最新版初三中考数学模拟试卷易错题及答案1955692
最新版初三中考数学模拟试卷易错题及答案2225692

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.不等式2x -7<5-2x 的正整数解有 ( ) A .1个B .2个C .3个D .4个2.当22(3)25x m x +-+是完全平方式时,则 m 的值为( ) A .5±B .8C .-2D .8或-23.下列从左到右的变形,属于因式分解的是( ) A .2(3)(2)6x x x x +-=+- B .1()1ax ay a x y --=--C .2323824a b a b =⋅D .24(2)(2)x x x -=+-4. 已知50ax by bx ay +=⎧⎨-=⎩的解是21x y =⎧⎨=⎩,则( )A .21a b =⎧⎨=⎩B .21a b =⎧⎨=-⎩C .21a b =-⎧⎨=⎩D .21a b =-⎧⎨=-⎩5.给出下列运算:①326()a a -=-;②224-=-;③22()()x y x y y x ---=-;④01)1=.其中运算正确的是( ) A . ①和②B . ①和③C . ②和④D . ③和④6.下列因式分解正确的是( ) A .222()m n m n +=+⋅ B .2222()a b ab b a ++=+ C .222()m n m n -=-D .2222()a ab b a b +-=-7.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( ) A .①B .②C .③D .①和②8.如图,在△ABC 中,DE 是边AB 的垂直平分线,AB=6,BC=8,AC=5,则△ADC 的周长是( )A.14 B .13 C .11 D . 99.如图,由∠2=∠3,可以得出的结论是( )A .FG ∥BCB .FG ∥CEC .AD ∥CE D .AD ∥BC10.下列轴对称图形中,对称轴条数最少的是( ) A .等腰直角三角形B .长方形C .正方形D .圆11.以下各几何体中,不是多面体的是( ) A .八圆锥B .棱锥C .三棱锥D .四棱柱12.下列等式:⑴632=⨯;⑵2221=;⑶252322=+;⑷27=33; ⑸=+9494+;⑹32)32(2-=-. 成立的个数有( ) A .2个B .3个C .4个D .5个13.某居民区月底统计用电情况,其中用电45度的有3户,用电50度的有5户,用电42度的有6户,则平( ) 14.下列长度的三条线段,能组成三角形的是( ) A .1cm ,2 cm ,3cm B .2cm ,3 cm ,6 cm C .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm15. 已知三角形的两边长分别为 3,5,则第三边上的中线 m 的取值范围是( ) A .1m >B .14m ≤≤C .14m <<D .4m <16.图 1 是甲、乙、丙三人玩跷枝的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A .B .C .D .17.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( )A .135°B .l05°C .75°D .45°18.某游客为爬上3 km 高的山顶看日出,先用1 h 爬了2 km ,休息0.5 h 后,再用l h 爬上山顶,游客爬山所用时间他t (h )与山高h (km )间的函数关系用图象表示是( )A .B .C .D .19.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( ) A .-1<m <3 B .m >3 C .m <-1 D .m >-1 20.下面几何图形中,是直棱柱体的是( )A .①②B .①③C .②◎D .②④21.某校组织学生进行社会调查,并对学生的调查报告进行评比,将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图如图.已知从左到右4个小组的频数分别是3,9,21,18,则这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)听占的比例为( )A .10%B .20%C .30%D .45%22.两个完全相间的长方体的长,宽,高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是( ) A .188cm 2B .176cm 2C .164cm 2D .158 cm 223.如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( )A .12B .2C .1D 24.下列运算中正确的是( )A .5L =-B .2(5=-C .5D 525.某校初三·一班6名女生的体重(单位:kg )为:35 36 38 40 42 42 则这组数据的中位数等于( ) A .38B .39C .40D .4226.下列图形中,恰好能与左边图形拼成一个矩形的是( )A .B .C .D .27.下列说法正确的是( )A .记向东行为正,- 30 km 表示向西行-30 kmB .正有理数和负有理数统称有理数C .整数和分数统称有理数D .温度上升2℃记作+2℃,则-3℃表示温度为零下3℃ 28. 如果||0a >,那么( ) A .a 一定不等于0 B .a 必是正数 C .a 为任意有理数 D .a 必是负数29.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( ) A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km30. 下列各式中,运算结果为负数的是( ) A .(-2)×(-3)÷(+4) B .(+1)÷(-1)×(-1)÷(+1) C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)31.3.1449精确到百分位的近似数是 ( ) A .3.14B .3.15C .3.20D .3.14532.计算|2|3+的值是( )A .1B .-1C . 5-D .533.计算222222113(22)(46)32a cb a bc +-+---的结果是( ) A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -34.不改变代数式22a a b c --+的值,下列添括号错误..的是( ) A .2(2)a a b c +--+B .2(2)a a b c -+-C .2(2)a a b c --+D .2(2)()a a b c -+-+35.把2222x xy yz x y -+-+的二次项放在前面有“+”的括号里,把一次项放在前面有“-”的括号里,按上述要求操作,结果正确的是( )A .222222()(222)x xy yz x y x y xy x y -+-+=+-+-B .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--C .222222()(222)x xy yz x y x y xy x y -+-+=+---+D .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--+ 36.方程2-3y=8的解是( ) A .12y =-B .12y =C .2y =-D .y=237.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( ) A .16B .14C .13D .1238.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( ) A .4个B .3个C .2个D .1个39.下列运算中,正确的是( ) A .23467()x y x y =B .743x x x =⋅C .2213()()x y x y xy --÷=D .21124-⎛⎫= ⎪⎝⎭40.小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入2-,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为 ( ) A .6 B .4C .19D . 841.