全部高中物理力学模型
高中物理 高中物理22个经典模型汇总 清晰实用

高中物理高中物理22个经典模型汇总清晰实用高中物理22个经典模型汇总与清晰实用一、引言高中物理作为理科学科的重要组成部分,是学生们接触自然科学的第一步,也是理解世界的窗口。
在学习高中物理的过程中,掌握经典模型是至关重要的。
经典模型能够帮助我们理解自然界的规律,为我们解决问题提供了基本的思路,更好地认识自然界的奥秘,也更好地应对未来的挑战。
本文将汇总高中物理22个经典模型,并探讨它们的清晰实用之处。
二、运动学1. 位移、速度、加速度模型位移、速度、加速度是运动的基本概念,它们之间的关系能够帮助我们描述物体的运动状态,从而解释各种日常运动现象。
2. 牛顿三定律牛顿三定律是力学的基础,这个模型能够帮助我们理解物体受力的情况,进而分析物体的运动状态。
3. 万有引力万有引力模型是物理学中重要的一部分,它描述了物体之间的引力大小与距离的关系,解释了宇宙中广泛存在的引力现象。
4. 匀变速直线运动匀变速直线运动模型描述了物体在力作用下的匀变速直线运动规律,让我们能够准确预测物体的位置随时间的变化。
5. 抛体运动抛体运动模型适用于空中物体在重力作用下的运动,可以帮助我们分析和计算各种投掷运动。
6. 圆周运动圆周运动模型帮助我们理解物体在圆周运动中受力的情况,解释了各种圆周运动中发生的现象。
7. 谐振谐振模型能够帮助我们理解谐振现象产生的原因,也让我们在实际应用中更好地利用谐振的特性。
三、动能和势能8. 动能与势能转化动能和势能的转化模型描述了物体在力的作用下,动能和势能之间相互转化的规律,为我们解释各种能量转化现象提供了理论依据。
9. 机械能守恒机械能守恒模型说明了在某些力场内,物体的机械能守恒,这个规律被广泛应用于各种动力学计算中。
四、波动10. 机械波机械波模型帮助我们理解机械波的传播规律,解释了声音、水波等机械波的传播特性。
11. 光的直线传播光的直线传播模型适用于介质中光的传播规律,让我们能够更好地理解光的传播路径。
高中物理模型总结归纳

高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。
通过模型,我们可以更好地理解和描述自然现象。
本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。
它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。
通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。
2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。
其中包括了质点力学、刚体力学和弹性力学等内容。
通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。
3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。
它包括了弹簧劲度系数、振动周期和频率等概念。
通过这个模型,我们可以更好地理解和计算弹簧的振动特性。
第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。
其中包括了库仑定律和电场强度等概念。
通过这个模型,我们可以预测和计算电荷之间的相互作用力。
2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。
其中包括了洛伦兹力和磁感应强度等概念。
通过这个模型,我们可以解释和计算磁场对物体的作用力。
3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。
其中包括了法拉第电磁感应定律和楞次定律等概念。
通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。
第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。
其中包括了折射定律、焦距和成像等概念。
通过这个模型,我们可以解释和计算光的传播路径和成像特性。
2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。
其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。
通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。
第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。
(完整版)高考常用24个物理模型

Fm 高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)aθ模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++(20F =是上面的情况) F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m mg θ++F=A B B 12m (m )m Fm m g ++F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力N 12对13=Fnm12)m -(nm 2 m 1 Fm 1 m 2╰ α模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
高三物理常见模型与方法

