P-Twisted Affine Lie Algebras and Their Associated Vertex Algebras
沃森和克里克发表的文章的翻译

核酸的分子结构——脱氧核糖核酸的结构我们希望证明脱氧核糖核酸盐(DNA)的结构,这种结构具有相当的生物感兴趣的新的特点。
Plauling和Corey已经提出了一种核酸结构。
他们非常友好的在其出版之前将手稿提供给我们。
他们的模型包括三个缠绕的链,与附近的糖磷酸骨架和外面的碱基。
我们认为,这种结构不理想,原因有二(1)我们相信,该材料赋予的透视图是盐,。
没有酸性氢原子,目前还不清楚是什么力量将持有的结构在一起,尤其是会互相排斥。
(2)有些距离显得有些过于小。
另三链结构也已由弗雷泽提出(在印刷中)。
在他的模型磷酸盐是在外面和内部的基础上通过氢键连接在一起。
这种结构的描述是相当不明确的,基于这个原因,我们不会对此发表评论。
我们希望提出根本不同的结构的脱氧核苷酸盐,这种结构有双螺旋且每个圈都有相同的轴线(看图)。
我们已经做出一般的化学假设,即核苷酸之间通过3'到5'磷酸二酯键连接到β- d-脱氧核糖核酸残基上。
这两条链都是右手螺旋。
但是由于这两个沿链相反的方向运行,这两条链是非常相似的。
每个链松耦合类似于Furberg的1号模型,这就是,碱基位于双螺旋的内部而磷酸盐位于外部。
糖及附近的原子结构接近Furberg 的标准配置,糖是大致垂直于与之接触的碱基。
在Z方向每一个链每隔3.4A就有一个碱基。
我们假设在同一链中相邻的核苷酸夹角为36 °,所以每条链的结构每十个核苷酸即每34A就重复一次。
一个磷原子到纵轴的间距为10A,由于磷在外面的,阳离子容易接触到他们。
其结构是一个开放的,它的水分含量是相当高的,在较低的水含量,我们希望碱基能够倾斜,这样的结构可能变得更加紧凑。
该结构新颖特点是这两条链的嘌呤和嘧啶碱基连接在一起的方式。
碱基的平面垂直于纵轴。
碱基配对,一条链的碱基和另一条链的碱基以氢键连接,因此两个碱基能够完全一致吻合,为了氢键的生成一对碱基中必须是一个是嘌呤另一个是嘧啶,碱基是如下生成的:嘌呤的1位置和嘧啶的1位置,嘌呤的6位置和嘧啶的6位置。
英语话剧剧本范文10篇

英语话剧剧本范文10篇英文回答:1. "Romeo and Juliet" by William Shakespeare.The classic tragedy "Romeo and Juliet" tells the story of two young lovers from feuding families who fall in love and ultimately meet a tragic end. The play is filled with iconic lines and memorable scenes, such as the balcony scene where Romeo professes his love for Juliet. The emotional depth of the characters and the timeless themes of love and conflict make this play a favorite among audiences worldwide.2. "The Importance of Being Earnest" by Oscar Wilde."The Importance of Being Earnest" is a witty and satirical comedy that pokes fun at the social conventions of Victorian society. The play follows the antics of two friends who create imaginary personas to escape their dulllives, leading to a series of hilarious misunderstandings. Wilde's clever wordplay and sharp wit make this play a delight to watch and a favorite among fans of comedy.3. "A Streetcar Named Desire" by Tennessee Williams."A Streetcar Named Desire" is a powerful drama that explores the themes of desire, madness, and the clash between old and new ways of life. The play follows the troubled relationship between Blanche DuBois and her brother-in-law Stanley Kowalski, culminating in a devastating climax. Williams' vivid characters and poetic language create a haunting and unforgettable theatrical experience.4. "Death of a Salesman" by Arthur Miller."Death of a Salesman" is a poignant tragedy that delves into the struggles of the American Dream and the impact of a changing society on one man and his family. The play follows Willy Loman, a salesman who grapples with feelings of failure and disillusionment as he confronts his ownmortality. Miller's exploration of the human condition and the pursuit of success resonates with audiences to this day.5. "The Glass Menagerie" by Tennessee Williams."The Glass Menagerie" is a lyrical and introspective drama that examines the bonds of family and the power of memory. The play follows the Wingfield family as they navigate the challenges of life in 1930s St. Louis.Williams' poetic language and evocative imagery create a dreamlike atmosphere that draws audiences into the characters' inner worlds.6. "A Raisin in the Sun" by Lorraine Hansberry."A Raisin in the Sun" is a groundbreaking drama that explores the African American experience in 1950s America. The play follows the Younger family as they grapple with poverty, racism, and the pursuit of their dreams.Hansberry's powerful storytelling and complex characters shed light on the struggles and triumphs of a marginalized community.7. "The Crucible" by Arthur Miller."The Crucible" is a gripping drama that examines the Salem witch trials and the dangers of mass hysteria and intolerance. The play follows the residents of Salem as they are swept up in a frenzy of accusations and paranoia. Miller's exploration of fear and injustice resonates with audiences as a cautionary tale about the consequences of blind belief.8. "Who's Afraid of Virginia Woolf?" by Edward Albee."Who's Afraid of Virginia Woolf?" is a searing drama that delves into the complexities of marriage and the nature of truth. The play follows the tumultuous relationship between George and Martha, whose verbal sparring and emotional games reveal deep-seated resentments and secrets. Albee's sharp dialogue and psychological insight make this play a riveting and thought-provoking experience.9. "The Cherry Orchard" by Anton Chekhov."The Cherry Orchard" is a classic tragicomedy that explores themes of change, loss, and the passage of time. The play follows the aristocratic Ranevskaya family as they face the prospect of losing their beloved estate to foreclosure. Chekhov's nuanced characters and bittersweet humor create a rich tapestry of human emotions and relationships.10. "Waiting for Godot" by Samuel Beckett."Waiting for Godot" is a groundbreaking absurdist play that challenges traditional notions of plot and character. The play follows two characters, Vladimir and Estragon, as they wait endlessly for the arrival of a mysterious figure named Godot. Beckett's minimalist dialogue and existential themes have made this play a landmark in modern theater.中文回答:1. 威廉·莎士比亚的《罗密欧与朱丽叶》。
爱伦坡百度——精选推荐

简介(百度)侦探小说(detective story)鼻祖、科幻小说(science fiction)先驱之一、恐怖小说(horror fiction)大师、短篇哥特小说巅峰、象征主义(s ymbolism)先驱之一,唯美主义(aes theticism)者。
受到过爱伦·坡影响的主要人物有:柯南·道尔、波德莱尔、斯特芳·马拉美、儒勒·凡尔纳、罗伯特·路易斯·斯蒂文森、希区柯克、蒂姆·伯顿、江户川乱步等。
爱伦·坡最著名的文艺理论是―效果论‖。
坡力图在自己的作品中先确立某种效果,再为追求这种效果而思考创作。
他在《怪异故事集》序中称―自己的作品绝大部分都是深思熟虑的苦心经营‖。
爱伦·坡、安布鲁斯·布尔斯(1842~1914?)和H.P.洛夫克拉夫特(1890~1937)并称为美国三大恐怖小说家。
埃德加·爱伦·坡(英语:Edgar Allan Poe;1809年1月19日-1849年10月7日),美国作家、诗人、编者与文学评论家,被尊崇是美国浪漫主义运动要角之一,以悬疑、惊悚小说最负盛名。
爱伦·坡是美国的短篇小说家先锋之一,并被公认是推理小说的创造者,甚至被视为科幻小说的共同催生者之一[1]。
他是第一位众所周知、仅以创作一职糊口的美国作家,并因此长陷于经济困难与不顺遂之中[2]。
Edgar Allan Poe (born Edgar Poe, January 19, 1809 – October 7, 1849) was an American author, poet, editor and literary critic, considered part of the American Romantic Movement. Best known for his tales of mystery and the macabre, Poe was one of the earliest American practitioners of the short story and is considered the inventor of the detective fiction genre. He is further credited with contributing to the emerging genre of science fiction.[1] He was the first well-known American writer to try to earn a living through writing alone, resulting in a financially difficult life and career.[2]Literary influenceDuring his lifetime, Poe was mostly recognized as a literary critic. Fellow critic James Russell Lowell called him "the most discriminating, philosophical, and fearless critic upon imaginative works who has written in America", though he questioned if he occasionally used prussic acid instead of ink.[100] Poe was also known as a writer of fiction and became one of the first American authors of the 19th century to become more popular in Europe than in the United States.[101] Poe is particularly respected in France, in part due to early translations by Charles Baudelaire. Baudelaire's translations became definitive renditions of Poe's work throughout Europe.[102]Poe's early detective fiction tales featuring C. Auguste Dupin laid the groundwork for future detectives in literature. Sir Arthur Conan Doyle said, "Each [of Poe's detective stories] is a root from which a whole literature has developed.... Where was the detective story until Poe breathed the breath of life into it?"[103] The Mystery Writers of America have named their awards for excellence in the genre the "Edgars".[104] Poe's work also influenced science fiction, notably Jules Verne, who wrote a sequel to Poe's novel The Narrative of Arthur Gordon Pym of Nantucket called An Antarctic Mystery, also known as The Sphinx of the Ice Fields.[105] Science fiction author H. G. Wells noted, "Pym tells what a very intelligent mind could imagine about the south polar region a century ago."[106]Like many famous artists, Poe's works have spawned innumerable imitators.[107] One interesting trend among imitators of Poe, however, has been claims by clairvoyants or psychics to be "channeling" poems from Poe's spirit. One of the most notable of these was Lizzie Doten, who in 1863 published Poems from the Inner Life, in which she claimed to have "received" new compositions by Poe's spirit. The compositions were re-workings of famous Poe poems such as "The Bells", but which reflected a new, positive outlook.[108]Even so, Poe has received not only praise, but criticism as well. This is partly because of the negative perception of his personal character and its influence upon his reputation.[101]William Butler Yeats was occasionally critical of Poe and once called him "vulgar".[109]Transcendentalist Ralph Waldo Emerson reacted to "The Raven" by saying, "I see nothing in it"[110] and derisively referred to Poe as "the jingle man".[111]Aldous Huxley wrote that Poe's writing "falls into vulgarity" by being "too poetical"—the equivalent of wearing a diamond ring on every finger.[112]It is believed that only 12 copies of Poe's first book, Tamerlane and Other Poems, have survived. In December 2009, one copy sold at Christie's, New York for $662,500, a record price paid for a work of American literature.[113]中国人较系统地译介爱伦·坡比法国人晚了80余年,但却几乎应验了坡160年前引用过的一段文字。
