NO 生成及控制措施
燃烧过程中氮氧化物的生成机理

燃烧过程中氮氧化物的生成机理一、本文概述氮氧化物(NOx)是燃烧过程中产生的一类重要污染物,对人类健康和环境质量构成了严重威胁。
本文旨在深入探讨燃烧过程中氮氧化物的生成机理,为有效控制其排放提供理论基础。
文章首先概述了氮氧化物的主要来源和危害,然后详细介绍了燃烧过程中氮氧化物的生成途径,包括热力型NOx、快速型NOx和燃料型NOx的生成过程。
接着,文章分析了影响氮氧化物生成的主要因素,如燃烧温度、氧气浓度、燃料种类等。
在此基础上,文章探讨了降低氮氧化物排放的技术措施,如低氮燃烧技术、烟气脱硝技术等。
文章对氮氧化物生成机理的未来研究方向进行了展望,旨在为燃烧过程氮氧化物减排技术的研发和应用提供有益参考。
二、氮氧化物的生成途径氮氧化物的生成主要发生在高温、富氧的燃烧环境中,其生成途径主要分为三种:热力型NOx、快速型NOx和燃料型NOx。
热力型NOx:在高温条件下,空气中的氮气与氧气直接发生反应,生成NO,这是热力型NOx的主要生成方式。
这种反应通常在燃烧区域的温度高于1500℃时发生,且随着温度的升高,NO的生成速率会显著增加。
快速型NOx:快速型NOx主要在碳氢燃料浓度较高的区域生成,其中燃料中的碳氢化合物与氮气、氧气以及羟基自由基(OH)等发生反应,生成NO。
这种反应方式在火焰前锋的富燃料区域中特别显著,因为这里的碳氢化合物浓度最高。
燃料型NOx:燃料型NOx的生成与燃料中的氮元素有关。
在燃烧过程中,燃料中的氮元素首先被氧化为氨(NH3)和氰化氢(HCN)等中间产物,这些中间产物再进一步与氧气反应生成NO和NO2。
燃料型NOx的生成量取决于燃料的种类和燃烧条件,如火焰温度、氧气浓度以及燃料与氧气的混合程度等。
在燃烧过程中,这三种NOx生成途径可能同时发生,但在不同的燃烧条件和燃料类型下,它们对总NOx生成量的贡献可能会有所不同。
例如,在燃气轮机和高温工业锅炉中,热力型NOx是主要的NOx生成途径;而在柴油机和某些燃煤锅炉中,燃料型NOx的贡献可能更为显著。
氮氧化物控制技术

赵毅
在火电机组排放的多种大气污染物中,氮氧化物是最 近三十多年来受到世界极大关注的一种污染物。氮氧化 物的排放对人体的致毒作用、对植物的损害以及对酸雨 和光化学烟雾的形成、对臭氧层的破坏中所起的作用已
经得到了科学的证明。世界上一些工业发达国家对氮氧
化物的排放制定了越来越严格的限制。随着今后电力工 业的发展,NOx排放量将越来越大。如果不加强控制,
根据Zelkowski(1986年)的研究结果,在煤 粉燃烧装置常规氧量运行条件下,NOx生成量 与温度之间的关系存在一个“边界温度”,高 于该“边界温度”时,NOx生成量将随温度的 升高以指数规律增加,这个“边界温度”大约 为1300℃。图4—1就是Zefkowski给出的NOx 的生成量与温度的关系曲线。
(1)炉形和设计参数的选择。低NOx炉形有循 环流化床锅炉(CFBC)和增压循环流化床锅 炉(PFBC);锅炉设计因素包括锅炉容量或 最大连续蒸发量、炉膛断面热负荷、容积热负 荷等因素。 进入20世纪90年代以后,世界上主要的锅炉制 造商的锅炉设计都是不仅要提高锅炉效率,减 少未燃烬碳损失,同时要考虑在锅炉的燃烧系 统和炉膛设计中尽量降低NOx的生成量。 (2)运行状况。运行状况包括锅炉负荷、过剩 空气量或氧量、直流燃烧器摆角及旋流燃烧器 旋流叶片角度设置等因素;比如采用低过量空 气系数是公认的减少NOx生成的运行方式。
2.烟气脱硝工艺分类