高三物理常见模型与方法高三物理常见模型与方法如下:1. 质心模型:研究多种体育运动中的集中典型运动规律、力能角度。
2. 绳件、弹簧、杆件模型:研究三者在直线与圆周运动中的动力学问题和功能问题,以及异同点。
3. 挂件模型:解决平衡问题,包括死结与活结问题,并采用正交分解法、图解法、三角形法则和极值法等。
4. 追碰模型:研究运动规律、碰撞规律和临界问题,可采用数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等。
5. 运动关联模型:研究一物体运动的同时性、独立性、等效性,以及多物体参与的独立性和时空联系。
6. 皮带模型:研究摩擦力、牛顿运动定律、功能及摩擦生热等问题。
7. 斜面模型:研究运动规律、三大定律和数理问题。
8. 平抛模型:研究运动的合成与分解、牛顿运动定律和动能定理(类平抛运动)。
9. 行星模型:研究向心力(各种力)、相关物理量、功能问题和数理问题(圆心、半径、临界问题)。
10. 全过程模型:研究匀变速运动的整体性、保守力与耗散力、动量守恒定律、动能定理和全过程整体法。
11. 人船模型:研究动量守恒定律、能量守恒定律和数理问题。
12. 子弹打木块模型:研究三大定律、摩擦生热、临界问题和数理问题。
13. 爆炸模型:研究动量守恒定律、能量守恒定律。
14. 单摆模型:研究简谐运动、圆周运动中的力和能问题,可采用对称法、图象法等。
15. 限流与分压器模型:研究电路设计、串并联电路规律及闭合电路的欧姆定律、电能、电功率和实际应用。
16. 电路的动态变化模型:研究闭合电路的欧姆定律、判断方法和变压器的三个制约问题。
17. 磁流发电机模型:研究平衡与偏转、力和能问题。
18. 回旋加速器模型:研究加速模型(力能规律)和回旋模型(圆周运动)及数理问题。
19. 对称模型:研究简谐运动(波动)、电场、磁场、光学问题中的对称性、多解性和对称性。
20. 电磁场中的单杆模型:处理角度为力电角度、电学角度和力能角度,涉及棒与电阻、棒与电容、棒与电感、棒与弹簧组合、平面导轨和竖直导轨等。
高中物理常考18个模型总结

高中物理常考18个模型总结
1.牛顿第一定律:物体静止或匀速直线运动,不受力或受力平衡。
2. 牛顿第二定律:物体受力后加速度与力成正比,与物体质量
成反比。
3. 牛顿第三定律:对于两个相互作用的物体,它们施加在彼此
上的力大小相等,方向相反。
4. 转动定律:物体的转动惯量与质量成正比,与几何形状有关。
5. 动量定理:物体的动量变化量等于所受的合外力作用时间的
积分。
6. 守恒定律:系统总动量、总能量、总角动量守恒。
7. 能量转化:机械能守恒,势能与动能可以相互转化。
8. 功与功率:功是力在距离上的积分,功率是功对时间的导数。
9. 简单谐振动:物体做周期性的简谐振动,振动方程为
x=Acos(ωt+φ)。
10. 阻尼振动:物体在阻力作用下的振动,振动幅度逐渐减小。
11. 受迫振动:外力作用下的振动,振动频率为外力频率。
12. 热力学第一定律:内能变化等于热量传递和功对系统做的功之和。
13. 热力学第二定律:热量不能从低温物体自发地流向高温物体,热力学效率不可能达到100%。
14. 热力学循环:在热源与冷源之间循环进行的过程,包括卡诺循环、斯特林循环等。
15. 理想气体状态方程:PV=nRT,P为压强,V为体积,n为物质量,T为温度,R为气体常数。
16. 理想气体的热力学规律:等压过程、等体过程、等温过程、绝热过程。
17. 光的干涉与衍射:光的波动性,干涉是光的波峰和波谷叠加的结果,衍射是光通过小孔或物体边缘后发生弯曲和扩散。
18. 电路:欧姆定律、基尔霍夫定律、电容器电路、电感器电路、交流电路等。
高中物理24个经典模型