有一些乒乓球装在一个口袋中,不知其个数,先取出6个做上标记,放回袋中混合均匀后取出 20个,发现含有 2个做了标记的. 据此可以估计袋中乒乓球的数目约为( ) A . 100个B .60个C . 40个 26个42.下列长度的三条线段,能组成三角形的是( ) A .6,3,3B .4,8,8C .3,4,8D .8,l5,743.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( ) A .4对B .5对C .6对D .7对44.中央电视台“开心辞典”栏目有这么一道题:小兰从镜子中看到挂在她背后墙上的四个时钟如下图所示,其中时间最接近四点的是()45.关于x的二次三项式249x kx-+是一个完全平方式,则k等于()6+A.6 B.6±C.-12 D.12±46.在边长为a的正方形中挖掉一个边长为b的小正方形(a b>),把余下的部分剪拼成一个矩形(如图). 根据图示可以验证的等式是()A.22()()a b a b a b-=+-B.222()2a b a ab b+=++C.222()2a b a ab b-=-+D.2()a ab a a b-=-47.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为()A.4 种B. 6 种C. 10 种D. 12 种48.如图,图形旋转多少度后能与自身重合()A.45°B.60°C.72°D.90°49.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个50.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数是()A. 50°B.30°C.20°D.15°51.有A、B、C三座城市,已知A、B两市的距离为50 km,B、C两市的距离是30 km,那么 A.C两市问的距离是()A.80 km B.20 km C.40 km D.介于20 km至80 km之间52.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或453.如图,AD 是⊙O 的直径,∠CAD =30°,O B ⊥AD 交弦 AC 于 B ,若OB= 5,则 BC 等于( )A .3B .5C .3+D . 554.下面的图形中,不是轴对称图形的是( ) A .有两个角相等的三角形B .有一个内角是40°,另一个内角是l00°的三角形C .三个内角的度数比是2:3:4的三角形D .三个内角的度数比是l :1:2的三角形55.已知,四边形 ABCD 是⊙O 的内接四边形,且对角线 AC 是直径,ABCD =16S 四边形cm 2, AB=BC ,BE ⊥AD 于 E ,则 DE=( ) A .16cmB .4cnnC .8cmD .2cm56. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( )A B D . 3cm57.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形中,较长的边与较短的边之比是( )A .5:2B .(1C .(1D .(158.下列各组线段中,能成比例的是( ) A . 3,6,7,9B .2,5,6,8C .3,6,9,18D . 1,2,3,459. ,则a +bb 的值是( ) A .85 B .35C .32D .5860.下列说法正确的是( )A .矩形都是相似的B .有一个角相等的菱形都是相似的C .梯形的中位线把梯形分成两个相似图形D .任意两个等腰梯形相似61.如图,已知△ABC ,P 是边AB 上的一点,连结CP ,以下条件中不能确定△ACP ∽△ABC 的是( )A .∠ACP =∠BB .∠APC =∠ACB C .AC 2=AP ·ABD .AC ABCP BC= 62.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( ) A .相交B .相切C .内切或相交D .外切或相交63.如图,甲、乙、丙比赛投掷飞镖,三人的中标情况如图所示,则三人的名次应是( )A .甲第一,乙第二,丙第三B .甲第三,乙第二,丙第一C .甲第二,乙第三,丙第一D .甲第一,丙第二,乙第三64.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是( ) A .0.75B . 0.5C . 0.25D . 0.12565.在以O 为圆心的两个同心圆中,大圆的弦 AB 交小圆于两点,AB =10 cm ,CD= 6cm ,则AC 的长为( )A .0.5 cmB .1cmC .1.5 cmD .2 cm66.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切67.若半径为 7 和 9 的两圆相切,则这两圆的圆心距长一定为( ) A . 16 B .2 C .2 或 16D . 以上答案都不对68.已知PA 是⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10cm ,PB =5cm ,则⊙O 的半径长为( ) A .15cmB .10 cmC .7.5 cmD .5 cm69.下列说法错误的是( ) A .太阳光所形成的投影为平行投影B .在一天的不同时刻,同一棵树所形成的影子长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻平行树的影子都是平行的D .影子的长短不仅和太阳的位置有关,还和物体本身的长度有关 70.如图所示是一个物体的三视图,则该物体的形状是( )A .圆锥B .圆柱C .三棱锥D .三棱柱71.如图,几何体的主视图是( )A .B .C .D .72.下面四个图形中,是三棱柱的平面展开图的是( )73.某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( )A .32B .35C .23D .2574.生活处处皆学问,如图,眼镜镜片所在两圆的位置关系是( ) A .外离B .外切C .内含D .内切75.如图,小敏在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( ) A .3.5mB .4mC .4.5 mD .4.6 m76.如图所示,从山顶A 望地面C 、D 两点,俯角分别为 45°、30°,如果CD= 100 m ,那么山高AB 为( )A .lOOmB . 1)mC .D .77.如图,□ABCD 中,BC=7,CD=5,∠D=50°,BE 平分∠ABC ,则下列结论中,不正确...的( ) A . ED= 2 B . AE= 5 C . ∠C= 130° D . ∠BED= 130°78.若x x x x -⋅-=--32)3)(2(成立,则x 的取值范围为( ) A .x ≥2 B .x ≤3 C .2≤x ≤3 D .2<x <379.n 为( ) A .2B .3C .4D .580. 方程220x px q ++=有两个不相等的实根,则p ,q 满足的关系式是( ) A .240p q -> B .20p q -≥C .240p q -≥D .20p q ->81.解下面方程:(1) 2(2)5x -=;(2)2320x x --=;(3) 260x x +-=,较适当的方法依次分别为( ) A .直接开平方法、因式分解法、配方法 B .因式分解法、公式法、直接开平方法 C .公式法、直接开平方法、因式分解法 D .直接开平方法、公式法、因式分解法82.已知样本10.8.6,10,8,13,ll ,10,1 2,7,9, 8,12,9,11,12,9,10,11,10,那么在频数分布表中,频率为0.3的组是( ) A .5.5~11.5B .7.5~9.5C .9.5~11.5D .11.5~l3.583.下列命题中,是假命题的为( ) A .两条直线相交,只有一个交点 B .全等三角形对应边上的中线相等 C .全等三角形对应边上的高相等D .三角形一边上的中线把这个三角形分成两个全等的小三角形84.如图.已知AD ∥BC ,且AD=BC ,则下列四个条件中能使△ADE ≌△CBF 成立的是 ( ) A .AB ∥CDB .AB=CDC .AF=CED .DE=BF85.如图,下列不等式一定能成立的是( ) A .∠5>∠3B .∠4>∠3C .∠6>∠2D .∠5>∠686.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为 ( ) A .4:3:2B .3:2:4C .5:3:1D .3:1:587.