烟气脱硝工艺可以分为两大类——湿法和干法。 (1)湿法是指反应剂为液态的工艺方法。 (2)干法是指反应剂为气态的工艺方法。 无论是干法还是湿法,依据脱硝反应的化学机理,又可以分为还 原(Reduction)法、分解(Decomposition)法、吸附 (Absorption)法、等离子体活化(Plasma activation)法和生 化(Biochemical)法等。 湿法有气相氧化液相吸收法和液相氧化吸收法等,干法有选择性 催化还原法(SCR )、选择性非催化还原法(SNCR)等。 目前世界上使用最广泛的方法是选择性催化还原法(SCR)和选 择性非催化还原法(SNCR)。
NOX形成机理-如何控制NOX浓度

NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
燃气轮机NOx生成机理及降低措施

燃气轮机NOx生成机理及降低措施一燃烧过程中NOx生成机理1.热力型NOx生成机理(泽尔道维奇机理)热力型NOx是指空气中的N2在高温条件下氧化生成的氮氧化物,其主要成分是NO。
按照这一机理,空气中的N2在高温下氧化,是通过如下一组不分支的链式反应进行的,生成速率如下式所示:生成NO所需的活化能很大,通常氧原子与燃料中可燃成分之间的活化能较小,反应较快,因此,NO通常不在火焰面上生成,主要生成区域位于火焰下游高温区。
温度对热力型NOx的影响是非常明显的,当温度低于1800K时,热力型NOx生成量很少,当温度高于1800K时,反应逐渐明显,而且随着温度的升高,NOx生成量急剧升高。
从图中可以大致看出,温度在1800K左右时,温度每升高l00K,反应速度将增大6一7倍。
由于在实际燃烧过程中,燃烧室内温度分布通常是不均匀的,如果有局部的高温区域,则在这个区域会生成较多的NOx,它可能会对整个燃烧室内的NOx生成起到关键的作用。
因此,在实际的燃烧器设计过程中应尽量避免局部高温区的形成。
过量空气系数对热力型NOx的影响也是非常明显的,热力型NOx生成量与氧浓度的平方根成正比,即氧浓度增大,在较高的温度下会使氧分子分解的氧原子浓度增加,从而使热力型NOx的生成量增加。
但在实际燃烧过程中情况会更复杂一些,因为过量空气系数的增加一方面增加了氧浓度,另一方面也降低了火焰温度,从总体趋势上来看,随着过量空气系数的增加,NOx生成量先增加,到达一个极值后下降。
气体在高温区域的停留时间对热力型NOx生成也有影响,主要是因为Nox生成反应速度较慢,没有达到化学平衡所致。
在其它条件不变的情况下,气体在高温区停留时间越长,NOx生成量就越大,直到达到化学平衡浓度。
2.快速型NOx生成机理有关快速型NOx的生成机理到目前为止尚有争议,其基本现象是碳氢燃料在过量空气系数小于1的情况下,在火焰面内急剧生成大量的NOx,而CO, H2等非碳氢燃料在空气中燃烧却没有发生这种现象。
no的化学键

no的化学键一、引言氮氧化物(NOx)在化学、生物和环境领域具有广泛的研究价值和应用前景。
其中,一氧化氮(NO)和二氧化氮(NO2)是最为常见的氮氧化物。
本文将探讨NO的化学性质、在生物体内的作用、环境影响及控制与应用等方面的内容。
二、NO的化学性质1.氮氧化物的生成氮氧化物主要来源于氮气(N2)和氧气(O2)在高温、高压条件下的反应。
在工业生产、汽车尾气排放等过程中,氮气和氧气发生氧化还原反应生成NO、NO2等氮氧化物。
2.一氧化氮(NO)的特性一氧化氮(NO)是一种无色、无味、有毒的气体。
它在空气中容易与氧气反应,生成二氧化氮(NO2)。
NO具有较高的化学活性,可以与金属离子形成稳定的络合物。
3.二氧化氮(NO2)的性质二氧化氮(NO2)是一种红棕色、有刺激性气味的气体。
它具有较高的氧化性,可以与其他物质发生氧化反应。
在空气中,NO2可以与水反应生成硝酸和一氧化氮,进一步加剧大气污染。