高中物理24个经典模型(实用版)目录1.引言:高中物理并不难,掌握 24 个经典模型即可2.24 个经典模型分类1.超重和失重2.斜面3.连接体4.轻绳、轻杆5.上抛和平抛6.水流星7.万有引力8.汽车启动9.碰撞10.子弹打木块11.滑块12.人船模型13.传送带14.简谐运动15.振动和波16.带电粒子在复合场中的运动17.电磁场中的单杠运动18.磁流体发电机模型19.输电20.限流分压法测电阻21.半偏法测电阻22.光学模型23.玻尔模型24.放射现象和核反应正文高中物理对许多学生来说都是一道难以逾越的难关,复杂的受力分析、繁琐的电学计算、抽象的磁场概念都让学生感到头痛。
然而,物理学并不是大家想象的那么难,只要掌握好 24 个经典模型,高中物理就不再是难题。
这 24 个经典模型可以分为以下几个类别:一、运动学模型:包括超重和失重、斜面、连接体、轻绳、轻杆、上抛和平抛、水流星等。
这些模型主要考察学生对物体运动规律的理解和掌握,只要抓住物体运动的关键因素,就能轻松解决这类问题。
二、力学模型:包括万有引力、汽车启动、碰撞、子弹打木块、滑块、人船模型等。
这类模型主要涉及力的作用和物体运动状态的改变,需要学生熟练掌握力学基本原理和计算方法。
三、电磁学模型:包括带电粒子在复合场中的运动、电磁场中的单杠运动、磁流体发电机模型等。
这类模型考察学生对电磁场和带电粒子运动的理解,需要掌握电磁学的基本概念和计算方法。
四、光学模型:包括光的反射、光的折射、光的干涉、光的衍射等。
这类模型主要考察学生对光学现象的理解和掌握,需要熟练掌握光学的基本原理和计算方法。
五、原子物理模型:包括玻尔模型、放射现象和核反应等。
这类模型主要涉及原子结构和核反应,需要学生对原子物理的基本概念和原理有深入的理解。
通过以上分析,我们可以看出,只要掌握好这 24 个经典模型,高中物理就不再是难题。
高中物理24个经典模型

高中物理24个经典模型高中物理领域有许多经典模型,这些模型帮助我们更好地理解和解释自然界中各种现象和规律。
以下是高中物理中的24个经典模型。
1.质点模型:物理中最简单的模型之一,将物体简化为一个几乎没有大小的点,用于研究物体的运动和力学性质。
2.弹簧模型:用来研究弹簧和弹性体的力学性质,它可以模拟很多弹性形变的现象。
3.质点弹簧模型:结合了质点和弹簧模型,用于研究弹簧振动和简谐振动的性质。
4.轨迹模型:用来描述运动物体的路径,常用的轨迹有直线运动、圆周运动、抛物线运动等。
5.平衡模型:用来研究物体处于平衡状态时的力学性质,如平衡条件、平衡位置等。
6.载体模型:用来研究物体在载体上的运动,常用的载体有斜面、轨道、绳子等。
7.力模型:用来描述物体受到的力,包括重力、摩擦力、弹力、拉力等。
8.力矩模型:用来研究物体围绕固定点转动的性质,描述物体受到的力矩和力矩平衡条件。
9.阻力模型:用来研究物体在流体中运动时受到的阻力,如空气阻力、水阻力等。
10.平衡力模型:用来描述物体受到多个力的作用时达到平衡的条件,如平衡力的合成和分解。
11.载荷模型:用来研究物体受到外力作用时的变形和应力分布,如悬链线、横梁等。
12.动力模型:用来研究物体的运动和力学性质,描述物体的动量和动量守恒定律。
13.动能模型:用来描述物体的能量和能量转化规律,包括动能和动能守恒定律。
14.位能模型:用来描述物体的势能和势能转化规律,包括重力势能、弹性势能等。
15.电路模型:用来研究电流、电压和电阻在电路中的分布和变化规律,如串联电路、并联电路等。
16.磁场模型:用来描述磁场和磁力在磁场中的分布和变化规律,如磁场线、磁感应强度等。
17.光学模型:用来研究光的传播、反射、折射、干涉等光学现象,如几何光学模型、波动光学模型等。
18.波动模型:用来研究波的传播和波动性质,包括机械波、电磁波等。
19.音响模型:用来研究声音的传播和声音的特性,如声音的频率、波长、音强等。
高中物理48个解题模型归纳