如图所示,在口ABCD 中,EF ∥BC ,GH ∥AB ,EF ,GH 相交于点0,则图中平行四边形共有 ( ) A .7个B .8个C .9个D .l0个88.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( ) A .12 cm ,6 cmB .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm89.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( )A .该班人数最多的身高段的学生数为7人B .该班身高低于160.5cm 的学生数为15人C .该班身高最高段的学生数为20人D .该班身高最高段的学生数为7人90.如图,在□ABCD 中,对角线AC 、BD 交于点O ,则图中全等三角形的对数有( ) A .2B .4C .6D .891.将抛物线21(1)22y x =-+先向右平移2个单位,再向上平移 3个单位得到的抛物线是( ) A .21(1)52y x =++ B .21(2)42y x =++ C .21(3)52y x =-+ D .21(3)12y x =--92.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m 、n 的值是( ) A .4,13B .-4,19C .-4,13D .4,1993. 下列各图中有可能是函数y=ax 2+c,y =ax (a ≠0,c>0)的图象是( ) 94.抛物线2321y x x -=-与x 轴的交点坐标是( ) A . (13-,0)(1,0) B .(13,0)(-1,0) C .(3,0)(1,0) D .(-3,0)(-1,0)95.用长度一定的绳子围成一个矩形,如果矩形的一边长 x (m )与面积 y (m 2)满足函数2(12)144y x =--+,A .123y y y <<B .123y y y >>C .213y y y >>D .132y y y <<96.抛物线22y x x c =-+与x 轴无公共点,则c 的取值范围是( ) A .18c <B .18c >C .18c ≤D .c 为任何实数97.等腰梯形ABCD 中,AD ∥BC ,对角线AC=BC+AD ,则∠DBC 的度数是 ( ) A .30°B .45°C .60°D .90°。
中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。
初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
中考数学模拟试题及答案解析(共六套)

中考数学模拟试题(一)一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣ B.﹣3 C.3 D.2.下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<34.下图所示几何体的主视图是()A.B.C.D.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2D.a4÷a=a36.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.87.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.410.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C 在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12二、填空题(本题共8小题,每小题3分,共24分)11.2019年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为________.12.分解因式:a2b﹣2ab+b=________.13.不等式组的解集是________.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为________.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是________米.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.17.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为________.18.如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为________.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________,“综艺节目”在扇形统计图中所对应的圆心角的度数为________;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD ⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x 轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣B.﹣3 C.3 D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:3的相反数是﹣3,故选B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形既是轴对称图形又是中心对称图形,故本选项正确;B、该图形是轴对称图形,但不是中心对称图形,故本选项错误;C、该图形是中心对称图形,但不是轴对称图形,故本选项错误;D、该图形既不是中心对称图形,也不是轴对称图形,故本选项错误;故选:A.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<3【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得3﹣x≥0,解得x≤3.故选:C.4.下图所示几何体的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的意义和几何体得出即可.【解答】解:几何体的主视图是,故选A.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2D.a4÷a=a3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;因式分解-运用公式法.【分析】根据完全平方公式;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2+4a+4=(a+2)2,故A错误;B、a2+a2=2a2,故B错误;C、(﹣2ab)2=4a2b2,故C错误;D、a4÷a=a3,故D正确.故选:D.6.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.8【考点】一次函数图象上点的坐标特征.【分析】由直线解析式可求得A、B两点的坐标,从而可求得OA和OB的长,再利用三角形的面积可求得答案.【解答】解:在y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,=OA•OB=×2×4=4,∴S△AOB故选B.7.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查某批次汽车的抗撞击能力,破坏力强,适宜抽查;B、端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况,范围比较广,适宜抽查;C、调查某班40名同学的视力情况,调查范围比较小,适宜全面调查;D、调查某池塘中现有鱼的数量,调查难度大,适宜抽查,故选C.8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、购买一张彩票,中奖,是随机事件;B、通常加热到100℃时,水沸腾,是必然事件;C、任意画一个三角形,其内角和是360°,是不可能事件;D、射击运动员射击一次,命中靶心,是随机事件;故选:B.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.10.