三、NO在生物体内的作用1.一氧化氮合酶(NOS)在生物体内,一氧化氮合酶(NOS)负责催化氨基酸(如精氨酸)生成NO。
NOS分为两类:神经元型NOS(nNOS)和内皮型NOS(eNOS)。
2.生物体内NO的生理功能O在生物体内具有多种生理功能,如调节血管张力、抑制血小板聚集、影响神经传递等。
这些功能使其在心血管疾病、神经系统疾病等方面具有重要作用。
3.NO与心血管疾病的关系一氧化氮在心血管系统中具有抗凝、抗炎、抗氧化等作用。
心血管疾病的发生与发展与NO的生成和活性密切相关。
四、NO在环境中的影响1.汽车尾气排放中的氮氧化物汽车尾气中含有大量氮氧化物,其中以NOx为主。
这些氮氧化物对人体健康和环境造成严重影响。
2.大气污染与NOx排放氮氧化物是大气污染物的重要组成部分。
它们与其他有害气体共同导致雾霾、光化学烟雾等大气污染现象。
3.环保措施与氮氧化物减排为减轻氮氧化物对环境和人类健康的影响,我国政府采取了一系列措施,如实施严格的汽车排放标准、推广清洁燃料汽车、加大环保执法力度等。
一氧化氮和二氧化氮

一氧化氮和二氧化氮引言一氧化氮(NO)和二氧化氮(NO2)是两种重要的大气污染物,它们对空气质量和人类健康都有极大的影响。
本文将介绍一氧化氮和二氧化氮的来源、影响和控制方法,旨在增加人们对于这两种气体的认识,以促进环境保护和健康生活。
一氧化氮的来源和形成一氧化氮是一种无色无味的气体,其主要来源包括人类活动和自然过程。
人类活动中,燃煤、汽车尾气和工业排放是主要的一氧化氮产生源。
燃煤过程中,高温燃烧会导致氮气和氧气的反应生成一氧化氮。
汽车尾气中的氮氧化物,特别是一氧化氮的排放量也相当可观,尤其是高负荷行驶和怠速状态下。
工业排放主要来自于燃煤、炼油、化肥生产等产业过程中的发电设备、燃烧设备和排放口等。
自然过程中,一氧化氮可以通过闪电放电和微生物代谢等方式产生。
闪电放电会使空气中的氮气氧化生成一氧化氮,而微生物代谢是通过土壤中的细菌和真菌等生物产生一氧化氮。
二氧化氮的来源和形成二氧化氮是一种有刺激性气味的棕红色气体,其主要来源也包括人类活动和自然过程。
人类活动中,汽车尾气和燃煤排放是主要的二氧化氮产生源。
汽车尾气中的氮氧化物会在大气中发生多次反应,最终生成二氧化氮。
燃煤排放中的氮氧化物也经过一系列的反应生成二氧化氮。
自然过程中,闪电放电和日照是主要的二氧化氮生成方式。
闪电放电会使空气中的氮气氧化生成二氧化氮,而日照会使大气中的一氧化氮与氧气反应生成二氧化氮。
一氧化氮和二氧化氮的影响一氧化氮和二氧化氮在大气中的存在对环境和人类健康产生明显的影响。
它们参与了大气中的氮循环过程,对大气化学反应起到了重要的催化作用。
一氧化氮和二氧化氮在与其他大气污染物如臭氧和颗粒物等反应时,能够加速其生成和转化,从而影响空气质量。
此外,一氧化氮和二氧化氮还会对人体健康产生不良影响。
二氧化氮具有强烈的刺激性,会导致眼睛和呼吸道的炎症反应。
长期接触高浓度的二氧化氮可能引发慢性呼吸道疾病,并增加心血管疾病的风险。
一氧化氮则是自由基的重要来源,过多的一氧化氮会导致氧化应激反应,增加细胞损伤的可能性,可能导致炎症、免疫紊乱和癌症等疾病的风险增加。
一氧化二氮和氧化亚氮

一氧化二氮和氧化亚氮是两种常见的氮化物,又称笑气和NOx。
它们在工业、医疗以及环境保护等领域应用十分广泛,但也存在着很多危害和风险。
本篇文章将详细介绍这两种氮化物以及它们的应用、危害和防治措施。
一、一氧化二氮1. 概述一氧化二氮,结构式N2O,通常被称为“笑气”,是一种常见的氧化剂和麻醉剂。
它的外观无色且呈气态,凝固点为-90℃,沸点为-88℃。
2. 应用(1)医疗领域:在许多外科、牙科手术中用作麻醉剂。
(2)食品工业:用作发泡剂和去除咖啡因等。
