九年级数学上学期专题复习训练卷四 新人教版(1)

合集下载

九年级数学上学期综合检测卷四 新人教版-新人教版初中九年级全册数学试题

九年级数学上学期综合检测卷四 新人教版-新人教版初中九年级全册数学试题

2019年九年级数学上学期综合检测卷一、单选题(30分)1.(3分)下列多边形一定相似的是()2.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:根据表格提供的信息,下列说法错误的是()3.(3分)为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是()4.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③5.(3分)图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()C.甲、乙同时到B6.(3分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. C. D.7.(3分)如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C 时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为,FC=y,如图2所表示的是y与的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD 的面积是()A. D.8.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x=-时,与其对应的函数值y>0.有下列结论:①abc>0;②-2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()9.(3分)如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A.-2 -210.(3分)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当-2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(18分)11.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好照射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙CD的高度是米.12.(3分)从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为.13.(3分)⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.14.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ;②4a+2b+c>0;③4ac-b2<8a;④;⑤b>c.其中含所有正确结论的选项是.15.(3分)如图,已知抛物线y1=-x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x 对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).16.(3分)如图,抛物线过点(-1,0),且对称轴为直线,有下列结论:①;②;③抛物线经过点(4,y1)与点(-3,y2),则y1>y2;④无论,b,c取何值,抛物线都经过同一个点(,0);⑤,其中所有正确的结论是.三、解答题(72分)17.(5分)如图,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.18.(5分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式.(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.19.(5分)已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.20.(5分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(结果精确到0.1千米)(参考数据:≈141,≈1.73)(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?21.(5分)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?22.(5分)如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.23.(6分)如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由.(2)求证:2OB2=BC·BF.(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.24.(5分)计算:(1)-32+|-3|+.(2)-+-.25.(5分)定义:若x0=ax02+bx0+c成立,则称点(x0,x0)为抛物线y=ax2+bx+c(a≠0)上的不动点,设抛物线C的解析式为:y=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=4时,判断M(-1,-1),N(-2,-2),P(-3,-3)是否是C上的不动点.(2)若抛物线C过点(0,-3),且抛物线C上有一个不动点(1,1),求抛物线上的另一个不动点.(3)对于任意实数b,抛物线C上总有两个不同的不动点,令S=,求S的取值X 围.26.(4分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AD的长.27.(7分)在一节数学课上,老师出示了这样一个问题让学生探究:已知:如图在△ABC中,点D是BA边延长线上一动点,点F在BC上,且=,连接DF交AC于点E.思考片刻后,同学们纷纷表达自己的想法:甲:过点F作FG∥AB交AC于点G,构造相似三角形解决问题;乙:过点F作FG∥AC交AB于点G,构造相似三角形解决问题;丙:过点D作DG∥BC交CA延长线于点G,构造相似三角形解决问题;老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问的值.(1)如图1,当点E恰为DF的中点时,请求出的值.(2)如图2,当=a(a>0)时,请求出的值(用含a的代数式表示).28.(8分)定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1.(1)证明:AB2=AA1·AC.(2)探究:△ABC是否为黄金等腰三角形?请说明理由.(提示:此处不妨设AC=1)(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示A n﹣1A n.(n为大于1的整数,直接回答,不必说明理由)29.(7分)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.答案一、单选题1.【答案】D【解析】要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定分别相等,故不一定相似,A、B、C错误.而两个正方形,对应角都是90°,对应边的比相等,故一定相似,故D正确.故答案为:D。