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C 在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12【考点】反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例.【分析】先设D(a,b),得出CO=﹣a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,得出=,即BC•EO=AB•CO,求得ab 的值即可.【解答】解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选(D).二、填空题(本题共8小题,每小题3分,共24分)11.2019年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为9.4×106.【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:9 400 000=9.4×106;故答案为:9.4×106.12.分解因式:a2b﹣2ab+b= b(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式b,再利用完全平方公式进行二次分解.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)13.不等式组的解集是﹣7<x≤1 .【考点】解一元一次不等式组.【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣7.∴不等式组的解集为﹣7<x≤1.故答案为:﹣7<x≤1.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.【考点】概率公式.【分析】根据统计表的意义,将各组的频数相加可得班级的总人数;读表可得恰好是获得30分的学生的频数,计算可得答案.【解答】解:该班共有1+5+9+25=40人.P(30)==,故答案为:.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是 1.70 米.【考点】中位数.【分析】先把这些数从小到大排列,找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:1.68,1.68,1.70,1.72,1.75,最中间的数是1.70,则这五名男生身高的中位数是1.70米;故答案为:1.70.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a≤且a≠1.【考点】根的判别式.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a ≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.17.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为(2,4)或(4,2).【考点】全等三角形的判定与性质;坐标与图形性质.【分析】分两种情况①当点P在正方形的边AB上时,根据正方形的性质用HL 判断出Rt△OCD≌Rt△OAP,得出AP=2,得出点P的坐标,②当点P在正方形的边BC上时,同①的方法即可.【解答】解:①当点P在正方形的边AB上时,在Rt△OCD和Rt△OAP中,∴Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC上时,同①的方法,得出CP=BC=2,∴P(2,4)∴P(2,4)或(4,2)故答案为(2,4)或(4,2)18.如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为(0,448).【考点】等边三角形的性质;规律型:点的坐标.【分析】先关键等边三角形的性质和已知条件得出A3的坐标,根据每一个三角形有三个顶点确定出A2016所在的三角形,再求出相应的三角形的边长以及A2016的纵坐标的长度,即可得解;【解答】解:∵,△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,),∵2016÷3=672,∴A2016是第672个等边三角形的第3个顶点,∴点A2016的坐标为(0,×),即点A2016的坐标为(0,448);故答案为:(0,448).三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【考点】菱形的判定.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了200 名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为40% ,“综艺节目”在扇形统计图中所对应的圆心角的度数为63°;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数;(2)用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比,然后用360度乘以喜欢“综艺节目”的人数所占的百分比得到综艺节目”在扇形统计图中所对应的圆心角的度数;(3)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(4)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.【解答】解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=40%;“综艺节目”在扇形统计图中所对应的圆心角的度数为360°×=63°;故答案为200,40%,63°;(3)最喜爱“新闻节目”的人数为200﹣50﹣35﹣45=70(人),如图,(4)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD ⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=4,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)=×4×4﹣(﹣×82)=24﹣π.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)【考点】解直角三角形的应用-方向角问题.【分析】(1)先利用平行线的性质得∠ACM=∠DAC=15°,再利用平角的定义计算出∠ACB=105°,然后根据三角形内角和计算∠ABC的度数;(2)作CH⊥AB于H,如图,易得△ACH为等腰直角三角形,则AH=CH=AC=100,在Rt△BCH中利用含30度的直角三角形三边的关系得到BH=CH=100,AB=AH+BH=100+100,然后进行近似计算即可.【解答】解:(1)∵CM∥AD,∴∠ACM=∠DAC=15°,∴∠AC B=180°﹣∠BCN﹣∠ACM=180°﹣60°﹣15°=105°,而∠BAC=30°+15°=45°,∴∠ABC=180°﹣45°﹣105°=30°;(2)作CH⊥AB于H,如图,∵∠BAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×200=100,在Rt△BCH中,∵∠HBC=30°,∴BH=CH=100,∴AB=AH+BH=100+100≈141.4+244.9≈386.答:两棵大树A和B之间的距离约为386米.六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【考点】二次函数的应用;一元一次不等式的应用;一次函数的应用.【分析】(1)利用待定系数法求两个函数的解析式;(2)根据总投资成本为10万元,设种植桃树的投资成本x万元,总利润为W 万元,则种植柏树的投资成本(10﹣x)万元,列函数关系式,发现是二次函数,画出函数图象,找出当2≤x≤8时的最小利润和最大利润.【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得8万元利润.七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【考点】三角形综合题.