介绍牛顿的英语作文

Isaac Newton, a towering figure in the history of science, is renowned for his monumental contributions to physics, mathematics, and astronomy. His life and work continue to inspire generations of scholars and laypeople alike. This essay aims to delve into the life of Sir Isaac Newton, exploring his early years, his groundbreaking discoveries, and the impact of his work on the world.Born in Woolsthorpe, England, on January 4, 1643, Newton was a child of the scientific revolution. His early life was marked by a thirst for knowledge and an insatiable curiosity about the world around him. Despite facing numerous challenges, including the early death of his father and a strained relationship with his stepfather, Newtons determination to learn and understand the universe was unwavering.Newtons academic journey began at the University of Cambridge, where he was admitted to Trinity College in 1661. It was here that he was exposed to the works of the great philosophers and scientists of the time, such as René Descartes and Christiaan Huygens. His intellectual curiosity was further fueled by the teachings of Isaac Barrow, a prominent mathematician and the Lucasian Professor of Mathematics, a position Newton would later hold.One of Newtons most significant contributions to science was the development of the laws of motion and universal gravitation. These laws, which he formulated in his seminal work, Philosophiæ Naturalis Principia Mathematica, published in 1687, laid the foundation for classical mechanics. His three laws of motion describe the relationship between abody and the forces acting upon it, and the bodys motion in response to those forces. The law of universal gravitation, on the other hand, posits that every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.Newtons work in optics was equally groundbreaking. He conducted a series of experiments that demonstrated white light is composed of a spectrum of colors, which he observed by passing sunlight through a prism. This discovery challenged the prevailing theories of the time and laid the groundwork for the field of spectroscopy. Furthermore, Newtons work on the nature of light and color led to the development of the reflecting telescope, which significantly improved upon the existing designs of the time.In addition to his scientific achievements, Newton made significant contributions to the field of mathematics. He developed calculus, a branch of mathematics that deals with the study of change and motion, independently of German mathematician Gottfried Wilhelm Leibniz. Although the two mens work on calculus was developed concurrently, Newtons notation and methods have had a lasting impact on the field.Newtons influence extended beyond the scientific community. His work was instrumental in shaping the Enlightenment, a period of intellectual and philosophical development that emphasized reason, individualism, and the scientific method. His ideas on natural philosophy and the laws governing the universe inspired a new generation of thinkers and scientists, includingVoltaire, who referred to Newton as the great geometer of the universe.Despite his monumental contributions to science, Newtons personal life was marked by periods of intense introspection and solitude. He was known to be somewhat reclusive and had few close friends. His correspondence with other scientists, such as the famous exchange with Leibniz over the invention of calculus, was often marked by a sense of rivalry and competition.In conclusion, Sir Isaac Newtons life and work have left an indelible mark on the world of science and beyond. His discoveries in physics, mathematics, and optics have shaped our understanding of the universe and laid the foundation for much of modern science. His legacy continues to inspire and challenge us to explore the mysteries of the cosmos and to seek a deeper understanding of the world around us.。
大学英语阅读The_Tell-Tale_HeartPPT课件

• Beyond horror, Poe also wrote satires, humor tales, and hoaxes. For comic effect, he used irony and ludicrous extravagance, often in an attempt to liberate the reader from cultural conformity. Poe's writing reflects his literary theories, which he presented in his criticism and also in many essays.He disliked didacticism and allegory, though he believed that meaning in literature should be an undercurrent just beneath the surface. Works with obvious meanings, he wrote, cease to be art.He believed that quality work should be brief and focus on a specific single effect. To that end, he believed that the writer should carefully calculate every sentiment and idea.
11
Summary
• The story follows an unnamed narrator who insists on his sanity after murdering an old man with a "vulture eye". The murder is carefully calculated, and the murderer hides the body by dismembering it and hiding it under the floorboards. Ultimately the narrator's guilt manifests itself in the hallucination that the man's heart is still beating under the floorboards. Shocked by the constant beating of the heart and a feeling that not only are the officers aware of the sound, but that they also suspect him, the narrator confesses to killing the old man and tells them to tear up the floorboards to reveal the body.
辣椒细胞质雄性不育系及其保持系的AFLP分析英文

A FL P A n a lys is o f C y top la sm ic M a le 2s te rile L in e a n d Its M a i n ta i n e r L i n e o f P ep p e rLUO Xia ng 2d o n g1,2,DA I L ia n g 2fa n g1,2,CH EN J i n 2fen g23,WAN G S h u 2b i n31.C o ll ege o f Ho rti cu l tu re,N an ji ng Ag ri cu lt u ra lU n i vers it y,N an ji ng 210095;2.Co ll eg e o fL i fe Sc i ence s,J i an gxi No r m al Un i ve rs i ty,N ancha ng 330022;3.Vege tab l e R es ea rch I n s ti tu t e ,J i an gs u Academ y o f Ag ricu lt u ra l Sc i ence s ,N an j ing 210014Ab s t ra ct [O bject i ve]The a i m o f t h is study wa s t o ana l yze the cyt o p l a s m i c m a l e s teri le l i n e 21A and its m ainta i ne r li n e 21B o f p ep pe rs by AF L P,an d l ay t he fo unda ti on fo r further s tudies o n m o l ecu l a r m echan is m o f t he cyt op l a sm i c m ale s te ril ity i n p epp ers .[M ethod ]C yt op l a sm i c m a l e s teril it y (CMS)li ne 21A and its m a i n t a i ne r li ne 21B w ere a nalyzed by AFLP t o o bta i n the s p ecific am p li fied fra gm en ts o f cyt op lasm i c m a l e s teri le li ne 21A,wh i le the sp ecifi c amp li fi ed fragm en ts w ere recove red o r sequ enced,and ana l yzed by BLAS Tn and TBLASTX i n GenB a nk o f NCB I .[Result ]A sp eci fi c fragm en t AA /CAG 169w as ob tained from cytop l am i c m al e ste rili ty (C M S )li ne 21A.Pa rti a l DNA s equen ce of AA /CAG 169w as t he se ries repe ated s equen ce i n AFLP m a rker seq uence related t o the sex and grow t h tra i t s o f Pen aeu s m ono do n.The re su l ts o f BLASTX and TBLASTX showed t ha t the tran s l a ti o n p r o duct s o f t h is sp eci fi c fragm ent had a hi g he r si m il a rity to So l anum dem is sum pu t a ti ve gag 2po l p ro tei n ,So l anum dem i s sum p u t a ti ve retro tra nspo so n p r o te i n and So l a num d em is sum p uta ti ve re tro tran spo so n gag p ro t e i n re s p ec ti vel y.[C on clu si on]The functi o n o f this spec i fic fragem ent AA /CAG 169is mo re li ke l y t o be cl o s el y rel a ted t o re tr o transp o son,wh i ch i nd i cate s tha t the sp eci a l fragm en t is po ss i b l y re l a t e d t o the s te ril ity trait .Key w o rds Pep pe r;cy t op l a s m i c m ale 2s t e ri lti y (C M S);AFLP ana l y sisR e ce i ve d:J a nua ry 11,2010 Accep t e d:Fe b rua ry 23,2010Suppo rted by Na ti o nal 863Prog ram i n t h e 11th Five 2ye a r P l an ni n g Pe ri o d (2006AA1001082322);Na ti ona l Na tural Science Fo unda ti o n (36;3);S T y j f x O ff f (G 5);Y G F f x N U y (3)32jf @j A s one of vege tab l e c rop s with the l a rge s t cu lti va ti on a re ai n C hi na ,p epp e r (Ca ps i cum a nnuu m L .)is a wo rl d w ide ki nd of vege ta bl e s and p roc e ssing condi m e nts .Acco rdi ng t o the sta tis ti c s,a nnua l c ultiva ti o n a rea of peppe rs i n C hi na ha s re ac he d abo ve 1400tho usa nd h m 2,whi ch m a ke s gre a t con 2tri buti o n to annua l a ve ra ge ba lance supply of vege ta bl e s inChina [1].W ith obvi o us adva nta ge s in p re 2m a turity,hi gh yi e ld a nd fru itw e i ght,peppe r hybri d s a re pop ul a r w it h m any fa r m 2e rs .It is expe nsive t o bree d hyb ri d see ds by a rti fic i a l em a scula ti on a nd po lli na ti on .I t is l a bou r 2sa vi ng t o ob t a i n hy 2bri d se ed s F 1by cytop l a sm i c m a le ste ril e li ne of peppe rs,which ca n e nsure the p urity o f se e ds and p ro t e c t the ri ghts of bree de rs,a nd is a lso the m o st e ffi c ient wa y t o re duce se e dco st a t p re se nt [2]o r the m a j o r direc ti o n fo r curre nt p epp e r bree ding .Thus,be side s e nha ncem en t o f the i de nti f i ca ti o n a nd b re ed i ng of c yt opl a s m i c m a l e ste ril e li ne o f peppe rs,stud 2i e s shoul d be ca rried out a t di ffe ren t l eve ls from b i o l ogy,which w ill p r o vi de a theo re tica l ba sis f o r furthe r effi c i e nt o r w i de u tili za ti on .R ul e s of inhe ritance in m o r p hol ogy,cyt o l ogy,POD isozy m e a nd m a l e 2ste ril e cha ra c t e rs ha ve be en a lrea dy dis 2cu ssed t ho roughl y i n studi e s o n t he m e cha nis m of cyt op l a sm i cm a le ste ril e li ne of peppe rs [3-4].Howe ve r,the re is little report on the m o l e cul a r m e chan is m of ste rility i n pe ppe rs,e spe c i a ll y se que nce fra g m e nts re la ted to cyt op l a s m ic m a l e s te ril ity of peppe rs .The re fo re ,ge nom ic DNA fr om c ytop l a s m i c m a le ste ril e l ine 21A a nd its m a i n ta i ne r l ine 21B o f peppe rwa s com 2pa ra ti ve l y ana lyze d by AFLP t o ob ta i n t he spe cifi c am p l ifi e d fragm en ts re l a ted to CM S i n this s tudy,wh i ch l a id a fo unda 2ti on fo r fu rthe r studi e s on mo l e cula r m e cha nis m of the cyt o 2pla sm ic m a l e ste rilit y in p epp e rs,a nd pro vide d a refe re nce fo r be tte r utili za ti o n of cyt op l a s m ic m a le ste rility i n peppe rs .M a te ria ls a n d M e th o d sMa te ria l sThe cyt op l a s m ic m a l e ste ril e line 21A w ith comp l e t e l y s ta 2ble ste rility tra its a nd its m a inta i ne r l ine 21B of peppe rs we re from Ve ge table Re se a rch I ns titute ,J i a ng su Aca dem y of Agri 2c ult u ra l Sc i e nce s .S ee dli ngs of 21A a nd 21B we re bred on the coo l ing bed i n e a rl y J a nua ry,w hil e i n l a te Ma rch,100p l a nts of 21A a nd 21B we re re spe c tive l y p l a nte d with conve nti ona l fie l d m a na gem e nt i n p l a s ti c gre e nho use s of Ve ge tab l e R e 2sea rch I ns titute ,J i a ng su Aca dem y of Ag ri cultura l S c i e nc e s .Me thod sA FL P R e fe rence d by Vo s [5]a nd LOU Q un 2feng [6],re stri c 2ti on fragm e nts a nd do uble 2stra nd DNA we re j o i nte d t oge the r w ith T 4li ga se through EcoR I and M se I doubl e di ge sti o n,w hil e re stri c ti o n e ndo nuc l e a se a nd T 4l iga se w e re a ll p urc ha se d from S ha ngha i S angon B i o l ogi c a l Engi ne e ri ng Te chno l o gy &S e rvi ce s Co .,Ltd .5μl d i ge sti o n p roduc t wa s used a s the tem p l a te f o r p re 2am p li fi ca ti on,w hil e the p ri m e rs of p re 2am p li fi 2c a ti on we re E +1a nd M +1.5μl p roduct of p re 2am p l ifi ca ti on wa s a na l yzed by 1%aga ro se ge l e l e c tropho re sis to e sti m a te the e ffi c iency of p re 2amp li fi c a ti on .Acco rding t o the te sti ng fo r p r o duc ts o f p re 2am p li fi c a ti on,the pro duc ts w e re dil ute d 10-30fo l d,a nd t he n u se d a s the tem pla te fo r se l e cti ve amp li fi c a 2ti on .F i na ll y,p roducts o f se lec tive amp li fica ti o n w e re sepa ra 2ted by 6%dena tured po l ya c ryl am i de ge l e lec tr opho re sis a nd dye d by s i lve r sta i ni ng .Re c yc ling o r c lon ing a nd se que nc e a na lys is of sp ec i f ic b and s D i ffe ren ti a l ba nds of cyt op l a sm i c m a le ste ril e li ne a nd its m a i nta ine r li ne we re re co ve re d a nd cut off a ccura te l y by the z f μ22S f 5f f 5μ2f 2Ag ri cu lt u ra l Science &Techno l o gy,2010,11(2):69-71C op yri gh t κ2010,I n f o r m a ti on Ins titute of HAAS.A l l right s re s erved.Agricultura lB i o techno l o gy0801200900781cience and e ch no l o g P ro ec t rom J i a ng i P ro vi nc i a l i ce o Educa ti on J J 0819o un g r ow thu nd o J i ang i o r m o l n i ve rs it 298.C o rre spo n di n g au tho r .E m ail :chen n au.e ste rili e d sca l pe l t o p ut i nto c en tri uga l tube s w ith 200l re d is till e d w a t e r .am p l e s w e re p l a ce d i n t o bo ili ng w a te r o r 1m i n a nd then cen tri uge d o r 10m i n w ith 12000rpm.l supe rna tan tw a s use d a s the temp l a t e o r com bina ti on t o the correspo nd i ng pri m e rs aga i n w it h the sam e am plifi ca ti o n .Afte r the m olec ul a r we i ght o f amp li fied p r o duc ts wa s ve ri fi e d,and t he n li ga ted t o pGE M Tea sy ve ctor .Com pe te nt E .co li JM 109wa s transfe rre d by the li ga ted p roduc ts fo r b l ue 2wh i te se l e c ti on.S ing l e 2co l ony p l a sm i d wa s e xtrac te d f o r e ndo nuc l e a se re a c 2ti on,and the n se nt to S ha ngha i I nvi troge n B i ote chno l o gy Co .,Ltd fo r DNA se que nc ing .The who l e sequence of j o i nts we re rem oved a fte r c l oning a nd se que nc i ng,a nd then subm i tted t o NCB I da ta ba se fo r BLAS T .R e s u lts a n d A n a lys isA FL P sp ec if i c f ra gm e n t s c ree n ing of g enom e from cyto 2p lasm ic m a le s te rile line 21A a nd its m a in ta in e r li n e 21BGenom ic DNA from cyt op l a sm ic m a l e ste ril e li ne 21A a nd its m a i nta ine r line 21B w e re am plifi e d w it h 32pa i rs o f AFLP pri m e r com bi na ti ons,a nd the re sults showe d tha t bands in AFLP m ap we re ri c h w ith 60bands i n ea ch l a ne.O nl y amp li 2fi e d p roduc ts from o ne pa i r of pri m e r had di ffe rence be t w e e n cyt op l a s m i c m a l e s te ri le li ne and its m a inta i ne r li ne i n 32p a irs of AFLP p ri m e rs,wh i ch indica te d tha t the re wa s l ittl e diffe r 2e nc e in ge nom i c DNA be t we en c yt op l a s m i c m a l e ste ril e li ne 21A a nd its m a i n ta i ne r li ne 21B.Genom ic DNA from cyt op l a sm ic m a l e ste ril e li ne 21A a nd its m a inta i ne r l ine 21B we re am p li fi e d a ga i n w ith p ri m e r com bi 2na ti on EcoR 2AA /M se I 2CAG scree ned by poly mo rphic pri m e r pa irs .The re wa s one spe c i fi c band w ith 200bp in cyt op l a sm i c m a le ste ril e li ne 21A (F ig .1),w hil e no ba nd wa s f o und i n its m a inta i ne r li ne 21B.Aft e r the repe a te d te st,the fra g m e ntswe re demo nstra te d to be sta bl e ,re li a bl e and a sp ec i fic fra g 2m e nt re la ted t o m a l e 2ste rile c ha rac ters.A:Am p li fi cati o n p rodu cts o f p ri m e r EAA /M C AG,and the arr ow show s the d i ffe ren ti a l fragm e nts;B :S i ng l e c l o ne i d entifi ca ti on o f d i ffere ntial fragm e nts .F i g.1 Am p l i fi ca ti o n of AFLP d i ffe ren ti a l fragm e nts o f ge nom i cDNA from s t e ril e l ine 21A and its m ai n tai n er l ine 21BRe c yc ling o r c lon ing a nd se qu enc i n g of A FL P d i ffe re n ti a l f ra gm e ntsF rom F i g .1-B ,re com bi nan tp la s m id PCR p roduc ts we re i den ti c a lw ith the si z e of ta rge t fra g m ents,which show ed tha t ta rge t fra g m e nts ha d a lre ady be en succ e ssfu l ly T 2A cl one d .Afte r ve cto r se que nce a nd AFLP p ri m e r com bi na ti o n AA /CAG sequence we re rem ove d,the se que nc i ng sequence w a s 169bp i n ful l length (F i g .2).Thu s,the spe c i fi c f ragm e nt i n c ytop la s m i c m a l e ste ril e li ne 21A wa s m a rked a s AA /CAG 169t o ana l yze co nvenientl y.The und erli ned pa rt s are AA /CAG se quence s of AFLP p ri m e r com b i na ti o n ,wh il e the do uble 2u nde rli ned pa rts are AF LP j o i nt s .F i g.2 Sp eci fi c fragm en t sequ ences o f s teri le li ne 21ABLA S Tn a na lys is of AA /CAG 169s equ en ce in sp ec ific f ra g 2m en tsAcco rdi ng t o BL AS T re sults,pa rti a l sequence s of AA /CAG 169(l oc a ted in 122-158bp ,AGA ATTGGT A C G 2CAGTC T AT G ATG AGT CC T G AGT A AC ,w ith 37bp i n tota l)had a h i ghe r si m il a ri ty t o seve ra l sequence s o f t he re l a te d AFLP m a rke r se que nc e s with the sex and grow th tra its in P ena eu s mo nodon (AFE549M 27.1).Furthe r ana l ys is re 2ve a led tha t 37bp se que nce s we re four se ri e s re pea ted se 2que nce s of t he re l a te d AFLP m a rke r se que nc e s w it h the se x a nd grow th tra its in Pe nae us m ono don (F i g .3),so the spe 2c i fi c fra g m ent AA /CAG 169w a s cl o se l y re l a te d t o its ste rilit y .BLA S TX a na lys is of AA /CAG 169s equ en ce in sp ec ific f ra g 2m en tsA A /CAG 169se que nc e wa s subm itt e d to GeneB a nk,a nd a na l yze d by BLASTX o f NCB I a nd p rote in da ta ba se s fo r ho 2mo l ogy sea rching .The re sults sugge sted tha t am ino a c i d se 2que nce deduce d by this fra g m ent had a hi ghe r s i m ila rit y t o pa rtia l se que nce s of So l a nu m dem i s sum p uta tive ga g 2po lp ro 2t e i n a nd So l a num dem issu m puta ti ve re tr o tra nsposon p r o te in re sp ec ti ve ly (F i g .4).T BL AS TX a na l ysis i ndica te d tha t am i no a c i d se que nce deduce d by this fragm en t ha d a lso a hi ghe r y q f S 2,S S ,2F i g.3 A li gnm en t of t he pa rti al seque nce s of AA /C AG 169andthe re l a t e d AFLP m arke r se quence s with the s ex andgrow th t raits i n Penaeu s m o no done nco de d by gag (g roup 2sp ec ifi c a ntige n )ge ne i n the struc 2tura l ce n t e r of p lan t re tr o tra nspo so n,a nd the n be cam e se v 2e ra l kind s of l e ukocyte p ro te i n s a fte r pos t 2tre a t m e nt .Gag 2po l p r o te i n wa s e ncoded by po l 2ga g i n com m on,a nd the n be 2,f 2z y T f ,f f f f 2G 6y y 07Ag ri cultura l Sc i ence &Tech no l o gy Vo l .11,No.2,2010si m il a rit t o pa rti a l se uence s o o l anum dem is sum pu t a ti ve gag po l p rote i n o lanu m dem issum puta ti ve re tro tra nspo so n pro te i n a nd o l a num dem issu m puta ti ve re tr o tra nsposon ga g pro te i n .Howe ve r gag p ro te i n wa s a m ulti p r o te in p re curso rc am e re ve rse tra nsc ri p t a se inte gra se a nd pro te a se a te r en m e di ge sti on.he re ore the unc ti o n o this spe c i ic ra ge m e n t AA /CA 19wa s m o re like l to be c l o se l re la te d t o re tro tra nspo son .F ig.4 B LASTX a nalys i s o f t he w ho le sequ ence o f C M S 21A 169D is c u s s io n sM e chanism of m a l e s te ril ity ge ne s ha s bee n w i de l y stud 2i ed a t hom e a nd a broa d,a nd it is ge ne ra lly conside red tha t the o ccu rrence of plant CMS i s c l ose ly re l a te d t o the struc ture a nd exp re s si o n of m i tocho ndria l ge nom e ,whil e the frequent re com bi na ti on o f intra 2m o l e cul a r a nd i nte r 2mo l e cula r m i tochon 2dri a l genom e is m o l e cul a r ba sis f o r the occu rre nce o f C M S.F rom a l a rge amo un t of m it o chondri a l DNA fragm e nts i n the i denti fi e d CM S ,the y a re a ll gene ra ll y ch i m e ri c ge ne s from pa rtia l sequence s o f se ve ra l i den ti fi e d ge ne s afte r m ulti 2re 2com bi na ti on a nd the un i de nti fi e d re a di ng fram e (urf),such a ska l e nap us [7],m a ize [8]a nd ri ce [9].The t o ta l ge nom i c DNA e xtrac te d by C T AB i s cons titute d by nuc lea r DNA,m t D NA a nd cpDNA,so the spec ifi c fra g m ent AA /CAG 169of ste ril e li ne 21A po ssibl y com e s fr om nuc l e a r DNA,and is a lso p rop e rl y from m t DNA o r cpDNA.The ope n re ad i ng fram e of the sp ec i fic fra g m e nt A A /CAG 169se que nce is found w ith the on l ine t oo l of O RF F i nde r in NCB I .Com bi ne d w it h BLAS T X and T BLASTX a na l ysis,the op en rea di ng fram e of the sp ec i fic fra g m e nt AA /CAG 169se que nce is pri m a ril y i denti fi e d to be -1encodi ng f ram e fo r 53am i no a c i ds.W he re a s,the true i de nti f i ca ti o n of t h i s re a di ng fram e is still unknown,a nd its re l a ti onshi p w i th ste ril e chi m e ri c ge ne s nee ds furthe r studi e s .BL AS Tn in this study re ve a ls tha t the spe c i fi c fra g m e nt AA /CAG 169is li ke l y t o be c l o se l y re l a te d t o ste rili ty .Howe ve r,BLAS T X and T BL AS T X a ll show tha t AA /CAG 169sequence is po ssibl y re l a te d t o re tro tra nspo son,which i ndica te s tha t c yt op l a s m i c m a l e ste rility o f peppe rs m a y be c l o se l y re l a te d t o re tr o tra nspo son .The si m il a r re sults a rea lso repo rted i n cyt op l a s m ic m a le ste rilit y of ca rro ts [10],whi c hl a ys a founda ti on fo r furthe r s t udie s on m o l ec ul a r m e cha nis mof cyt opla s m ic m a l e ste rilit y in peppe rs .R e fe re n c e s[1]F ANG R (方荣),CHEN XJ (陈学军),M I A O NS (缪南生),et a l.Adva nce s i n gene ti c r e sou rces and mo l ecular breed i ng o f pepp er (Cap s i cum spp.)(辣椒(Cap s i cum spp.)遗传资源与分子育种进展)[J ].Acta Ag ri cult u rae J i angxi (江西农业学报),2004,16(3):55-61.[2]WANG SB (王述彬),ZHAO HL (赵华仑),L I U J B (刘金兵),et a l.He t e r o s is util i za ti o n o f C MS li ne s i n ho t (swee t )p eppe rs and t e ch 2ni q ues fo r i ts hybri d seed p roducti o n (辣(甜)椒胞质雄性不育系杂种优势利用及其制种技术)[J ].J i ang su J ou rnal o f Ag ri cultura l Sci 2ences (江苏农业学报),2002,18(3):143-146.[3]DA ILF (戴亮芳),LUO XD (罗向东),WA N G S B (王述彬),et a l.I so zym e s anal y ses o f cyt op l a s m i c m a l e s teri l e (C M S )l i ne i n pep 2p er (C ap s i cum annuum L.)(辣椒细胞质雄性不育系的3种同工酶分析)[J ].Ac t a Bo tan i ca B o reali -Occi den t a li a Si nica (西北植物学报),2007,27(9):1772-1776.[4]LUO X D ,DAI LF ,WANG SB ,et a l .Ma l e g am ete deve l o pm entand ea rl y t ape t a l degene rati on in cyt op l a s m i c m a l e ste ril e pepp er (Cap s i cum annuum L.)i n ve st i g ated by m e i o ti c,ana t o m i ca l and ultras tructu r a l ana l yse s[J ].Pl an t B reed i ng,2006,125:395-399.[5]V O S P,H O GER R ,BLEEKER M.AF LP:a n ew techni qu e f o rDNA fi ngerp ri n ti ng [J ].Nucl e i c Ac i ds R es,1995,23:4407-4414.[6]LOU QF (娄群峰),CHEN J F (陈劲枫),JAHN M,et al .I den ti fica 2ti o n of AF LP and SC AR mo l ecu l ar m a rke rs li nked t o gyno eci ou s l o 2ci in Cucum i s s ati vus L.(黄瓜全雌性基因连锁的AF LP 和SCAR 分子标记)[J ].Acta Ho rti cult u rae Si n i ca (园艺学报),2005,32(2):256-261.[7]Y ANG J H,ZH AN G M F,Y U JQ.M it ochond ri a l n ad2gene is co 2tran scri p ted w i th CMS 2as soci a ted o rf B ge ne i n cyt op l a s m i c m al e 2s teri l e s tem m us t a rd (B ra s si ca j uncea)[J ].Mo l ecu l a rB i o l o gy Re 2po rts,2009,36:345-351.[8]GALLAGHER LJ ,B ETZ SK,CHASE CD.M it ochond ri a l R NA edi 2ti n g trunca t e s a ch i m eri c op en reading fram e as sociated w i th S m ale 2s t e ril it y i n m a i ze[J ].C urr Gene t,2002,42:179-184.[9]ZHANG H,L I SQ ,YIP,e t al .A Hon gli an C MS li ne of rice dis p l aysabe rran t F 0of F 0F 12ATPas e [J ].P l ant C e l l R epo rts,2007,26:1065-1071.[10]NAK AJ I MA Y,Y A MA MO TO T,MUR ANAK A T,et a l .Gene ti c var 2i ati o n o f p etal o i d m al e 2ste ri l e cyt op l a s m o f ca rro ts reveal ed by se 2que nce 2t agged s i tes (STS s )[J ].Theo r App l Gene t ,1999,99:837-843.R es p o n s i b le ed ito r:C H EN Xiu 2c h en R es p o n s i b le t ra n s la to r:L I J in g 2w e i R es p o n s i b le p ro o fread er:W U Xiao 2y an辣椒细胞质雄性不育系及其保持系的AFL P 分析(摘要)罗向东1,2,戴亮芳1,2,陈劲枫23,王述彬3 (1.南京农业大学园艺学院,江苏南京210095;2.江西师范大学生命科学学院,江西南昌330022;3.江苏省农业科学院蔬菜研究所,江苏南京210014)[目的]对辣椒细胞质雄性不育系及其保持系进行AFLP 分析,为进一步深入研究辣椒细胞质雄性不育的分子机制奠定基础。
Notes on a species of barnacle parasitic on the gills of edible crabs

.e,
}
cap.
--1
FIG. l.-Dichelaspis mulleri attaehed to a gill of CalUnectcs saphlus. x 2.
p4-
ቤተ መጻሕፍቲ ባይዱ
FIG. 2.-8lngle speelmen of same.
X 4.
OCCURRENCFJ AND HABIT OI!' ADULT.
A large number of the common edible crabs, or blue crabs (Oallinectes sapidu8 [Ordway] Rathbun), of Beaufort, N. C., are found to be infested with a small lepadide barnacle, ectoparasitic on the gills (fig. 1). This form was first observed at Beaufort by Mr. T. G. Pearson. To ascertain somewhat definitely the proportion of crabs containing this parasite, record was made of 180 mature crabs examined during August and the first half of September, and barnacles were found in 128, or in 71 pCI' cent. These crabs were taken just as they were brought into the laboratory, no selection being made except that soft crabs and evidently young crabs were disregarded. The barnacles were much more abundant later than earlier in the summer. The sexes were found to be unequally burdened; the percentage for males infested was only 56, while for females it reached 89 per cent. It was also easily seen that the average number of barnacles in infested females was considerably above the corresponding average for males. A possible explanation of this difference is that
名著中英文对照

The Voyage of the Beagle An Essay on the Principle ofPopulation The Interpretation ofDreams The History of the Decline and Fall of the Roman Empire
文学名著
The Iron Heel The People of the Abyss The Sea-Wolf The Son of the Wolf The White Fang Benito Cereno Billy Budd Moby Dick(The Whale) Typee Paradise Lost Paradise Regained A Dream of John Ball and A King's Lesson News from Nowhere Blix McTeague Moran of the Lady Letty The Octopus- A Story ofCalifornia Uncle Tom's Cabin Gulliver's Travels The Battle of the Books and Others Frankenstein Bride ofLammermoor Ivanhoe Rob Roy The Heat ofMid-Lothian The Antiquary The Talisman- A Tale of the Crusaders Waverley A Lover's Complaint A Midsummer Night's Dream All's Well That Ends Well As You Like It Cymbeline King John King Richard II King Richard III Love's Labour's Lost Measure for Measure Much Ado About Nothing Pericles, Prince of Type The Comedy of Errors King Henry the Fourth King Henry the Fifth King Henry the Sixth King Henry the Eighth The History of Troilus and Cressida The Life ofTimon of Athens
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Commun.Theor.Phys.(Beijing,China)50(2008)pp.7–12cChinese Physical Society Vol.50,No.1,July 15,2008P -Twisted Affine Lie Algebras and Their Associated Vertex Algebras ∗DING Lu 1,†and ZHENG Zhu-Jun 2,3,‡1Institute of Applied Mathematics,Academy of Mathematics and Systems Science,the Chinese Academy of Sciences,Beijing 100080,China 2School of Mathematical Sciences,South China University of Technology,Guangzhou 510641,China3Institute of Mathematics,Henan University,Kaifeng 475001,China(Received July 26,2007;Revised October 22,2007)Abstract For any finite-dimensional semisimple Lie algebra g ,a Z +-graded vertex algebra is construsted on thevacuum representation V k (ˆg [θ])of ˆg [θ],which is a one-dimentional central extension of θ-invariant subspace on the loopalgebra L g =g ⊗C ((t 1/p)).PACS numbers:02.20.TwKey words:p -twisted affine Lie algebra,vertex algebra1IntroductionVertex operator algebras are a class of algebras,whose structures are arisen naturally from vertex operator con-structions of representations of affine Lie algebras and in the work of Frenkel–Lepowsky–Meurman and Borcherds on the “moonshine module”for the Monster finite sim-ple group.[1−5]They are (rigorous)mathematical coun-terparts of chiral algebras in 2-dimensional quantum con-formal field theory in physics.There are two differential approaches to vertex algebras,one is algebraic in which vertex algebras appear as formal power series acting on graded vector spaces.The other is geometric and more abstract —the theory of chiral algebras and factorization algebras developed by A.Berlinson and V.Drinfeld.[6]In papers [7]and [8],the second author and his coau-thors defined p -twisted affine Lie algebra.As examples,they constructed explicitly the 3-twisted affine Lie alge-bra sl (2,C )[θ]and 7-twisted affine Lie algebra sl (3,C )[θ].Furthermore,they constructed their vertex algebra repre-sentations.But,they did not give the associated vertex algebra structure.In the paper [9],the second author and his coauthor constructed a vertex algebra associated to sl (2,C )[θ].In this paper,a class of p -twisted affine Lie algebra ˆg [θ]and its vacuum representation is constructed.Based on the method of Frankel,[10]Y.Z.Huang [11]etc.,a new construction of vertex algebra associated to the p -twisted affine algebra ˆg [θ]is given.2p -Twisted Affine Lie Algebra ˆg [θ]Suppose g is a finite-semisimple-dimensional Lie alge-bra,p is a fixed prime number,and ω=exp(2π√−1/p ).Let θ1be a Lie algebra isomorphism on g,which satisfiesthat θp1=Id and its restriction on Carton subalgebra ηis identity.Splitting the Lie algebra g into a direct sum asg =p −1 j =0g j ,where g j ={A ∈g |θ1(A )=ωjA }.Consider the vector space C ((t 1/p ))of formal Laurent series in one variable as a commutative Lie algebra.Wecan define a Lie algebra automorphism θ2on C ((t 1/p ))sat-isfying θp2=Id and θ2(fg )=θ2(f )θ2(g )for any elements f ,g in C ((t 1/p )).Based on the isomorphism,a direct sum decomposition of C ((t 1/p ))can be got asC ((t 1/p))=p −1i =0C ((t 1/p ))(i ),where C ((t 1/p ))(i )={f (t )∈C ((t 1/p ))|θ2(f (t ))=ωi f (t )}.A formal loop algebra L g =g((t 1/p ))=g ⊗C ((t 1/p ))of g is defined as a Lie algebra with the commutator[A ⊗f (t ),B ⊗g (t )]=[A,B ]⊗(f (t )·g (t )).Using the automorphisms θ1and θ2,we may have an ex-tended automorphism on L g,θ:L g −→L g ,A ⊗f (t )−→θ1(A )⊗θ2(f (t )).Denote its invariant subspace by L g[θ].Clearly,it is a Lie algebra because for any element A ⊗f (t ),B ⊗g (t )in L g[θ],we haveθ([A ⊗f (t ),B ⊗g (t )])=θ([A,B ]⊗f (t )g (t ))=[θ1(A ),θ1(B )]⊗θ2(f (t ))θ2(g (t ))=[θ1(A )⊗θ2(f (t )),θ1(B )⊗θ2(g (t ))]=[θ(A ⊗f (t )),θ(B ⊗g (t ))]=[A ⊗f (t ),B ⊗g (t )].Choose homogeneous elements in g (j ),j ∈{0,...,p −1}as a basis of g,J a with a ∈I .Let −1 a be max {i ∈(1/p )Z −|J a ⊗t i ∈L g[θ]},and n a =n +1+ −1 a with n ∈Z .The elements J a ⊗t n a with a ∈I form a topo-logical basis for L g[θ].We denote J a ⊗t n a by J an a forsimplicity.If there is no confusion,we also write J an a as J a n and n a as n .Let (,)be the Killing form of g.We construct a p -twisted affine Lie algebra ˆg [θ]which is a one-dimensional central extension of L g[θ]by0−→C K −→ˆg [θ]−→L g[θ]−→0∗Theproject supported by National Key Basic Research Project of China under Grant Nos.2004CB318000and 2006CB805905,Na-tional Natural Science Foundation of China under Grant No.10471034,the Outstanding Youth Fund of Henan Province under Grant No.0512000100,and Innovation Fund of Colleges and Universities in Henan Province †E-mail:dinglu@ ‡E-mail:zhengzj@8DING Lu and ZHENG Zhu-Jun Vol.50with the Lie brackets [K,ˆg [θ]]=0and [J a n a ,J bm b ]=[J a ,J b ]⊗t n a + m b + n a δ n a ,− m b (J a ,J b )K .Let ˆg [θ]+=(g ⊗C [[t 1/p ]])∩L g[θ]and ˆg [θ]−=(g ⊗t −1/p C [t −1/p ])∩L g[θ].The affine Lie algebra ˆg [θ]can be decomposed asˆg [θ]=C K ⊕ˆg [θ]+⊕ˆg [θ]−.(1)Clearly,{J an a ,K |a ∈I,n ∈Z }is a topological basis ofˆg [θ],{J a n a |a ∈I,n ∈Z +}and {J am a |a ∈I,m ∈Z −}are topological bases of ˆg [θ]+and ˆg [θ]−respectively.3Vacuum Representation of ˆg[θ]Consider the one-dimensional representation C k ofˆg [θ]+⊕C K ,on which ˆg [θ]+acts by 0and K acts as mul-tiplication by a scalar k ∈C .We define the vacuum rep-resentation of level k of ˆg [θ]as the representation induced from C k ,V k (ˆg [θ])=Ind ˆg [θ]ˆg [θ]+⊕C K C k=U (ˆg [θ])U (ˆg [θ]+⊕C K )C k ,where U (ˆg [θ])and U (ˆg [θ]+⊕C K )are universal enveloping algebras of ˆg [θ]and ˆg [θ]+⊕C K respectively.By Eq.(1),we get an isomorphisms of vector spacesU (ˆg [θ])∼=U (ˆg [θ]−)⊗U (ˆg [θ]+⊕C K ).HenceV k (ˆg [θ])∼=U (ˆg [θ]−)⊗C k .Denote by |0 the image of 1⊗1∈U (ˆg [θ]−)⊗C kin V k (ˆg [θ]).By the Poincar´e –Birkhoff–Witt theorem,V k (ˆg [θ])has a PBW basis of monomials of the formJ a 1 −n 1 a 1···J a m −n m a m|0 ,(2)where m ∈Z +, −n 1 a 1≤ −n 2 a 2≤···≤ −n m a m <0.For case −n i a i = −n i +1 a i +1,we have J a i J a i +1,where i =1,2,...,m −1.4Vertex Algebra Structure on V k (ˆg [θ])In this section,a Z +-graded vertex algebra associ-ated to the vacuum representation V k (ˆg [θ])is constructed.First,the following data are given as (i)Vacuum vector |0 ;(ii)The translation operator T on V k (ˆg [θ])is definedby the rules T |0 =0and [T,J a −n a ]=nJ a−n −1 a ;(iii)Z +-gradation of V k (ˆg [θ])is defined as deg J a 1 −n 1 ···J a m−n m |0 =n 1+n 2+···+n m ,deg |0 =0.SinceT (J a 1 −n 1 ···J a m −n m |0 )=J a 1 −n 1 T J a 2 −n 2 ···J a m −n m |0 +n 1J a 1 −n 1−1 J a 2 −n 2 ···J a m−n m |0=J a 1−n 1···J a m−n m T |0+m i =1n i J a 1 −n 1 ···J a i −n i −1 ···J a m−n m |0=m i =1n i J a 1 −n 1 ···J a i −n i −1 ···J a m−n m |0 ,the action of T is uniquely determined on the PBW basis of V k (ˆg [θ]).Consequently,T is uniquely determined onV k (ˆg [θ]).Define the main ingredient of the vertex algebra structure —the vertex operator Y (.,z )on V k (ˆg [θ])asY (|0 ,z )=Id ,Y J a −1 |0 ,z = n ∈ZJ a n z −n −1,Y J a −n |0 ,z =1(n −1)!∂n −1zY J a −1|0 ,z ,Y J a 1 −n 1 ···J a m −n m |0 ,z =:Y J a 1 −n 1 |0 ,z ···Y J a m −n m |0 ,z :,(3)where :A (z )B (w ):is the normally ordered product of thefields A (z )and B (w ).Lemma 1Y J a −n |0 ,zis a field on V k (ˆg [θ])with n ∈N .Proof Note that for any a ∈I ,n ∈Z +,J an |0 =0.Fix a number m in Z +.Assume that if n is large enough we have the following formula J an J a 1 −n 1 ···J a m −n m|0 =0,(4)for any n i ∈N ,a,a i ∈I with i =1,...,m andJ an J a 1 −n 1 ···J a m +1 −n m +1 |0 = J a n ,J a 1 −n 1 +J a 1 −n 1 J a n J a 2 −n 2 ···J a m +1 −n m +1|0 = [J a ,J a 1] n a + −n 1 a 1+ n a δ n a ,− −n 1 a 1(J a ,J a 1)K× J a 2 −n 2 ···J a m +1 −n m +1|0 +J a 1 −n 1 J an J a 2 −n 2 ···J a m +1 −n m +1|0 ,when n 0,by Eq.(4),we haveJ a n J a 1 −n 1 ···J a m +1 −n m +1|0 =0,n 0.It implies that for any v ∈V k (ˆg [θ]),J an (v )=0,when n 0.(5)From Y J a−m|0 ,z =1(m −1)!∂m −1z Y J a −1|0 ,z =1(m −1)!n ∈Z(−n −1)···(−n −m +1)J a n z −n −m,we get the conclusion that Y (J a−m |0 ,z )is also a field.Since the normally ordered product of any two fields is also a field,we have Y J a 1 −n 1 ···J a m−n m|0 ,z =:Y J a 1 −n 1 |0 ,z ···Y J a m −n m|0 ,z :is a field.Hence,Y (A,z )is a field for any element A inV k (ˆg [θ])because J a 1 −n 1 ···J a m−n m |0 is a topological basis of V k (ˆg [θ]).Next we give the proof that the linear operators T and Y (.,z )satisfy vacuum axiom,translation axiom and lo-cality axiom.Firstly,checking the vacuum axiom,that is,lim z →0Y (A,z )|0 =A for any A ∈V k (ˆg [θ]).The state-ment Y (|0 ,z )|0 =|0 follows from our definition.SinceNo.1P -Twisted Affine Lie Algebras and Their Associated Vertex Algebras 9when n 0,J an acts by 0on |0 ,we obtain Y J a−m |0 ,z |0=1(m −1)!n ≤−m(−n −1)···(−n −m +1)J a n |0 z −n −m→J a −m |0 ,if z →0,(6)where m ≥1.Lemma 2If the vacuum axiom holds for the fieldY (A,z )=n ∈Z A n z −n −1,then it also holds for the fieldY (J a −s A,z )for any s ∈N .Proof By definition and some simple calculations,Y J a −sA,z=(s −1)!m ∈Z n ≤−s(−n −1)···(−n −s +1)J a n A m −n + n ≥0(−n −1)···(−n −s +1)A m −n J an z −s −m −1.Since the second term kills |0 for J a n |0=0with n ≥0,Y (J a−s A,z )|0is given by the power series with positivepowers of z only,with the constant term J a −s A −1|0 =J a−s A . By Lemma 2and Formula (6),the vacuum axiom is satisfied.Next we check the translation axiom.Firstly,[T,Y (|0 ,z )]=[T,Id ]=0.By [T,J a −n a ]=nJ a−n −1 a ,and the definition of the vertex operator Y (·,z )T,Y J a −1 |0 ,z = T, n ∈ZJ a n z −n −1 = n ∈ZT,J a n z −n −1=− n ∈Z(n +1)J a n z −n −2=∂z Y J a −1|0 ,z , T,Y J a −m|0 ,z =1(m −1)!∂(m −1)z T,Y J a −1 |0 ,z =1(m −1)!∂(m )zY (J a−1 |0 ,z )=∂z Y J a −m|0 ,z .Lemma 3Suppose A (z ),B (z )are fields on V ,and satisfy that [T,A (z )]=∂z A (z ),[T,B (z )]=∂z B (z ),then [T,:A (z )B (z ):]=∂z :A (z )B (z ):.Proof By definition,we have [T,A n ]=−nA n −1,[T,B n ]=−nB n −1.Let C s = n<0A n B s −n −1+n ≥0B s −n −1A n .By[T,C s ]= n<0[T,A n B s −n −1]+n ≥0[T,B s −n −1A n ]= n<0 [T,A n ]B s −n −1+A n [T,B s −n −1] + n ≥0[T,B s −n −1]A n +B s −n −1[T,A n ]=n<0(−nA n −1B s −n −1−(s −n −1)A n B s −n −2)+n ≥0(−(s −n −1)B s −n −2A n −nB s −n −1A n −1)=−n<0sA n B s −n −2−n ≥0sB s −n −2A n =−sC s −1,For A (z )B (z ):=s ∈Z C s z −s −1,[T,:A (z )B (z ):]= s ∈Z [T,C s ]z −s −1=− s ∈Z (s +1)C s z −s −2,hence [T,:A (z )B (z ):]=∂z :A (z )B (z ):. Since Y J a 1 −n 1 ···J a m−n m |0 ,z =:Y J a 1 −n 1 |0 ,z ···:Y J a m −1 −n m −1 |0 ,z Y J a m −n m |0 ,z ::,then by Lemma 3,we have T,Y J a 1 −n 1 ···J a m −n m |0 ,z =∂z Y J a 1 −n 1 ···J a m−n m|0 ,z .Hence the translation axiom is satisfied because [,]and Y (.,z )are linear.Finally,we check the locality axiom.Suppose a,b are two elements in I,and J a ∈g (i ),J b ∈g (j ).Let H = n,m ∈Z [J a ,J b ] n a + m b z −n −1w −m −1and L = n,m ∈Z n a (J a ,J b )δ n a ,− m b kz −n −1w −m −1.By calculations,we know that Y (J a−1 a |0 ,z ),Y J b −1 b |0 ,w ) =L +H .By the definition of · ,we getL = n,m ∈Z(n +1+ −1 a ) J a ,J b δ−(n +m +2), −1 a + −1 b kz −n −1w −m −1 .There are two cases.Case 1 −1 a + −1 b ∈Z .In this case,L =0is obvious.Case 2 −1 a + −1 b ∈Z .By computationL = n ∈Z(1+ −1 a ) J a ,J b kz −n −1w n +1+ −1 a + −1 b + n ∈Zn J a ,J b kz −n −1wn +1+ −1 a + −1 b=(1+ −1 a ) J a ,J b kw 1+ −1 a + −1 bδ(z −w )+ J a ,J bk∂w δ(z −w )w 2+ −1 a + −1 b .Hence (z −w )2L =0.Since θ1 J a ,J b= θ1(J a ),θ1(J b ) =ωi +j J a ,J b ,then J a ,J b ∈g (k )with k =i +j −pZ ab ,where Z ab = 0,i +j <p1,i +j ≥p.Hence there exists {J c i }which is a basis of g (k )and complex numbers C i such that J a ,J b =10DING Lu and ZHENG Zhu-Jun Vol.50dim g (k )i =1C i J c i .Noticing that there exists Z ab in Z such that −1 c i = −1 a + −1 b +Z ab ,and J a −1 a ,J b −1 b =dim g (k )i =1C i J c i ⊗t −1 a + −1 b ∈L g[θ],H = n,m ∈Zdim g (k )i =1C i J c in +m +2+ −1 ci−Z abz−n −1w−m −1=n,m ∈Zdim g (k )i =1C i J c i n +m +1−Z ab c iz−n −1w −m −1=n,m ∈Z dim g (k )i =1C i J c i n c iz−n +m −Z ab w −m −1=dim g (k )i =1C i Y J c i −1 ci|0 ,z m ∈Zz m −Z ab+1w −m −1=dim g (k )i =1C i Y J c i −1 ci|0 ,zδ(z −w )z −Z ab +1.For (z −w )δ(z −w )=0,(z −w )H =0.Now we get the conclusion (z −w )2 Y J a −1 a |0 ,z ,Y J b −1 b |0 ,w=0.Differentiating the formula with respect to z ,and multiplying the result by (z −w ),we obtain (z −w )3 Y J a −2 a |0 ,z ,Y J b −1 b|0 ,w =0.So Y J a −2 a |0 ,z and Y J b −1 b |0 ,w are mutually local.By induction,Y J a−n a |0 ,z ,Y J b −m b |0 ,w are local for any n,m ∈N ,and a,b ∈I .Using Dong’s Lemma,we get the locality of Y J a 1 −n 1 a 1···J a i −n i a i |0 ,z and Y J b 1 −m 1 b 1···J b j −m j b j|0 ,w .Therefore we get our main conclusion that (V k ˆg [θ]),|0 ,T,Y (.,z )is a vertex algebra.In fact,it is also a Z +-graded vertex algebra.This will be proved in the following.Lemma 4The degree of T is 1.Proof Noting that T J a−n |0 =J a −n T |0 +nJ a −n −1 |0 =nJ a −n −1 |0 ,and for any J a m −n m ···J a 1 −n 1 |0 ∈V k (ˆg [θ]),T J a m +1−n m +1 ···J a 1−n 1 |0 = T,J a m +1 −n m +1 +J a m +1 −n m +1 T J a m −n m ···J a 1 −n 1 |0=(n m +1)J a m +1 −n m +1−1 J a m−n m···J a 1 −n 1 |0 +J a m +1 −n m +1 T J a m−n m ···J a 1 −n 1 |0 ,deg T =1. Lemma 5For any A ∈V k (ˆg [θ])with deg A =m ,the field Y (A,z )has conformal dimension m .Proof The conformal dimension of Y J a −1 a|0 ,z = n ∈ZJ an a z −n −1is 1obtained directly from its definition.Since Y (J a −j a |0 ,z )=1(j −1)!∂j −1z Y J a −1 a |0 ,z = n ∈Z(−n −1)···(−n −j +1)(j −1)!J a n a z −n −j=n ∈Z(j −n −2)···(−n )(j −1)!J a n +1−j a z −n −1,and deg J an +1−j a =j −n −1,then the conformal dimen-sion is j .Hence Y J a m −n m ···J a 1−n 1|0 ,z =:Y t J a m −n m |0 ,z ···Y J a 1 −n 1|0 ,z:has the conformal dimension n m +···+n 1.SinceJ a m −n m ···J a 1 −n 1 |0 is a basis of V k (ˆg [θ])and Y (.,z )is linear,we obtain the result. By Lemma 4and Lemma 5, V k ˆg [θ] ,|0 ,T,Y (.,z )is a Z +-graded vertex algebra.5ExampleIn Subsec.5.1,we give some concrete constructions of the automorphism θin Lie algebra sl (n,C )and vertex al-gebras associated to these automorphisms.The construc-tions in Refs.[7]and [9]are our special cases,which will be given in Subsecs.5.2and 5.3for completeness.5.1Construction of Lie Algebra Lsl (n,C )[θ]Denote E ij to be n ×n matrix whose (i,j )entry is 1and the others are zero.Set αk =E 11−E kk ,clearly,{αj ,E kl |j =2,...,n ;k,l =1,...,n ,and k =l }is a basis of sl (n,C ).The commutators of them are givenas [E ij ,E kl ]=δjk E il −δli E kjand[αj ,E kl ]=(δ1k E 1l −δ1l E k 1)−(δjk E jl −δjl E kj ).Fix a positive integral p and denote ωby exp(2π√−1/p ).Define an automorphism on the vector space sl (n,C )asθ1:sl (n,C )−→sl (n,C ),E kl −→ω(kl )E kl ,αs −→αs ,k,l =1,...,n ,s =2,...,n ,where (kl )is an integral and satisfies the formulas (ij )+(jk )=(ik ),(ij )=−(ji ),1≤i,j,k ≤n.Clearly,given (1j )any integer with j =2,...,n ,we can get a solution of the above formula by (ij )=(i 1)+(1j )=(1j )−(1i ).Note that δjk ω(il )=δjk ω(ij )+(jl )=δjk ω(ij )+(kl ),we can getθ1([E ij ,E kl ])=θ1(δjk E il −δli E kj )=δjk ω(il )E il −δli ω(kj )E kj=ω(ij )+(kl )(δjk E il −δli E kj )=ω(ij )+(kl )[E ij ,E kl ]=[θ1(E ij ),θ1(E kl )],No.1P-Twisted Affine Lie Algebras and Their Associated Vertex Algebras11 andθ1([αj,E kl])=θ1[(δ1k E1l−δ1l E k1)−(δjk E jl−δjl E kj)]= δ1kω(1l)E1l−δ1lω(k1)E k1− δjkω(jl)E jl−δjlω(kj)E kj= δ1kω(1l)+(k1)E1l−δ1lω(k1)+(1l)E k1− δjkω(jl)+(kj)E jl−δjlω(kj)+(jl)E kj=[(δ1k E1l−δ1l E k1)−(δjk E jl−δjl E kj)]ω(kl)=[θ1(αj),θ1(E kl)].Henceθ1is a Lie algebra automorphism.Andθp1=Id andθ1is invariant on the Carton subalgebraη=span C{αj|j=2,...,n}.Based on the automorphism,we get a gradationof sl(n,C)assl(n,C)=p−1j=0sl(n,C)(j),where sl(n,C)(j)={x∈sl(n,C)|θ1(x)=ωj x}.Consider C (t1/p) as a commutative Lie algebra and define a Lie algebra isomorphism asθ2:C (t1/p) −→C (t1/p) ,t j/p−→ω−j t j/p,j∈Z.Based on the isomorphism an extended p−automor-phism on Lsl(n,C)θ:Lsl(n,C)−→Lsl(n,C),A⊗f(t)−→θ1(A)⊗θ2(f(t)),where Lsl(n,C)=sl(n,C)⊗C((t1/p))is a formal loop algebra of sl(n,C).Now we can get an invariant subspace given by Lsl(n,C)[θ],which is a Lie algebra with the basis αj⊗t m,E kl⊗t(kl/p)+m with j=2,...,n;k,l=1,...,n; k=l;m∈Z.As above sections,we can construct a Z+-graded ver-tex operator algebra(V k(sl(n,C)[θ]),|0 ,T,Y(.,z)).5.2A Vertex Algebra of Affine Lie Algebrasl(2,C)[θ]Let g denote sl(2,C)with the basis{α2,E12,E21}, whereα2= 100−1 ,E12= 0100 ,E21= 0010 . The Lie brackets are given as[α2,E ij]=2(j−i)E ij,[E12,E21]=α2, where i=1,j=2,or i=2,j=1,and the others are zero. Letω=exp(2π√−1/3),and define an automorphism θ1:g−→g,α2−→α2,E12−→ωE12,E21−→ω−1E21.Since[θ1(α2),θ1(E ij)]=[α2,ωj−i E ij]=2ωj−i(j−i)E ij= 2(j−i)θ1(E ij)=θ1([α2,E ij])and[θ1(E12),θ1(E21)]=[ωE12,ω−1E21]=[E12,E21]=α2=θ1(α2)=θ1([E12,E21]),thenθ1is a Lie algebraic isomorphism. Clearlyθ31=Id,andθ1is invariant on Carton subalgebra η=span C{α2}. Considering C (t1/3) as a commutative Lie algebra, we define a Lie algebra isomorphismθ2:C (t1/3) −→C (t1/3) ,t j/3−→ω−j t j/3,j∈Z. Now we define3-automorphismθon L g=g⊗C (t1/3) based on the mapsθ1andθ2asθ:L g−→L g,A⊗f(t)−→θ1(A)⊗θ2(f(t)),theθ-invariant subspace is defined byL g[θ]=span C{α2⊗t n,E12⊗t n+(1/3),E21⊗t n+(2/3)|n∈Z}.Now we need to cheek that it is a Lie algebra.Since α2⊗t n,E12⊗t m+(1/3) =2E12⊗t n+m+(1/3), α2⊗t n,E21⊗t m+(2/3) =−2E21⊗t n+m+(2/3), E12⊗t n+(1/3),E21⊗t m+(2/3) =α2⊗t n+m+1, then the commutators of the basis are all in L g[θ].Hence, L g[θ]is a Lie ing the constructed method in above sections,we obtain a Z+-graded vertex algebra (V k(sl(2,C)[θ]),|0 ,T,Y(.,z)).5.3A Vertex Algebra of Affine Lie Algebrasl(3,C)[θ]Denote E ij to be3×3matrix whose(i,j)entry is1 and the others are zero.Setα1=E11−E22,x+α1=E12,x+α2=E23,x+α3=E13,α2=E22−E33,x−α1=E21,x−α2=E32,x−α3=E31.It can be checked that{αi,x±αj|i=1,2,j=1,2,3}is a basis of the Lie algebra sl(3,C)and its non-zero Lie brackets are[αi,αj]=0,i,j=1,2,[αi,x±αi]=±2x±αi,i=1,2,[αi,x±α3]=±x±α3,i=1,2,[αi,x±αj]=∓x±αj,i,j=1,2,i=j,[xαi,x−αi]=αi,i=1,2,[xα3,x−α3]=α1+α2,[x±α1,x±α2]=±x±α3,[x±α1,x∓α3]=∓x∓α2,[x±α2,x∓α3]=±x∓α1.Letω=exp(2π√−1/7).Define an automorphismθ1:sl(3,C)−→sl(3,C),αi−→αi,x±αj−→ω±.j x±αj, where i=1,2,and j=1,2,3.It is a Lie algebra isomorphism becauseθ1([αi,αj])=0=[θ1(αi),θ1(αj)],i,j=1,2,θ1([αi,x±αi ])=±2ω±i x±αi=[θ1(αi),θ1(x±αi)],i=1,2,θ1([αi,x±α3])=±ω±3x±α3=[θ1(αi),θ1(x±α3)],i=1,2,θ1 αi,x±αj =∓ω±j x±αj= θ1(αi),θ1 x±αj ,i,j=1,2,i=j,12DING Lu and ZHENG Zhu-Jun Vol.50θ1([xαi ,x−αi])=αi=[θ1(xαi),θ1(x−αi)],i=1,2,θ1([xα3,x−α3])=α1+α2=[θ1(xα3),θ1(x−α3)],θ1([x±α1,x±α2])=±ω±3x±α3=[θ1(x±α1),θ1(x±α2)],θ1 x±α1,x∓α3 =∓ω∓2x∓α2= θ1(x±α1),θ1 x∓α3 ,θ1 x±α2,x∓α3 =±ω∓1x∓α1= θ1(x±α2),θ1 x∓α3 .By calculations,we know thatθ71=Id andθ1is invariant on the Cartan subalgebraη=span C{αi|i=1,2}of sl(3,C). Define an automorphism of the commutative Lie algebra C (t1/7) asθ2:C (t1/7) −→C (t1/7) ,t j/7−→ω−j t j/7.Clearlyθ72=Id.On the Loop algebra Lsl(3,C)=sl(3,C)⊗C (t1/7) with the Lie bracket relations[A⊗f(t),B⊗g(t)]=[A,B]⊗(f(t)g(t)),we can define an automorphismθ:Lsl(3,C)−→Lsl(3,C),A⊗f(t)−→θ1(A)⊗θ2(f(t)),where A∈sl(3,C),f(t)∈C (t1/7) ,and its invariant subspaceLsl(3,C)[θ]=span C αi⊗t m,x+αj⊗t m+(j/7),x−αj⊗t m−(j/7)|i=1,2,j=1,2,3,m∈Z .Set −1 −j=−j/7and −1 +j=−1+(j/7),where j=1,2,3.For any m,n∈Z,αi⊗t m,αj⊗t n =0,i,j=1,2,αi⊗t m,x±αi⊗t n+ −1 ±i =±2x±αi⊗t m+n+ −1 ±i,i=1,2,αi⊗t m,x±α3⊗t n+ −1 ±3 =±x±α3⊗t m+n+ −1 ±3,i=1,2,αi⊗t m,x±αj⊗t n+ −1 ±j =∓x±αj⊗t m+n+ −1 ±j,i,j=1,2,i=j,x+αi⊗t m+ −1 +i,x−αi⊗t n+ −1 −i =αi⊗t m+n+ −1 +i+ −1 −i=αi⊗t m+n−1,i=1,2,x+α3⊗t m+ −1 +3,x−α3⊗t n+ −1 −3 =(α1+α2)⊗t m+n+ −1 +3+ −1 −3=(α1+α2)⊗t m+n−1,x±α1⊗t m+ −1 ±1,x±α2⊗t n+ −1 ±2 =±x±α3⊗t m+n+h±+ −1 ±3,x±α1⊗t m+ −1 ±1,x∓α3⊗t n+ −1 ∓3 =∓x∓α2⊗t m+n+h±+ −1 ∓2,x±α2⊗t m+ −1 ±2,x∓α3⊗t n+ −1 ∓3 =±x∓α1⊗t m+n+h±+ −1 ∓1,with h−=0,h+=−1,m,n∈Z.Therefore we get that Lsl(3,C)[θ]is a Lie algebra.Along the line of construction in the above sections,a Z+-graded vertex algebra V k sl(3,C)[θ] ,|0 ,T,Y(.,z) can be got on the vacuum representation space ofsl(3,C)[θ].AcknowledgmentsThe authors would like to thank Profs.Shi-Kun Wang and Xiao Zhang for their support and various kinds of help.References[1]R.E.Borcherds,A83(1986)3068.[2]R.E.Borcherds,Invent.Math.109(1992)405.[3]J.H.Conway and S.P.Norton,Bull.London Math.Soc.11(1979)308.[4]I.Frenkel,J.Lepowsky,and A.Meurman,Proc.Natl.A81(1984)3256.[5]I.Frenkel,J.Lepowsky,and A.Meurman,Vertex Oper-ator Algebras and the Monster,Pure and Appl.Math.Vol.134,Academic Press,Boston(1988).[6]A.Beilinson and V.Drinfeld,Chiral Algebra,Colloq.Publ.51AMS(2004).[7]Wen-Feng Dong,Yan-Jun Chu,and Zhu-Jun Zheng,Re-alization of Vertex Operators of7-Twisted Affine Lie Al-gebrasl(3,C)[θ],preprint.[8]Ke-Ping Lu,Yan-Jun Chu,Zhu-Jun Zheng,and Wen-Feng Dong,Sci.in China(2005)295.[9]Xia Li and Zhu-Jun Zheng,A vertex algebra of3-twistedaffine Lie algebrasl(2,C)[θ],preprint.[10]Edward Frenkel and David Ben-Zvi,Vertex Algebras andAlgebraic Curves,Math.Surv.Mon.Vol.88,AMS(2004).[11]Y.Z.Huang,Two-Dimensional Conformal Geometry andVertex Operator Algebras,Progress in Mathematics148, Birkhauser,Boston(1997).[12]I.Frenkel,J.Lepowsky,and A.Meurman,Vertex Oper-ator Calculus,in:Mathematical Aspects of String The-ory,Proc.1986Conference,San Diego,ed.by S.-T.Yau, World Scientific,Singapore(1987)pp.150–188.[13]V.Kac,Vertex Algebras for Beginners,2nd.ed.,AMS(1998).。