3. 危害(1)吸入高浓度的一氧化二氮会导致头晕、恶心、幻觉、抑制呼吸甚至心跳停止等危害健康的情况。
(2)长期接触一氧化二氮可能影响神经系统,损害认知和记忆能力。
4. 防治(1)个人防护:在工作场所佩戴相应的防护装置并掌握使用方法。
(2)加强管理:对一氧化二氮进行专业化管控和监测,保证安全、环保运行。
二、氧化亚氮1. 概述氧化亚氮,结构式NOx,是指包括NO、NO2等的一系列亚氮类化合物。
其中,二氧化氮(NO2)被认为是最有害的氮气化合物之一。
2. 应用(1)燃料燃烧反应:氮气及其化合物是燃料中不可避免的副产物,因而它们在技术燃烧过程中会大量地生成。
(2)化学生产:例如硝酸等化学品的生产过程。
3. 危害(1)造成雾霾:氧化亚氮是主要的空气污染物之一,与颗粒物等混合形成雾霾天气,导致公共健康问题严重。
(2)危害呼吸器官:氧化亚氮与其他气体或颗粒物混合形成致命的大气污染,会对人体呼吸器官产生刺激作用,进而引发多种疾病,例如哮喘和支气管炎等。
4. 防治(1)源头减排:采取工艺改进或降低生产规模等综合措施,降低氮氧化物的生成量。
(2)汽车尾气治理:限制机动车辆行驶,控制机动车尾气排放的氮氧化物含量。
总之,一氧化二氮和氧化亚氮这两种氮化物在现代社会应用广泛,但也带来了很多危害和风险。
防治措施包括加强管理、源头减排以及个人防护等,并需要留意其最新更新的监管政策,从而为我们身边的每个人营造一个舒适安全、清洁洁净的环境。
燃煤电站锅炉氮氧化物形成机理及防治措施

燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是大气污染的重要来源之一,其中氮氧化物(NOx)是主要的污染物之一。
本文将详细介绍燃煤电站锅炉中NOx的形成机理以及防治措施。
燃煤电站锅炉中NOx的形成主要有两个途径:热反应途径和燃料反应途径。
热反应途径:在燃烧过程中,煤炭中的氮在高温下与氧发生反应,生成一氧化氮(NO)。
烟气中的一氧化氮进一步在高温下与大量的氧气反应,生成二氧化氮(NO2),这是最主要的NOx形成途径。
这种热反应途径占据了NOx总排放量的60%至80%。
燃料反应途径:煤炭中的有机氮化合物如胺、腈、蛋白质等在燃烧过程中氧化生成一氧化氮。
煤炭中的含硫化合物如硫酸铵、硫化氢等也会增加NOx的形成。
这种燃料反应途径占据了NOx总排放量的20%至40%。
燃煤电站锅炉中NOx的防治措施主要包括以下几个方面:1. 燃烧调整技术:通过调整燃烧条件,可以减少燃烧温度和氧浓度,从而降低煤炭中氮的氧化率。
采用低氮燃烧技术、燃烧再循环技术、燃烧扩散焚烧技术等可以有效降低NOx的生成。
2. 烟气脱硝技术:烟气脱硝技术是目前最常用的NOx排放控制技术之一。
常见的烟气脱硝技术包括选择性催化还原(SCR)、选择性非催化还原(SNCR)等。
SCR技术通过在烟气中注入还原剂,利用催化剂促进NOx的还原反应,将NOx转化为无害的氮气和水。
SNCR技术则是在烟气中喷射还原剂,使其与燃烧产物中的一氧化氮发生还原反应。
3. 燃料改进:改变煤炭的燃料成分,减少煤中的氮含量,可以有效减少NOx的生成。
采用低氮煤、低氮煤粉等可以降低NOx的排放。
4. 其他技术措施:燃烧过程中的过量空气的控制、燃烧器的优化设计、断续燃烧技术等也可以减少NOx的生成。
对煤炭冲洗和脱硫也能减少NOx的排放。
燃煤电站锅炉中NOx的形成机理复杂,但通过燃烧调整、烟气脱硝、燃料改进等技术措施可以有效防治NOx的排放,降低燃煤电站对大气环境的污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NOx生成及控制措施一概述中国是一个以煤炭为主要能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方法利用的。
煤燃烧所释放出废气中的氮氧化物(NOx),是造成大气污染的主要污染源之一。
氮氧化物(NOx)引起的环境问题和人体健康的危害主要有以下几方面:氮氧化物(NOx)的主要危害:(1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx是形成酸雨、酸雾的主要污染物;(4)NOx与碳氢化合物可形成光化学烟雾;(5)NOx参与臭氧层的破坏。
(2)不同浓度的NO2对人体健康的影响二、燃煤锅炉NOx生成机理氮氧化物(NOx)是造成大气污染的主要污染源之一。
通常所说的NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO和NO2是重要的大气污染物,另外还有少量N2O。
我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx排放的主要来源之一。
煤的燃烧过程中产生的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2),在煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等密切相关。
燃烧形成的NOx生成途径主要由以下三个:为燃料型、热力型和快速型3种。
其中快速型NOx生成量很少,可以忽略不计。
1.热力型NOx指空气中的氮气(N2)和氧(O2)燃料燃烧时所形成的高温环境下生成的NO 和NO2的总和,其总反应式为:当燃烧区域温度低于1000℃时,NO的生成量较少,而温度在1300℃—1500℃时,NO的浓度约为500—1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加,当温度足够高时热力型NOx可达20%。
因此,温度对热力型NOx的生成具有绝对性的作用,过量空气系数和烟气停留时间对热力型NOx的生成有很大影响。
根据热力型NOX的生成过程,要控制其生成,就需要降低锅炉炉膛燃烧温度,并避免产生局部高温区,以降低热力型NOX的生成。
2.燃料型NOx燃料型NOx的生成是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx,称为燃料型NOx。
燃煤电厂锅炉中产生的NOx中大约75%~90%是燃料型NOx,因此燃料型NOx是燃煤电厂锅炉产生NOx的主要途径。
研究燃料型NOx 的生成和破坏机理,对于控制燃烧过程中NOx的生成和排放,具有重要的意义。
在燃料燃烧生成NOx的过程中,如遇到烃(CH m)或碳(C)时,NO将会被还原成氮分子N2,,这一过程中被称为NO的再燃烧或燃料分级燃烧。
根据这一原理,将进入锅炉炉膛的煤粉分层分级引入燃烧,可以有效地控制NOx的生成与排放。
燃料型NOx的生成和破坏过程不仅与煤种特性、燃料中的氮化合物受热分解后在挥发分和焦炭中的比例、成分和分布有关,而且其反应过程还和燃烧条件(如温度和氧)及各种成分的浓度密切相关。
在燃料进入炉膛被加热后,燃料中的氮有机化合物首先被热分解成氰(HCN),氨(NH4)和CN等中间产物,它们随挥发份一起从燃料中析出,被称为挥发分N。
挥发分N析出后仍残留在燃料中的氮化合物,称为焦炭N。
在一般情况下,燃料型NOx的主要来源是挥发N,其占总量的60%~80%,其余为焦炭N所形成。
在氧化性环境中生成的NOx,遇到还原性气氛时,会还原成N2。
因此锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着锅炉燃烧条件的改变,生成的NOx可能被还原,或被破坏。
煤中的N在燃烧过程中转化为NOx的量与煤的挥发份及燃烧过量空气系数有关,在过量空气系数大于1的氧化性气氛中,煤的挥发分越高,NOx的生成量就越多,过剩空气系数小于1,高挥发份燃煤的NOx生成量较低,其主要原因是高挥发份的燃料迅速燃烧,使燃烧区域氧量降低,不利于NOx的生成。
综合的说,燃料型NOx指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
其生成量主要取决于空气燃料的混合比。
燃料型NOx 约占NOx总生成量的75%~90%。
过量空气系数越高, NOx的生成和转化率也越高。
3.快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成NOx。
主要是指燃料中碳氢化合物在燃料浓度较高的区域燃烧时所产生的烃,与燃烧空气中的N2发生反应,形成的CN和HCN继续氧化而生成的NOx。
在燃煤锅炉中,其生成量很小,一般在燃用不含氮的碳氢燃料时才予以考虑。
在这三种形式中,快速型NOx所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。
对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。
控制NOx排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。
三、燃煤锅炉NOx生成因素1.炉温对NOX生成的影响:炉温主要影响热力NOX的生成量从而影响总的NOX生成量。
炉温越高,所占比例越大。
2.过剩空气系数对NOX生成的影响:过剩空气系数对燃料NOX 、热力NOX 及快速NOX均有影响,但影响的趋势不同,当α开始增加时,热力NOX和燃料NOX都增加,当超过1.1时热力NOX减少,燃料NOX继续增加,总的NOX随α的增加而增加。
3.预热空气温度对NOX生成的影响:如果提高预热空气温度,则煤粉着火提前,这样可提高炉内温度水平,使热力NOX增加,同时燃烧初始区的温度水平,使挥发分大量析出,因而挥发分NOX大量增加。
所以预热空气温度越高,NOX生成量越多。
4.煤质对NOX生成的影响:(1)挥发分的影响:当挥发分增加时,着火提前,温度峰值和平均温度均会有所提高,热力NOX增加;同时挥发分含量增多,使得燃料型NOX也会提高;(2)水分的影响:水分增加,着火延迟,则燃料与空气之间的混合良好,即着火区氧浓度增加,燃料中的氮在着火阶段停留时间增加,反应充分,故燃料型NOX增加。
另外,水分增加,发热量降低,温度水平降低,热力型NOX降低,但总NOX的生成量增加。
(3)含氮量的影响:随含氮量的增加,NOX增加。
5.煤粉细度对NOX生成的影响:在不考虑低氮燃烧时,煤粉细度越细,则燃烧越快,温度越高,热力NOX越多;同时,煤粉加热快,温度峰值高,则析出的挥发分多。
而且此时与空气混合程度高,燃料NOX多。
6.负荷对NOX的影响:随着负荷的降低,炉膛温度降低,热力型NOX生产量降低,但负荷降低,过量空气系数增加,总的燃烧区过量空气量增加,燃料型NOX增加,因此,在负荷降低过程中,NOX含量先降低后升高。
四、降低燃料型NOx排放的主要技术措施低NOx燃烧技术:NOx的形成起决定作用的是燃烧区域的温度和过量空气系数,因此,通过控制燃烧区域的温度和空气量,已达到阻止NOx的生成及降低其排放的目的,我们称该技术为低氮燃烧技术。
对低氮燃烧技术的要求是,在降低NOx的同时,使锅炉燃烧稳定,且飞灰含碳量不能超标。
为了控制燃烧过程中NOx的生成量所采取的措施原则为:(1)降低过量空气系数和氧气浓度,使煤粉在缺氧条件下燃烧;(2)降低燃烧温度,防止产生局部高温区;(3)缩短烟气在高温区的停留时间等。
低NOx燃烧技术主要包括:低过量空气系数、空气分级燃烧、燃料分级燃烧、烟气再循环、低NOx燃烧器。
1、低过量空气燃烧使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOX的生成。
这是一种最简单的降低NOX排放的方法。
一般可降低NOX排放15~20%。
但如炉内氧浓度过低(3%以下),会增加化学不完全燃烧热损失,引起飞灰含碳量增加,使锅炉燃烧效率下降。
因此,在锅炉运行时,应选取最合理的过量空气系数。
2、空气分级燃烧基本原理是将燃料的燃烧过程分阶段完成,采用倒三角的配风方式。
在第一阶段预燃阶段,将从主燃烧器供入炉膛的空气量减少(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。
此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。
因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOX的反应率,抑制了NOX在这一燃烧中的生成量。
第二阶段燃烬阶段,为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门二次风喷口送入炉膛,与第一级燃烧区在“贫氧燃烧”条件下所产生的烟气混合,在α>1的条件下完成全部燃烧过程。
这一方法弥补了简单的低过量空气燃烧的缺点。
在第一级燃烧区内的过量空气系数越小,抑制NOX的生成效果越好,但不完全燃烧产物越多,导致燃烧效率降低、引起结渣和腐蚀的可能性越大。
因此,为保证既能减少NOX的排放,又保证锅炉燃烧的经济性和可靠性,必须正确组织空气分级燃烧过程。
3、燃料分级燃烧在燃烧中已生成的NO遇到烃根CHi和未完全燃烧产物CO、H2、C和CnHm 时,会发生NO的还原反应,重新还原为N2。
利用这一原理,将主要燃料送入第一级燃烧区,在α>1条件下,燃烧并生成NOX。
送入一级燃烧区的燃料称为一次燃料,其余15~20%的燃料则在主燃烧器的上部送入二级燃烧区,在α<1的条件下形成很强的还原性气氛,使得在一级燃烧区中生成的NOX在二级燃烧区(再燃区)内被还原成氮分子,送入二级燃烧区的燃料又称为二次燃料,或称再燃燃料。
在再燃区中不仅使得已生成的NOX得到还原,还抑制了新的NOX的生成,可使NOX的排放浓度进一步降低。
在采用燃料分级燃烧时,为了有效地降低NOX排放,再燃区是关键。
因此,需要研究在再燃区中影响NOx浓度值的因素。
4、烟气再循环目前使用较多的还有烟气再循环法,它是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉内,或与一次风或二次风混合后送入炉内,这样不但可降低燃烧温度,而且也降低了氧气浓度,进而降低了NOX的排放浓度。
但是,在现有设备没再循环就得进行设备改造,还是进行经济性和安全性比较后才能实施。
四、我厂燃烧器布置我厂燃烧方式采用四角切圆燃烧。
一、二次风喷口均可上下摆动,摆动角度能达到设计值,最大摆角为30o。
喷口的摆动由能反馈电信号的(4~20mA)的进口气动智能型执行机构来实现,执行机构有足够的扭矩,能使燃烧器摆动灵活,四角同步,每个执行机构要求有一个4~20mA位置反馈并送至DCS,燃烧器上设有摆动角度指示标志。
主风箱设有五层强化着火煤粉喷嘴,在煤粉喷嘴四周布置有燃料风(周界风)。
在每相邻两层煤粉喷嘴之间布置有一层辅助风喷嘴,在主风箱上部设有三层紧凑燃烬风喷嘴,在主风箱下部设有一层二次风喷嘴。
在主风箱上部布置有高位燃烬风燃烧器,包括三层可水平摆动的分离燃尽风(高位燃烬风)喷嘴。
SOFA风喷嘴可上下和左右水平摆动,来控制炉膛出口烟温偏差。