【分析】(1)①根据ASA证明△AFC≌△EDC,可得结论;②结论是:DE+AD=2CH,根据CH是等腰直角△FCD斜边上的中线得:FD=2CH,再进行等量代换可得结论;(2)如图b,根据(1)作辅助线,构建全等三角形,证明△FAC≌△DEC得AF=DE,FC=CD,得等腰△FDC,由三线合一的性质得CH,是底边中线和顶角平分线,得直角△CHD,利用三角函数得出HD与CH的关系,从而得出结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x 轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),可以求得b、c的值,从而可以求得抛物线的解析式;(2)要求△DMN的面积,根据题目中的信息可以得到梯形AEDC的面积、△ANM 的面积、△MDE的面积、△CND的面积,从而可以解答本题;(3)①根据MN∥DE,可以得到△AMN和△AOC相似,从而可以求得t的值;②根据题目中的条件可以求得点N、点M、点A、点D的坐标,由AD⊥MN可以求得相应的t的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),∴,解得,,即抛物线的解析式为:y═﹣x2+x+4;(2)作NH⊥AM于点H,如由图1所示,∵y═﹣x2+x+4,∴对称轴x=﹣=,∵点A(﹣3,0),点C(0,4),CD∥x轴交抛物线于点D,DE⊥x轴,垂足为E,∴点D(3,4),点E(3,0),OA=3,OC=4,∴AC=5,AE=6,CD=3,∵NH⊥AM,AN=tME=2t,∴△ANH∽△ACO,AM=6﹣2t,∴,即,得NH=0.8t,∴S=S梯形AECD ﹣S△AMN﹣S△DME﹣S△CDN==0.8t2﹣5.2t+12,即S与t的函数关系式是S=0.8t2﹣5.2t+12(0<t≤3);(3)①当MN∥DE时,t的值是,理由:如右图2所示∵MN∥DE,AE=6,AC=5,AO=3,∴AM=6﹣2t,AN=t,△AMN∽△AOC,∴,即,解得,t=;②存在某一时刻,使MN⊥AD,此时t的值是,理由:如右图3所示,设过点A(﹣3,0),C(0,4)的直线的解析式为y=kx+b,则,得,即直线AC的解析式为y=,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入y=得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t﹣3,0.8t),AD ⊥MN,∴,解得,t=.中考数学模拟试题(二)一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1..计算:﹣3+4的结果等于()A.7 B.﹣7 C.1D.﹣12..如图,∠1的内错角是()A.∠2 B.∠3 C.∠4 D.∠53..今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是()A.3 B. 4 C. 5 D. 64..如图,一个空心圆柱体,其左视图正确的是()A. B.C.D.5..小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B. 42 C. 32 D.276..如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C. 4:9 D.8:277..王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B. 1600条C. 1700条D.3000条8..如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C. AD∥BC D.D F∥BE9..一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l描述的是无月租费的收费方式;1描述的是有月租费的收费方式;②l2③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0B. 1 C.2 D.310..已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C. y>3 D.y<3二、填空题(每小题4分,共20分)11..方程组的解为.12..如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O 的面积等于.13.分式化简的结果为.14..“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.15..小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.三、解答题16.(8分)先化简,再求值:(x+1)(x﹣1)+x2(1﹣x)+x3,其中x=2.17..近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园116 0.29小车河湿地公园0.25南江大峡谷84 0.21花溪公园64 0.16观山湖公园36 0.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?。
初三考试数学模拟试题精选含详细答案

初三考试数学模拟试题精选含详细答案一、压轴题1.(概念认识)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.(问题解决)(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC= °;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示)2.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.3.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.4.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.5.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ;(拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.10.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加. 12.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.13.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .14.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)15.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).17.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:21 14 xx=+,求代数式x2+21x的值.解:∵21 14 xx=+,∴21xx+=4即21xx x+=4∴x+1x=4∴x2+21x=(x+1x)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求xy z+的值.解:令2x=3y=4z=k(k≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.18.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
最新初三中考数学模拟试卷及答案(4套)

25.(本题满分10分)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
23.(本题满分10分)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的 形状,并证明你的结论.
24.(本题满分10分)
数学课上,老师用多媒体给同学们放了2010年春节联欢晚会由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但
丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两
车又工作了几小时,使仓库的库存量为6吨?
28.(本题满分12分)
在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
A.7 B.9 C.9或12 D.12
7.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()
A.正视图的面积最大B.俯视图的面积最大
九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
最新版初三中考数学模拟试卷易错题及答案1855902

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列图形中,不是正方体的表面展开图的是()A. B.C. D.2.以l、3为根的一元二次方程是()A.x2+4x―3=0 B.x2―4x+3=0 C.x2+4x+3=0 D.―x2+4x+3=03.下列多项式中,能用公式法分解因式的是()A.x2-xy B. x2+xy C. x2-y2D. x2+y24.下列说法错误的是()A.有一个外角是锐角的三角形是钝角三角形B.有两个角互余的三角形是直角三角形C.直角三角形只有一条高D.任何一个三角形中,最大角不小于60度5.4张扑克牌如图①所示放在桌子上,小敏把其中一张旋转l80°后得到如图②所示的图形,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张6.小华和小明到同一早餐店买馒头和豆浆. 已知小华买了 5 个馒头和 6 杯豆浆;小明买了 7个馒头和 3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是()A.4个馒头比6杯豆浆少2元B.4个馒头比 6 杯豆浆多 2元C .12个馒头比 9 杯豆浆少 1 元D .12个馊头比 9杯豆浆多 1 元7.如图 是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( ) A . 1B . 2C . 3D . 48.如图,直线a ∥b ,∠1=x °,∠2=y °,∠3=z °,那么下列代数式的值为180的是( ) A .x+y+zB .x —y+zC .y-x+zD .x+y-z9.下列条件中,不能判定两个直角三角形全等的是 ( ) A .一条直角边和一个锐角分别相等 B .两条直角边对应相等 C .斜边和一条直角边对应相等 D .斜边和一个锐角对应相等10.如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,则图中与∠B 相等的角是( ) A .∠BADB .∠CC .∠CADD .没有这样的角11.如图 ,在Rt △ABC 中,∠C = 90°,E 是BC 上的一点,DE ⊥AB ,点0为垂足,则∠A 与∠CED 的关系是( ) A . 相等B . 互余C . 互补D .以上都有可能12.以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩13.如图,桌面上放着一个圆锥和一个长方体,其中俯视图是()14.计算(18x4-48x3+6x)÷(-6x)的结果是()A.3x3-8x2B.-3x3+8x2C.-3x3+8x2-1 D.3x3-8x2-115.有七个数由小到大依次排列,其平均数是38,如果这组数中前四个数的平均数是33,后四个数的平均数是42,那么这七个数的中位数是()A. 16 B.20 C.34 D.3816.要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差17.不等式组31413(3)024xx+<⎧⎪⎨+-<⎪⎩的最大整数解是()A.0 B.-1 C.-2 D.118.不等式4(2)2(35)x x-≥-的正整数解的个数为()A.0个B.1个C.2 个D.3 个19.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()94xyOPD CAA.10 B.16 C.18 D.2020.一元一次不等式组x ax b>⎧⎨>⎩的解为x a>,且a b≠,则a与b的关系是()A.a b> B.a b< C.0a b>> D.0a b<<21.如图的棋盘上,若“帅”位于点(1,-2)上,“马”位于点(3,0)上,则“炮”位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)22. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个23.某工厂去年积压产品a 件(a>0),今年预计每月销售产品2b 件(b>O ),同时每月可生产出产品b 件,若产品积压量y (件)是今年开工时间x (月)的函数,则其图象只能是( )24.tan60°·cos30°的值为( ) A .23 B .21 C .23 D .63 25. 已知两条线段的长分别为 3,4,那么能与它们组成直角三角形的第三条线段的长为( )A . 5B C D .526.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( ) A . 3B .12C . 7D . 427.在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,那么下面的平移中正确的是( )A .先向下移动l 格,再向左移动l 格B .先向下移动l 格,再向左移动2格C .先向下移动2格,再向左移动l 格D .先向下移动2格,再向左移动2格28.现有两个有理数 a 、b ,它们的绝对值相等,则这两个有理数( ) A .相等 B .相等或互为相反数 C .都是零 D .互为相反数29.数轴上点A 表示3-,点B 表示1,则表示A B ,两点间的距离的算式是( ) A .31-+B .31--C .1(3)--D .13-30.若|2|a -与2(3)b +互为相反数,则a b 的值为( ) A .-6B .18C .8D .931.在3,π这四个数中,无理数的个数是( ) A .1 个B .2 个C .3 个D .4 个32.下列各组代数式中,属于同类项的是( ) A .4ab 与4abcB .mn -与32mnC .223a b 与223abD .2x y 与2x33.下列合并同类项正确的是( ) A .22523x x -= B .6713x y xy +=C .2222a b a b a b -+=D .523x x -=34.分式3a x ,22x y x y +-,22a ba b-+,x y x y +-中最简分式有( ) A .1 个B .2 个C . 3 个D .4 个35.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( ) A .120元B .125元C .135元D .14036.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( ) A .11 cmB .8 cmC .3 cmD .2 cm37.如图,沿着图中的线从A 走到B ,至少要经过的角的个数是( ) A .2个B .3个C .4个D .5个38.(x+a )(x-3)的积的一次项系数为零,则a 的值是( ) A .1B .2C .3D .439.三角形一边上的中线把原三角形分成两个( ) A .形状相同的三角形 B .面积相等的三角形 C .直角三角形 D .周长相等的三角形40.将直线2y x =向右平移 2个单位所得的直线的解析式是( ) A .22y x =+B .22y x =-C .2(2)y x =-D .2(2)y x =+41.将如图所示的图案绕其中心旋转n °时与原图案完全重合,那么n 的最小值是( ) A .60B .90C .120D .18042.下面四个图中,在旋转180°后还和原来一样的是( )43.如图,四边形EFGH 是四边形ABCD 平移后得到的,则下列结论中正确的个数是( )①平移的距离是线段AE 的长度;②平移的方向是点C 到点F ;③线段CF 与线段DG 是对应边;④平移的距离是线段DG 的长度. A .1个B .2个C .3个D .4个44.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ) A .22()()a b a b a b -=+- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-45.某化肥厂原计划x 天生产100 t 化肥,由于采用新技术,每天多生产 2 t ,因此提前 3 天完成计划,列出方程应为( ) A .10010023x x=-- B .10010023x x =-+ C . 10010023x x =-+ D .10010023x x =-- 46.与分式x yx y-+--的值相等的分式是( ) A .x yx y+- B .x yx y-+ C .x yx y+-- D .x yx y--+ 47.从1到9这九个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( ) A .91 B . 31C .21 D .97 48.下列不是二元一次方程组的是( ) A .⎪⎩⎪⎨⎧=-=+141y x y xB .⎩⎨⎧=+=+42634y x y xC . ⎩⎨⎧=-=+14y x y xD . ⎩⎨⎧=+=+25102553y x y x49.已知x=2005,y=2004,则分式4422))((yx y x y x -++等于( )A .0B . 1C . 2D . 350.下列说法中,正确的是( ) A .买一张电影票,座位号一定是偶数 B .投掷一枚均匀的硬币,正面一定朝上 C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大51.4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情( ) A .可能发生B .不可能发生C .很可能发生D .必然发生52.如图是超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价模糊不清,请你根据标签上的数据算一算该洗发水的原价是( ) A .22元 B .23元 C .26元D .24元53.点A 到直线l 的距离为 d ,下列各种法中直线l 与圆的位置关系是相切的是( ) A .以A 为圆心,2d为直径画圆 B .以A 为圆心,d 为直径画圆 C .以A 为圆心,2d 为半径画圆 D .以A 为圆心,2d 为直径画圆54.如图,△ABC 为正三角形,∠ABC ,∠ACB 的平分线相交于点0,OE ∥AB 交BC 于点E ,OF ∥AC 交BC 于点F ,图中等腰三角形共有 ( ) A .6个B .5个C .4个D .3个55.二次函数2y ax bx c =++的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是 ( ) A .0ab <B .0bc <C .240b ac ->D .0a b c ++<56.在平面直角坐标系中,若点P (m-2,m )在第二象限.则m 的取值范围为( ) A . 0<m<2B .m>0C .m<2D .m>257.二次函数22,,04y ax bx c b ac x y =++===-且时,则( ) A .=4y -最大 B .=4y -最小 C .=3y -最大 D .=3y -最小 58.如图,直线2=y x 与双曲线xky =的图象的一个交点坐标为(2,4).则它们的另一个交点坐标是( ) A .(-2,-4)B .(-2,4)C .(-4,-2)D .(2,-4)59.如图,CD 是平面镜,光线从A 点出发经CD 上的点E 反射后到B 点.若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α值为( ) A .113B .311C .911D .11960.△ABC 中,O 是三角形内一点,且该点到三边的距离相等,那么它是三角形的( ) A .三条边上高线的交点 B .三条边中垂线的交点 C .三条内角平分线的交点D .三条边中线的交点61.若把 Rt △ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间 的关系是 ( ) A .扩大3倍B .缩小3倍C .相等D .不能确定62.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .43 63.在Rt△ABC 中,∠C=90°,下列式子不一定成立的是( ) A .sinA=cosB B .sinB=cosAC .tanA=tanBD .sin 2A+sin 2B=164.如图,AB 是斜靠在墙壁上的长梯,梯脚B 距墙1.6米,梯上点D 距墙1.4米,BD 长0.55米,则梯子的长为( ) A .3.85米B .4.00米C .4.40米D .4.50米65.从 1~10 这十个数中任取两个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.已知,有一条直的宽纸带,按图所示折叠,则∠α等于( ) A . 50°B .60°C . 75°D . 85°2.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1 C .-2D .13. 如图,已知∠C =∠D ,AC=AE ,要得到△ABC ≌△AED 还应给出的条件中错误的是( ) A .∠BAD =∠EACB .∠B=∠EC .ED=BC AB =AE4.如图,图形旋转多少度后能与自身重合( ) A .45°B .60°C .72°D .90°5.数学老师抽一名同学回答问题,抽到女同学是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断6.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么哥哥球衣上的实际号码是( )A .25号B .52号C .55号D .22号7.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD ≠PCC .PD 、PC 有时相等,有时不等 D .PD >PC8.