2024—2025学年人教版九年级上册数学第四次月考模拟试卷

2024—2025学年人教版九年级上册数学第四次月考模拟试卷

2024—2025学年人教版九年级上册数学第四次月考模拟试卷一、单选题1.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为()A .3.26×10﹣4毫米B .0.326×10﹣4毫米C .3.26×10﹣4厘米D .32.6×10﹣4厘米2.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A .10℃B .6℃C .﹣6℃D .﹣10℃3.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是()A .12B .9C .13D .12或94.已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A .4πB .8πC .12πD .16π5.下列一元二次方程,没有实数根的是()A .220x x -=B .2410x x -=+C .22430x x -+=D .2352x x =-6.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是()A .50°B .70°C .80°D .110°7.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A .16,15B .16,14C .15,15D .14,158.如图, ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则ABCD 的周长为()A .20B .16C .12D .89.如图,已知∠ABC =∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD10.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A .2%B .4.4%C .20%D .44%11.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y ax b =+在同一坐标系内的大致图象是()A .B .C .D .12.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为()A .1或2-B .C D .1二、填空题13.分解因式:2a 3b ﹣4a 2b 2+2ab 3=.14.若分式293x x --的值为零,则x 的取值为.15有意义的x 的取值范围是.16.一个多边形的内角和是1080︒,则这个多边形是边形.17.如图,O 是ΔA 的外接圆,45A ∠= ,4BC =,则O 的直径..为.18.如图,直线y =x +m 与双曲线y =3x相交于A ,B 两点,BC ∥x 轴,AC ∥y 轴,则△ABC 面积的最小值为.三、解答题19()0221( 3.14().2π-+---⨯20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.21.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.如图,在四边形ABCD 中,AB //DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若AB =2BD =,求OE 的长.23.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?24.如图,△ABC 内接于⊙O ,∠CBG=∠A ,CD 为直径,OC 与AB 相交于点E ,过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与⊙O 相切;(2)若EF AC =58,求BEOC 的值;(3)在(2)的条件下,若⊙O 的半径为8,PD=OD ,求OE 的长.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.1()已知ABC 是比例三角形,AB 2=,BC 3=,请直接写出所有满足条件的AC 的长;2()如图1,在四边形ABCD 中,AD //BC ,对角线BD 平分ABC ∠,BAC ADC.∠∠=求证:ABC 是比例三角形.3()如图2,在2()的条件下,当ADC 90∠= 时,求BDAC的值.26.如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线=B 2+B +与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D .(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.。

人教版数学九年级上册专项训练4课件

人教版数学九年级上册专项训练4课件
17
►雨水打在窗户上,发出嘀嗒,嘀嗒的声响。这天空好似一个大筛子, 正永不疲倦地把银币似的雨点洒向大地。远处,被笼罩在雨山之中的 大楼,如海市蜃楼般忽隐忽现,让人捉摸不透,还不时亮起一丝红灯, 给人片丝暖意。 ►七月盛夏,夏婆婆又开始炫耀她的手下——太阳公公的厉害。太阳 公公接到夏婆婆的命令,以最高的温度炙烤着大地,天热得发了狂, 地烤得发烫、直冒烟,像着了火似的,马上要和巧克力一样融化掉。 公路上的人寥寥无几,只有汽车在来回穿梭奔跑着。瓦蓝瓦蓝的天空 没有一丝云彩,一些似云非云、似雾非雾的灰气,低低地浮在空中, 使人觉得憋气不舒服。外面的花草树木被热得打不起精神来,耷拉着 脑袋。
C.338π-3
D. 33+π
2
2.如图,正方形 ABCD 内接于⊙O,AB=4,则图中阴影部分的面积是( B )
A.4π-16 C.16π-32
B.8π-16 D.32π-16
3
3.【山东济南中考】如图,在菱形 ABCD 中,E 是 BC 的中点,以点 C 为圆心、 CE 长为半径作弧,交 CD 于点 F,连接 AE、AF.若 AB=6,∠B=60°,则阴影部分 的面积为( A )
A.9 3-3π C.18 3-9π
B.9 3-2π D.18 3-6π
4
4.【吉林中考】如图,在扇形 OAB 中,∠AOB=90°.D、E 分别是半径 OA、OB
︵ 上的点,以 OD、OE 为邻边的□ODCE 的顶点 C 在AB上.若 OD=8,OE=6,则阴
影部分图形的面积是_____2_5_π_-__4_8_____.(结果保留 π)
5
类型 2 等积变形法求阴影部分的面积 5.如图,AB 是⊙O 的直径,CD 是弦,∠BCD=30°,OA=2,则阴影部分的 面积是( B )

