称性 多体波函数的归一化满足
e l E ( RURER ) ( ) () n N n
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 e l (3.2) V ( r ) ( r , . . . r ) E ( r , . . . r ) i n 1 N nn 1 N r 2i r 1 i 1 i jN r i j
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。
( r , r , . . . r ) ( r )( r ) . . .( r )
是交换第1和第2粒子,则有
2 1N 1 2 1 2N 1 2N
(3.6)
5
3。反对称算符 现在定义反对称算符
1 P A ( N ! ) ( 1 ) P N P
(3.7)
这个算符将选择函数的反对称部分,使得对于每一个函数ψ, ANψ是反对称的。 如果Φ是反对称的,则 (3.8) AN Φ= Φ 所以,AN是一个投影算符,有 (3.9) ANAN=AN 4。描述N-body波函数(离散方式) 的困难 从Schrödinger方程(3.2)的解详细描述N-body波函数是一项 相当困难的任务。即使是一个one-body波函数,从给定的几率 振幅要找3D空间中每一点的单粒子,已经是一个复杂的事。何 妨要描述的是N-body波函数!为了使读者对此困难有一个感觉, 让我们假定现在是在一个离散的3D空间中工作。
5。原子波函数复杂性的估算
考虑实空间有10x10x10=1000个离散点。 对于He原子,只有2个电子,按上述公式,离散 的波函数将由1000x999/2=500x999~5x105的一组 成员来定义。这使得Schrödinger方程的离散方式 是一个有5x105个矢量的本征矢问题。 对于C,有6个电子,问题的维数是: 1000x999x998x997x996x995/(6x5x4x3x2)~1015。 如果考虑的离散点更多,将更为复杂。
N M ! M ( MM 1 ) . . . ( NM 1 ) ( N ) !M N = (3.10) a m p N ! ( M N ) ! N ! ( M N ) ! N !
用这个公式计算时,通常M比N大许多,所以它变成MN/(N!)。 对于实际的体系,需要考虑自旋自由度,上述讨论尚需做适 当修改。但不必担心这个,我们只需对此问题的size有一定观 念即可。 7
H ( r , R ) U ( R ) T ( r ) U ( r ) U ( r , R ) 0 N e e e N H ( r , R ) ( r , R ) E ( R ) ( r , R ) 0 n n n
(2.5) (2.6)
在此,R是一个固定参数。 2。在从头算方法中,电子加经典的核组成的体系的能量En(R) 被称为“总能”。这是一种习惯的称呼,其实声子能量的修正 也应当包括在“真正的”总能之中。总能可以被分解为纯粹经 典的静电能,即核-核相互作用部分和其余的电子部分:
6
假定离散空间中有M个点,一个one-body波函数应当描述 在这些点的每一个点上找到粒子的几率振幅。所以onebody波函数就需要M个成员来描述。 一个two-body波函数,即使不是反对称的,也必须给出 在同一点找到粒子1,同时在某些其它点找到粒子2的几率 振幅。要描述它,所需的成员数为M2。 对于一般的N-body波函数,暂不考虑反对称,将必须有 MN个成员。简单的组合公式便可以给出描述反对称N-body 波函数的振幅的成员数是
( r , . . . r )d r . . . d r 1 1 N 1 N
2
(3.4)
要记住这个波函数在置换任何2个粒子坐标时应该是反对称的。 如果考虑N-粒子置换群的任何一个操作P,将有
P ( 1 )P
例如,假定 P 1
2
(3.5)
( r , r , . . . rP ) ( r , r , . . . r ) ( r , r , . . . r )
2。所有的方法都将与波函数有关联,或者与由波函数 导出的量相关。例如密度矩阵或密度,这些将在前2 -6节详述。另一个重要的概念是变分原理,将在第 7节介绍。
2
3.2 外部势场中的电子体系
1。如果研究的对象是固体中的电子,这里外部势场不是指 外加的电磁场,而是核和其它电子构成的势场。这时体系 的Hamiltonian和Schrödinger方程如下: