人教版数学八上《13.4课题学习:最短路径问题》word教学设计

合集下载

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
5.结合实际情境,让学生体会数学与生活的密切联系,增强数学学习的兴趣和信心,培养正确的数学价值观。
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。

八年级数学人教版上册13.4最短路径问题教学设计

八年级数学人教版上册13.4最短路径问题教学设计
八年级数学人教版上册13.4最短路径问题教学设计
一、教学目标
(一)知识与技能
1.了解最短路径问题的背景和应用,知道其在现实生活中的重要性。
2.掌握图形中两点间线段最短的性质,能够运用这一性质解决实际问题。
3.学会使用三角形两边之和大于第三边的原理,解决最短路径问题。
4.掌握运用数学符号和表达式来描述最短路径问题,并能运用相关公式进行计算。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,提供适当的引导和帮助。同时,注重启发式教学,激发学生的兴趣和思考,引导学生主动探究,培养他们解决问题的能力。通过师生互动、生生互动,促进学生之间的交流与合作,使他们在探索最短路径问题的过程中,不断提高自己的数学素养和思维能力。
三、教学重难点和教学设想
5.能够运用所学的最短路径知识,解决一些简单的实际问题。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养解决问题的能力:
1.通过观察和分析实际生活中的最短路径问题,激发学生的学习兴趣,培养学生从生活中发现数学问题的意识。
2.通过自主探究、合作交流的方式,引导学生从简单问题入手,逐步深入,掌握解决最短路径问题的方法。
c.教师介绍三角形两边之和大于第三边的原理,并解释其在解决最短路径问题中的应用。
(三)学生小组讨论
1.教学内容:让学生分组讨论,共同探究解决最短路径问题的方法。
2.教学过程:
a.教师给出几个具有挑战性的最短路径问题,要求学生分组讨论。
b.学生在小组内分享思路,共同寻找解决问题的方法。
c.教师巡回指导,给予提示和建议,帮助学生解决问题。
五、作业布置
为了巩固学生对最短路径问题的理解,提高学生运用数学知识解决实际问题的能力,特布置以下作业:

人教版数学八年级上册《13.4课题学习 最短路径问题》说课稿1

人教版数学八年级上册《13.4课题学习 最短路径问题》说课稿1

人教版数学八年级上册《13.4 课题学习最短路径问题》说课稿1一. 教材分析人教版数学八年级上册《13.4 课题学习最短路径问题》这一节,是在学生学习了平面直角坐标系、一次函数、二次函数等基础知识后,引入的一个新的课题。

本节内容主要介绍了最短路径问题的概念、求解方法以及应用。

通过本节内容的学习,使学生能够了解最短路径问题的背景,掌握解决最短路径问题的方法,提高学生解决实际问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面直角坐标系、一次函数、二次函数等基础知识,具备了一定的逻辑思维能力和问题解决能力。

但是,对于最短路径问题,学生可能较为陌生,需要通过实例讲解和练习,使学生理解和掌握。

三. 说教学目标1.知识与技能目标:了解最短路径问题的概念,掌握解决最短路径问题的方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过合作交流,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 说教学重难点1.教学重点:最短路径问题的概念、求解方法。

2.教学难点:如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、合作交流法。

2.教学手段:利用多媒体课件、板书、教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引入最短路径问题的概念。

2.讲解新课:讲解最短路径问题的求解方法,结合实例进行分析。

3.练习巩固:学生独立完成课后练习题,教师进行讲解和指导。

4.拓展延伸:引导学生思考如何将所学知识应用到实际问题中。

5.课堂小结:总结本节课的主要内容和知识点。

七. 说板书设计板书设计如下:最短路径问题1.概念:从起点到终点的最短路线2.求解方法:b.动态规划法3.应用:实际问题解决八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

人教版八年级上册数学13.4课题学习《最短路径问题》教案设计

人教版八年级上册数学13.4课题学习《最短路径问题》教案设计

第十三章第四节的《课题学习一一最短路径问题》。

一、内容和内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短” 为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究 .本节课利用“河边饮马地点的选择”问题,开展对“最短路径问题” 的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.二、目标和目标解析1.教学目标基于以上分析,本节课我确定的教学目标是:能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.本节课我确定的的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.2.教学目标解析要求学生能将实际问题中的“地点”、“河流”抽象为数学中的“点”、“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路在证明“最短”时,需要在直线上任取一点(与所求作的点不重合)证明所连线段和大于所求作的线段和,学生可能想不到,不会用 .所以,本节课我确定的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点” :为学生搭建“脚手架”.在证明“最短”时,教师可以告诉学生,证明“最大”、“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(所求作的点除外)都成立.四、教学过程设计1.创设问题情境引入:(课件展示行人践踏茵茵绿草穿越草坪)师:(1)同学们,生活中你见到过这样的现象吗?(2)他为什么选择走红色路线?(3)理由是什么?生:集体回答。

人教版八年级数学上册13.4《最短路径问题》教案

人教版八年级数学上册13.4《最短路径问题》教案

第十三章轴对称13.4课题学习《最短路径问题》一、教学目标让学生能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.二、教学重点及难点重点:利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称、平移将最短路径问题转化为线段(或线段的和)最短问题.三、教学用具电脑、多媒体、课件、刻度尺、直尺四、相关资源微课,动画,图片.五、教学过程(一)引言导入前面我们研究过一些关于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及选择最短路径的问题,本节课我们将利用数学知识探究“将军饮马”和“造桥选址”两个极值问题.设计意图:直接通过引言导入新课,让学生明确本节课所要探究的内容和方向.(二)探究新知问题1如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?1.将实际问题抽象为数学问题学生尝试回答,并相互补充,最后达成共识.(1)把A,B两地抽象为两个点;(2)把河边l近似地看成一条直线,C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.2.解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点C,根据“两点之间,线段最短”,可知这个交点C即为所求.(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离和最短?(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C.则点C即为所求.3.证明“最短”师生共同分析,证明“AC+BC”最短.证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′,由轴对称的性质知:BC=B′C,BC′=B′C′,∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.思考:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.若直线l上任意一点(与点C不重合)与A,B两点的距离都大于AC+BC,就说明AC +BC最小.问题2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)1.将实际问题抽象为数学问题把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?2.解决数学问题(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?(2)如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N +NB最小?(3)如图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.3.证明“最小”为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?证明:如图,在△A′N′B中,∵A′B<A′N′+BN′,∴A′N+BN+MN<AM′+BN′+M′N′.∴AM+MN+BN<AM′+M′N′+BN′.即AM+MN+BN最小.设计意图:通过“将军饮马问题”和“造桥选址问题”的解决,增强学生探究问题的信心,让学生通过轴对称、平移变换把复杂问题进行转化,有效突破难点,感悟转化思想的重要价值.六、课堂小结1.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.2.利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.设计意图:通过小结,使学生梳理本节所学内容,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.七、板书设计13.4 最短路径问题运用轴对称解决距离最短问题利用平移确定最短路径选址。

人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例

人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
3.课堂小结,教师引导学生总结本节课的学习内容,使学生对最短路径问题有一个全面的认识。
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。

人教版数学八年级上册13.4最短路径问题优秀教学案例

人教版数学八年级上册13.4最短路径问题优秀教学案例
结合课程内容,本节课的主要任务是让学生掌握利用坐标系求解两点间最短路径的方法,并能够运用到实际问题中。为了达到这个目标,我设计了一系列具有层次性的教学活动,如自主探究、合作交流、教师讲解等,旨在激发学生的学习兴趣,培养他们的动手操作能力和解决问题的能力。同时,我还将结合学生的学情,对教学内容进行适当的拓展,以提高学生的思维品质和创新能力。
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。

人教版八年级数学上册13.4最短路径问题优秀教学案例

人教版八年级数学上册13.4最短路径问题优秀教学案例
3.小组合作学习:教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。通过小组合作,学生可以互相学习、互相借鉴,提高解决问题的能力,同时培养团队合作精神和沟通能力。
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版义务教育课程标准实验教科书八年级上册
13.4.课题学习《最短路径》教学设计
一、教材分析
1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中
的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。

这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的
条件的不同,解决方法和策略上又有所差别。

初中数学中路径最短问题,体现了
数学来源于生活,并用数学解决现实生活问题的数学应用性。

2、目标和目标解析:
(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
3、教学重、难点
教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题
教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题
突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.
二、教学准备:多媒体课件、导学案
三、教学过程
A B C P Q
山 河岸
求直线同侧的两点与直线上一点所连线段的和最小的问题,要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
B分别是直线l同侧的两个点,在
这时先作点B关于直线
AB′的交点.
两地之间有两条河,现要在两条河上各造一
村的距离相等,则应选择在哪建厂?
B两村的水管最短,应建在什么地方?
班举行文艺晚会,桌子摆成如图
桌面上摆满了橘子,
处的学生小明先拿橘子再拿糖果,然后到
图a 图b
四、反思小结布置作业。

相关文档
最新文档