九年级数学上册全册期末复习试卷专题练习(解析版)

九年级数学上册全册期末复习试卷专题练习(解析版)

九年级数学上册全册期末复习试卷专题练习(解析版)—、选择题1.如图是一个圆柱形输水管横截而的示意图,阴影部分为有水部分,如果水面的宽为8cm,水而最深的地方高度为2cm∙则该输水管的半径为(2.有一组数据5, 3, 5, 6,7,这组数据的众数为(3.如图,已知点D在ΔABC的BC边上,若ΛCAD = ABCD:BD=()B D CB. 5cmC. 6cmD. 8cmA. 3B. 6C. 5D. 7且CD.AC = ∖.2,则A. 1:2B. 2:3C. 1:4D. 1:34.如图,在"BC 中,DEW BC t若DF二2 t BC=6 t则△ADE 的面积△ ABC的面积A. —B. —C. —3 4 65.二次函数y=3(x→)2-l的图像顶点坐标是()A. (一2, 1)B. (-2, -1) C・(2, 1)D. (2, -1)6.在Rt∆ABC 中,ZC=90°, B84, AC=3, CD丄AB 于D,设ZACD=α,则COSa的值为B. D.)537. 若- = |,则丄上丄的值为()J 5 y 2 7 5 7 A. —B. —C. —D.—52758. 如图.小正方形边长均为1,则下列图形中三角形(阴影部分)与AABC 相似的是于点A ■点B ( - 1 # 0),则①二次函数的最大值为a÷b÷c ;@a - b+c < 0 ; ③b?・ 4ac v 0 ;1A.—2 B.-31C. 一4 D. 15 11. sin60c的值是() 1 A ・*2C 迟 L- 2D・ 护12.若两个相似三角形的相似比是 2,则它们的面积比等于()A. 1: √2B ・ 1: 2C. 1: 3D ・1: 4 13.用配方法解方程X 2+8X + 9 = 0, 变形后的结果正确的是()A. (X + 4)2=-9B. (x + 4)2=- -7 C. (Λ+4)2=25 D. (x + 4)2=714.有一组数据:4, I 6, 6, 6, 8, 9,12, 13,这组数据的中位数为() A. 6 B. 7 C. 8 D. 915.若二次函数y=x 2∙2x+c 的图象与坐标轴只有两个公共点,则 C 应满足的条件是 A. C=OB. C=IC. C=O 或 C=ID ・C=O 或 c=- 10・10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是() 二填空题() 19.如图,若二次函数y=ax 2÷bx÷c ( a≠0 )图彖的对称轴为x=l, 与y 轴交于点C,与 轴交C. 3D. 4其中正确的个数是(16・平而直角坐标系内的三个点A (1, -3) . B (0, -3)、C (2, -3),—确定一个圆.(填"能”或"不能")17.如图,在平而直角坐标系中,将AABO绕点A顺指针旋转到△人虽G的位置,点8、O 分别落在点际CI处,点8】在X轴上,再将"BC绕点弘顺时针旋转到∆4181C2的位置点C2⅛x轴上,将LA I B I C2绕点C?顺时针旋转到∆A2B2C2的位萱,点&2在X轴上,依次进18.如图,已知菱形ABCD中,AB = 4, ZC为钝角,AM丄BC于点M,N为AB 的中点・连接DN, MN•若ZDNM=90。

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试(含答案解析)(1)

一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π2.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 3.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 4.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°5.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3 )A.32B.33C.3π26-D.3π36-6.已知△ABC的外心为O,连结BO,若∠OBA=18°,则∠C的度数为()A.60°B.68°C.70°D.72°7.如图,ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC绕点B顺时针旋转到A B C'''的位置,且点A'、C'仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留)A.254πB.134πC.132πD.136π8.已知⊙O的直径为6,圆心O到直线l的距离为3,则能表示直线l与⊙O的位置关系的图是()A.B.C.D.9.在下列命题中,正确的是( )A.弦是直径B.半圆是弧C.经过三点确定一个圆D.三角形的外心一定在三角形的外部10.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒11.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题13.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.15.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.18.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.19.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.20.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.三、解答题21.如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=12cm,求阴影部分面积.22.如图,AB是圆的直径,且AD//OC,求证:CD BC.23.已知:△ABC.(1)求作:△ABC的外接圆⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.24.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.求证:AP=BP.25.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).26.如图,在33(1)在图1中,圆过格点A,B,请作出圆心O;=,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】以直线AC为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可.【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.2.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E =3AE =332, 即BF +EF 的最小值为332. 故选:B .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.3.A解析:A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键.4.D解析:D【分析】连接OB,利用圆周角定理求得∠AOB,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.5.C解析:C【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【详解】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=ABtan30°=1,∴S阴=S△ABO−S扇形OBD=12×1×3−2601360π⋅=3π26-.故选:C.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.6.D解析:D【分析】连接OA,则OA=OB,可得∠OBA=∠OAB,再结合∠OBA=18°即可求得∠AOB=144°,再根据圆周角的性质即可求得∠C=72°.【详解】解:如图,连接OA,∵点O为ABC的外心,∴OA=OB,∴∠OBA=∠OAB,又∵∠OBA=18°,∴∠OAB=∠OBA=18°,∴∠AOB=180°-∠OAB-∠OBA=144°,∴∠C=12∠AOB=72°,故选:D.【点睛】本题考查了三角形的外心,圆周角定理,熟练掌握相关定义及性质是解决本题的关键.7.B解析:B【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得==由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=2290n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.8.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.9.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.11.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.12.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.二、填空题13.【分析】以AC 为直径作圆O 连接BO 并延长交圆O 于点可得BO+O >B 从而可得BO+OE >B 即BE 为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE ⊥l 于点E ∴以AC 为直径作圆O ∵CE 解析:225+【分析】以AC 为直径作圆O ,连接BO ,并延长交圆O 于点E ',可得BO+O E '>B E ',从而可得BO+OE >B E ',即BE 为最大值,再由勾股定理求出BO 的长即可解决问题.【详解】 解:由题意知,CE ⊥l 于点E ,∴以AC 为直径作圆O ,∵CE ⊥AE,∴点E 在圆O 上运动,连接BO ,并延长交圆O 于点E ',如图,∴BO+O E '>B E ',∵OE=O E ',∴BO+OE >B E ',∴BE 的长为最大值, ∵AO=OC=OE ,且AB=AC=4,∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.14.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:()3,33 【分析】 如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6,∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.﹣【分析】根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积从而可以解答本题【详解】解:∵正六边形ABCDEF 的边长为2∴正六边形ABCDEF 的面积是:6××22=∠FAB =∠EDC解析:63﹣83π 【分析】 根据题意和图形可知阴影部分的面积是正六边形的面积减去两个扇形的面积,从而可以解答本题. 【详解】解:∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:6×34×22=63,∠FAB =∠EDC =120°, ∴图中阴影部分的面积是:63﹣2×21202360π⋅⋅=63﹣83π, 故答案为:63﹣83π. 【点睛】本题考查正多边形和圆、扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 17.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 18.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾解析:4或8.【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8. 故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.104【分析】根据圆内接四边形的对角互补列式计算即可【详解】解:∵四边形ABCD 内接于⊙O ∴∠A+∠C =180°∴∠C =180°﹣∠A =180°﹣76°=104°故答案为:104【点睛】本题考查的是解析:104【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A +∠C =180°,∴∠C =180°﹣∠A=180°﹣76°=104°,故答案为:104.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=334.故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)30°;(2)6π﹣93【分析】(1)如图,连接OE,OF,利用切线的性质、等腰直角三角形的性质以及平行线的判定证得OE∥BC,则同位角∠ABC=∠AOE=60°,所以由图形中相关角与角间的和差关系即可得到∠ABG=15°;然后由圆周角定理可以求得量角器在点G处的读数α(0°<α<90°);(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)如图,连接OE,OF.∵CD切半圆O于点E,∴OE⊥CD,∵BD为等腰直角△BCD的斜边,∴BC⊥CD,∠D=∠CBD=45°,∴OE ∥BC ,∴∠ABC =∠AOE =60°,∴∠ABG =∠ABC ﹣∠CBD =60°﹣45°=15°∴弧AG 的度数=2∠ABG =30°,∴量角器在点G 处的读数α=弧AG 的度数=30°;(2)∵AB =12cm ,∴OF =OB =6cm ,∠ABC =60°,∴△OBF 为正三角形,∠BOF =60°,∴S 扇形=2606360π⋅⨯=6π(cm 2),S △OBF =93, ∴S 阴影=S 扇形﹣S △OBF =6π﹣93.【点睛】本题考查了切线的性质,扇形面积的计算,圆周角定理.求(2)题时,利用了“分割法”求得图中阴影部分的面积.22.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.(1)作图见解析;(2)10.【分析】(1)分别做AB 、BC 的垂直平分线且交于O ,然后以O 为圆心、OA 为半径画圆即可; (2)如图:连接OB ,然后根据垂径定理求得BD ,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O 即为所求作的外接圆;(2)如图:连接OB∵已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8∵线段BC 的垂直平分线交BC 于点D ,∴BD =CD =12BC=6, 在Rt △BOD 中,OB =2286+=10,∴⊙O 的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.24.见解析【分析】根据切线的性质得出OP ⊥AB ,根据垂径定理得出即可.【详解】证明:如图,连接OP ,∵大圆的弦AB 是小圆的切线,点P 为切点,∴OP ⊥AB ,∵OP 过O ,∴AP=BP .【点睛】本题考查了切线的性质和垂径定理的应用,主要考查学生的推理能力,题目比较好,难度适中.25.22L b a b π=+-;212S ab b π=-.【分析】由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。

2024年全新九年级数学上册模拟试卷及答案(人教版)

2024年全新九年级数学上册模拟试卷及答案(人教版)

专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x^3 6x^2 + 9x 1,则f'(x) = ( )A. 3x^2 12x + 9B. 3x^2 12x + 12C. 3x^2 9x + 6D. 3x^2 9x + 92. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解为()A. x = 1 或 x = 1B. x = 1 或 x = 1/2C. x = 1 或 x = 1/2D. x = 1 或 x = 1/23. 设集合A = {x | x^2 3x + 2 = 0},集合B = {x | x^2 2x3 = 0},则A ∩ B = ()A. {1, 2}B. {1, 1}C. {2, 1}D. {1, 3}4. 若等差数列{an}的前n项和为Sn = n^2 + n,则a1 = ()A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点P(2, 3)关于原点的对称点为()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 6)二、判断题(每题1分,共5分)1. 方程x^2 4x + 4 = 0的解为x1 = x2 = 2。

()2. 函数f(x) = x^3 3x^2 + 3x 1在区间(∞, +∞)上单调递增。

()3. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解必定为实数。

()4. 等差数列的前n项和为Sn = n(a1 + an)/2。

()5. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点为P'(2,3)。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x^2 + 3x 1,则f'(x) = _______。

2. 方程x^2 4x + 4 = 0的解为x1 = _______,x2 = _______。

3. 等差数列{an}的前n项和为Sn = n^2 + n,则a1 = _______。

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。

人教版数学九年级上册专项四 解答题(一)题型-课件

人教版数学九年级上册专项四 解答题(一)题型-课件
第二部分 中考题型专项突破
专项四 解答题(一)题型(6分题)
类型一 实数的运算
1. 计算:12 +2-1+cos60°-3tan30°.
2. 计算:
-2sin30°-(-
1 3
)-1+(2-π)0+ 3
8 +(-1)2016-∣-1∣.
3. 计算:
∣- 3∣+
s2in45°+tan60°-(-
)1 -1-
6. (2016宁夏)如图K2-4-7,已知△ABC,以AB 为直径的⊙O分别交AC于点D,BC于点E,连接 ED,若ED=EC. (1)求证:AB=AC; (2)若AB=4,BC= ,求CD的长.
类型六 尺规作图
1. (2017福建)如图K2-4-8,△ABC中,∠BAC=90°, AD⊥BC,垂足为点D. 求作∠ABC的平分线,分别交 AD,AC于P,Q两点;并证明AP=AQ. (要求:尺规 作图,保留作图痕迹,不写作法) 解:如答图2-4-14,BQ就是所求的∠ABC的 平分线,P,Q就是所求作的点. 证明:∵AD⊥BC,∴∠ADB=90°. ∴∠BPD+∠PBD=90°. ∵∠BAC=90°,∴∠AQP+∠ABQ=90°. ∵∠ABQ=∠PBD,∴∠BPD=∠AQP. ∵∠BPD=∠APQ,∴∠APQ=∠AQP. ∴AP=AQ.
2. (2017荆门)先化简,再求值:(2x+1)2-2(x-1)
(x+3)-2,其中x= 2 .
解:原式=4x2+4x+1-2x2-4x+6-2=2x2+5,
当x= 2 时,原式=4+5=9. 3. 先化简,再求值:
,其中a=2sin60°-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习训练卷四图形的认识(时间:60分钟满分:100分)一、填空题(每题2分,共20分)1. 下列说法中,正确的是( ).A. 经过三个点一定可以作圆B. 任意一个圆一定有内接三角形,并且只有一个内接三角形C. 任意一个三角形一定有一个外接圆,并且只有一个外接圆D. 三角形的外心到三角形各边的距离都相等2. 点P在⊙O内,OP=2 cm,若⊙O的半径是3 cm,则过点P的最短弦的长度为( ).A. 1 cmB. 2 cmC. 5 cmD. 2 5 cm3.如图,有一圆弧形桥拱,拱形的半径OA=10m,桥拱的跨度AB=16m,则拱高CD为( ).A.4m B.6m C.8m D.10m(第3题) (第4题)4.如图,AB是⊙O的直径,若∠C=26°,则∠ABD等于( ).A.36° B.38° C.52° D.64°5.如图,P是⊙O外一点,PA、PB切⊙O于点A、B,点C在优弧AB上,若∠P=68°,则∠ACB等于( ).A.22° B.34° C.56° D.68°(第5题) (第6题)6.如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系中,正确的是( ).A. θ=α+βB. θ=2α+2βC. α+β+θ=180°D. α+β+θ=360°7.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD的长为().A. 7B.(第7题) (第8题)8.如图,D是半径为R的⊙O上一点,过点D作⊙O的切线交直径AB的延长线于点C,下列四个条件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=3R.其中,使得BC=R 的有( ).A. ①②B. ①③④C. ②③④D. ①②③④9. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且OA与平行的直线与⊙O有公共点,设OP=x,则x的取值范围是( ).A. 0≤x≤ 2B. -2≤x≤ 2C. -1≤x≤1D. x> 2(第9题)10.如图,C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,E、F分别是线段CD、AB 上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是( ).(第10题)二、选择题(每题3分,共24分)11.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是 .(第11题) (第12题)12.已知:如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA ,动点P 从点A 出发,以cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______s 时,BP 与⊙O 相切.13.已知∠BAC =45°,一动点O 在射线AB 上运动(点O 与点A 不重合),设OA =x ,如果半径为1的⊙O 与射线AC 只有一个公共点,那么x 的取值范围是______.14.两圆的直径分别是17-和17+,圆心距为d ,当两圆相交时,d 的整数值为______. 15.如图,两个半圆,大半圆中,长为16cm 的弦AB 平行于直径CD ,且与小半圆相切,则图中阴影部分的面积为______cm 2.(第15题) (第16 题) 16.如图,已知圆柱体底面圆的半径为π2,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线.若一只小虫从点A 出发,从侧面爬行到点C ,则小虫爬行的最短路线的长度是______.(结果保留根式)17.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图(1),他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于点F 、G ,制成如图(2)的图标.则图标中阴影部分图形AFEGD 的面积=__________.(第17题)18.如图,ΔABC 内接于⊙O ,∠B =90º,AB =BC ,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD 、DC 、AP .已知AB =8,CP =2,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP =BR ,则BQQR的值为_______________.(第18题)三、 解答题(每题8分,共56分)19. 小明家的房前有一块矩形的空地,空地上有三棵树A 、B 、C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹); (2)若△ABC 中AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.(第19题)20. 如图,在△ABC 中,AB =AC ,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE ⊥AC ,垂足为点E .求证:(1)△ABC 是等边三角形; (2)AE =13CE .(第20题)21. 如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作OA的平行线交⊙O于点C,AC与BD的延长线相交于点E.(1)试探究AE与⊙O的位置关系,并说明理由;(2)已知EC=a,ED=b,AB=c,请你思考后,选用以上适当的数据,设计出计算⊙O 的半径r的一种方案:①你选用的已知数是__________;②写出求解过程(结果用字母表示).(第21题)22. 如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).(第22题)BC.23.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC, OE=12(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.(第23题)24. 我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图(1),在圆O所在平面上,放置一条..直线(和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2)如图(2),在圆O所在平面上,请你放置与圆O都相交且不同时经..直线....过圆心...的两条和(与圆O分别交于点A、B,与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之.(3)如图(3),其中AB是圆O的直径,AC是弦,D是ABC的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.(1) (2)(3)(第24题)25. 小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图(1)),它的侧面边缘上有两条圆弧(如图(2)),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题(玻璃钢材料的厚度忽略不计,π取3.141 6).(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度(精确到0.1 cm);(2)计算出遮雨罩一个侧面的面积(精确到1cm2);(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料(精确到0.1平方米)?(1)(2)(第25题)附加题(共10分,不计入总分)26.如图(1),在直角坐标系xOy中,O是坐标原点,点A在x正半轴上,OA=cm,点B 在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t s(0<t<6).(1)求∠OAB的度数.(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t 值.(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.(1)(第26题)专题复习训练卷四1. C2. D 3.A 4.D 5.C 6. B 7.B 8. D 9. A 10. C 11.(-1,1) 12.1或5 13.0<x <1或2x14.2 15.32 16.2217. 18.1和121319. (1)用尺规作出两边的垂直平分线作出圆⊙O 即为所求做的花园的位置.如下图:(第19题)(2)∵ ∠BAC =90°,AB =8米,AC =6米, ∴ BC =10米.∴ △ABC 外接圆的半径为5米.∴ 小明家圆形花坛的面积为25π平方米. 20. (1)连接OD . ∵ 切线DE ⊥AC , ∴ OD ∥AC . ∴ ∠BDO =∠A .由OB =OD 得∠OBD =∠ODB , ∴ ∠OBD =∠A . ∴ BC =AC . 