高中物理48个解题模型归纳高中物理是一门重视实践与应用的学科,其中许多概念可以通过解题模型的归纳总结来有效掌握。
以下是高中物理的48个解题模型,希望能对同学们的学习有所帮助。
1. 球体内空气质量变化模型2. 刚体动力学模型3. 热传导的计算模型4. 同向碰撞模型5. 初速度为零自由落体模型6. 电能守恒模型7. 电倾斜摆动力学模型8. 均匀运动变速运动模型9. 空气阻力的计算模型10. 磁感应强度计算模型11. 电容并联电路模型12. 力矩平衡计算模型13. 空气密度计算模型14. 能量守恒模型15. 碰撞动能守恒模型16. 热传导节气门口的芯片计算模型17. 弹性碰撞动能守恒模型18. 火箭发射速度计算模型19. 平衡态下弹性势能计算模型20. 马蹄星座引力模型21. 电容串联电路模型22. 机械功势能计算模型23. 动能定理模型24. 单摆摆动周期模型25. 反射镜物镜成像模型26. 反射镜像距离计算模型27. 平衡重力计算模型28. 波长计算模型29. 劳埃德镜像计算模型30. 电势差计算模型31. 姿态稳定模型32. 行星轨道计算模型33. 条纹间隔计算模型34. 单色光波长计算模型35. 反射镜像像距计算模型36. 振动级比计算模型37. 电阻并联电路模型38. 雷达初速度计算模型39. 棱镜折射率计算模型40. 弹簧振动周期计算模型41. 水面反射像距计算模型42. 剩余热能计算模型43. 能量转换计算模型44. 声波衍射计算模型45. 磁感应强度计算模型46. 叉丝仪利用计算模型47. 电源功率计算模型48. 静电力与距离计算模型以上是高中物理的48个解题模型,同学们可以针对不同的题目,选择合适的模型来理解和解决问题。
在学习的过程中,还要注重实践和应用,加强对物理知识的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
╰
α
高中物理力学模型 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物
体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物
体从连接体中隔离出来进行分析的方法。
2斜面模型 (搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面
μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)
3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定 只有θ=arctg(g a )时才沿杆方向
最高点时杆对球的作用力;最低点时的速度?,杆的拉力?
若小球带电呢?
V B =R 2g ⇐mgR=22
1B mv 假设单B 下摆,最低点的速度整体下摆2mgR=mg 2R +'2B '2A mv 21mv 2
1+
'A 'B V 2V = ⇒ 'A V =gR 53 ; '
A '
B V 2V ==
gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功
若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失
即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒 例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?
4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动
1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数
系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力?
导致系统重心如何运
铁木球的运动
用同体积的水去补充
5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;
③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m 1v 1+m 2v 2='
22'
11v m v m +(1)
'222'12221mv 2
1mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换
大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)'
v
20
mv 21='2
M)v m (2
1++E 损 E 损=20mv 21一'2
M)v (m 2
1+=
0202
0E m M M m 21m)(M M M)2(m mM k v v +=+=+ E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=
20
mv 21一'2
M)v (m 2
1+
“碰撞过程”中四个有用推论
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,
设两物体质量分别为m 1、m 2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u 1、u 2,即有 :
m 1υ1+m 2υ2=m 1u 1+m 1u 2
21m 1υ12+21m 2υ22=21m 1u 12+2
1
m 1u 22
碰后的速度u 1和u 2表示为: u 1=
2121m m m m +-υ1+2
12
2m m m +υ2
u 2=2112m m m +υ1+2
11
2m m m m +-υ2
推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对
速度大小相等,即}: u 2-u 1=υ1-υ 2
推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:1221,v u v u ==。
即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u 1=u 2
由此即可把完全非弹性碰撞后的速度u 1和u 2表为: u 1=u 2=2
12
211m m m m ++υυ
例3:证明:完全非弹性碰撞过程中机械能损失最大。
证明:碰撞过程中机械能损失表为: △E=
21m 1υ12+21m 2υ22―21m 1u 12―2
1
m 2u 22 由动量守恒的表达式中得: u 2=
2
1
m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为: △E=-
22112)(m m m m +u 12-222111)(m m m m υυ+u 1+[(21m 1υ12+2
1
m 2υ22)-221m ( m 1υ1+m 2υ2)2]
这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=2
12
211m m m m ++υυ时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值
△E m =21m 1υ12+2
1m 2υ
22
-
)
(2)(212
2211m m m m ++υυ
推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运动的合理
性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。
6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=
d M
m M
+ M/m=L m /L M
载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少
为多长?
7.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型 竖直型
8.单摆模型:T=2π
g
L
(类单摆) 利用单摆测重力加速度 9.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。
波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf
波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)
物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 模型法常常有下面三种情况
(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;
(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型. (3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 其它的碰撞模型:。