又 AB =AC ,∴ △ABC 是等边三角形. (2)连接CD ,则CD ⊥AB . ∴ D 是AB 中点.∵ AE =AD -cos ∠A =12AD ,∵ AE =14AB =14AC ,∴ EC =3AE . ∴ AE =13CE .21. (1)AE 与⊙O 相切.理由略. (2)①选择a ,b ,c ,或其中2个 ②解答举例: 若选择a ,b ,c . 由CD ∥OA ,aa +c =bb +r,得r =bc a.若选择a ,b .在Rt △OCE 中,由勾股定理,得a 2+r 2=(b +r )2,得r =a 2-b 22b.22. (1)△ACO ≌△BCO ,△APC ≌△BPC ,△PAO ≌△PBO (2)∵ PA 、PB 为⊙O 的切线,∴ PO 平分∠APB ,PA =PB ,∠PAO =90°. ∴ PO ⊥AB .∴ 由圆的对称性可知:S 阴影=S 扇形AOD .∵ 在Rt △PAO 中,∠APO =12∠APB =12×60°=30°,∴ ∠AOP =90°-∠APO =60°. ∴ S 阴影=S 扇形AOD =60×π×12360=π6.23.(1)连结OB 和OC .(第23题)∵OE⊥BC,∴BE=CE.∵OE=12 BC,∴∠BOC=90°.∴∠BAC=45°.(2)∵AD⊥BC,∴∠ADB=∠ADC=90°.由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD. ∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°.∴∠GAF=∠BAG+∠CAF+∠BAC=90°.∴四边形AFHG是正方形.(3)由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4.设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102.解得x1=12,x2=-2(不合题意,舍去).∴AD=12.24. (1)弦、弧、弓形、求弓形的面积等.(2)情形1:如图(1),AB为弦,CD为垂直于弦AB的直径.结论:略(垂径定理的结论之一).证明:略情形2:如图(2),AB为弦,CD为弦,且AB与CD在圆内相交于点P.结论:PA ·PB =PC ·PD .证明:略.(3)若点C 和点E 重合,则由圆的对称性,知点C 和点D 关于直径AB 对称. 设∠BAC =x ,则∠BAD =x ,∠ABC =90°-x .又D 是ABC 的中点,所以2∠CA D =∠CAD +∠ACD =180°-∠ABC , 即2·2x =180°-(90°-x ).解得x =∠BAC =30°.所以当∠BAC =30°时,点C 与点E 重合.(1)(2)(第24题)26. 由题意知BE =60,AE =50,连接O 1B ,设弧AB 的半径为R .在Rt △O 1BE 中,由勾股定理得R 2=602+(R -50)2.解得 R =61. 由sin ∠BO 1E =BE R =6061,得∠BO 1E ≈79.61° ∴ 弧AB 的长=79.61180×π×61≈84.8(cm). (2)扇形O 1AB 的面积=12×84.8×61≈2 586.4(cm 2). 扇形O 2BC 的面积=14×π×402=400π≈1 256.6(cm 2).梯形O 1BO 2D 的面积=12×(29+40)×60=2 070(cm 2).∴ 遮雨罩一个侧面的面积=扇形O 1AB 的面积+梯形O 1BO 2D 的面积-扇O 2BC 形的面积=2 586.4+2 070-1 256.6≈3 400(cm 2)(3)遮雨罩顶部的面积=84.8×180=15 264(cm 2).∴ 遮雨罩的总面积=3 400×2+15 264=22 064(cm 2)≈2.2(m 2). 制做这个遮雨罩大约需要2.2平方米玻璃钢材料.26.(1)在Rt △AOB 中,OB =12,OA =,AB =24,∴ ∠OAB =30°.(2)如图(1),连接OP ,OM .当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ′=90°,△PM O ′≌△PO O ′(第26题(1))由(1)知∠OBA =60°.∵ O ‘M = O ‘B ,∴ △O ‘BM 是等边三角形.∴ ∠B O ‘M =60°.可得∠O O ‘P =∠M O ‘P =60°.∴ OP = 6.又 OP =t ,∴ t =.即t =3时,PM 与⊙O ‘相切.(3)如图(2),过点Q 作QE ⊥x 于点E .∵ ∠BAO =30°,AQ =4t ,∴ QE =21AQ =2t .(第26题(2))由勾股定理得AE =t.∴ OE =OA -AE = t .∴ 点Q 的坐标为( t ,2t ).S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ =)212(32213121221t t -⋅⋅-⋅⋅ )32312(2212)32312(21t t t t -⋅-⋅-- =372336362+-t t =318)3(362+-t (60<<t ).当t =3时,S △PQR 最小=318.(4)分三种情况:如图(3).(第26题(3))①当AP =AQ 1=4t 时,∵ OP +AP =,∴ t +4t =12.∴ t =12-18.②当PQ 2=AQ 2=4t 时,过点Q2作Q2D⊥x轴于点D,∴PA=2AD=4t.即2 t+4 t =12.∴t=2.③当PA=PQ3时,过点P作PH⊥AB于点H.AH=18-3t,AQ3=2AH=36-6t.得36-6t=4t,∴t=3.6.综上所述,当t=2,3.6,12 -18时,△APQ是等腰三角形.。

相关文档
最新文档