下列“QQ 表情”中属于轴对称图形的是( )A .B .C .D .9.如图,在5×5方格中将(1)中的图形(阴影部分)平移后的位置如图(2)所示,•那么正确的平移方法是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动2格D .先向下移动2格,再向左移动1格10.若方程组432(3)3x y kx k y +=⎧⎨+-=-⎩的解满足x y =,则k 值是( )A . 6B .154C .234D .27411.关于200920091()22⨯计算正确的是( ) A . 0B .1C .-1D .212.下列计算中,错误..的是( ) A .33354a a a -=B .236m n m n +⋅=C .325()()()a b b a a b -⋅-=-D .78a a a ⋅=13.如图,∠ADE 与∠DEC 是( ) A .同位角B .内错角C .同旁内角D .不能确定14.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( ) A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人D . 14 人,15 人15.下列四个图形中,轴对称图形的个数是( )①等腰三角形, ②等边三角形, ③直角三角形, ④等腰直角三角形 A . 1个B .2个C .3个D .4个16.已知Rt △ABC 中,∠C=90°,若三角形的周长为24 cm ,斜边c 为10 cm ,则Rt △ABC 的面积为( ) A .24 cm 2 B .36 cm 2 C .48 cm 2 D .96 cm 2 17.满足下列条件的△ABC ,不是直角三角形的是( ) A .222b a c =-B .∠C=∠A 一∠BC .∠A :∠B :∠C=3:4:5D .a :b: c=12:13:518.将三个面上做有标记的立方体盒子展开,以下有可能是它的展开图的是( )A .B .C .D .19.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱20.如图,一天,小明的爸爸送给小明一个礼物,小明打开包装后,利用所学的知识画出视图.它的主视图和俯视图分别如下:根据小明所画的三视图,猜测小明的爸爸送给小明的礼物可能是( ) A .钢笔B .生日蛋糕C .光盘D .一套衣服21.在数轴上,表示数①-3;②2. 6;③35-;④0;⑤143;⑥223-;⑦- 1 的点中. 在原点右边的点有( )A .2 个B .3 个C .4 个D .5 个22.画一个物体的三视图时,一般的顺序是( ) A .主视图、左视图、俯视图 B .主视图、俯视图、左视图 C .俯视图、主视图、左视图 D .左视图、俯视图、主视图23. 下列各种现象中不属于中心投影现象是( ) A .民间艺人表演的皮影戏B .在日常教学过程中教师所采用投影仪的图象展示C .人们周末去电影院所欣赏的精彩电影D .在皎洁的月光下低头看到的树影 24.下列说法错误的是( ) A .不等式39x -<的解集是3x >- B .不等式5x >的整数解有无数个 C .不等式132x <的正整数解只有一个D .—40 是不等式28x <-的一个解25.三角形的一个外角小于与它相邻的内角,这个三角形是( ) A . 直角三角形B . 锐角三角形C . 钝角三角形D .属于哪一类不能确定26.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确 的是( ) A .从图中可以直接看出喜欢各种球类的具体人数 B .从图中可以直接看出全班的总人数C .从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D .从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例27. 在数轴上点 A 表示-4,如果把原点 0向负方向移动 1. 5 个单位,那么在新数轴上点A 表示的数是( ) A .-5.5B . -4C .-2.5D .12228. 设a 是最小的自然数,b 是最小的正整数的相反数,c 是绝对值最小的有理数,则 a 、b 、c 三数之和为( ) A .-1B .0C .1D .229.火车票上的车次号有两个意义:(1)数字越小表示车速越快,如 1~98次为特快列车,101~198次直快列车,301~398次为普快列车,401~498次为普客列车;(2)奇数与偶数表示不同的行驶方向,例如:奇数表示从北京开出,偶数表示开往北京. 根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A . 20B .119C .120D .31930.12-的绝对值是( ) A .-2B .12-C .2D .1231.23232(3)(1)(1)---⨯---的值为( ) A .-30B .0C .-1D .2432.计算 18÷6÷2 时,下列各式中错误的是( ) A .111862⨯⨯B . 18÷ (6÷2)C .18÷(6×2)D .(l8÷6)÷233.21的结果为( ) A . 61B .19C .-21D .-834.|3.14|ππ--的值是( ) A .3.142π-B .3.14C .-3.14D .无法确定35.下列说法正确的是( )A .100 的平方根是 10B .任何数都有平方根C .非负数一定有平方根D .0. 001 的平方根是0.01± 36.一个数的立方根是它本身,则这个数是( )A .0B .1,0C .1,-1D .1,-1或037.20人一行外出旅游住旅社,因特妹原因,服务员安排房间时每间比原来多住 1 人,结 果比原来少用了一个房间. 若原来每间住 x 人,则x 应满足的关系式为( ) A .202011x x -=+ B .202011x x-=- C .202011x x -=- D .202011x x-=+ 38.下列说法:①代数式21a +的值永远是正的;②代数式2a b+中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个B .2 个C .3 个D .4 个39.下列图形中,不是正方体的表面展开图的是( )A .B .C .D .40.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A . 60n 厘米 B . 50n 厘米C . (50n+10)厘米D . (60n-10)厘米41.方程11012xx -+=-去分母后,得( ) A .1-x+10=-x B .1-x+10=-12x C .1+x+10=-12x D .1-x+120=-l2x 42.由图,可知销售量最大的一年是( ) A . 2005年B . 2006年C .2007年D .无法确定43.如图,0是直线AB 上一点,OD 是∠BOC 的平分线,0E 是∠AOC 的平分线,在下列说法 中错误的是 ( )A .∠00D 与∠COE 互余B .∠COE 与∠BOE 互补C .∠EOC 与∠BOD 互余 D .∠BOD 与∠BOE 互补44.如图,下午2点30分时,时钟的分针与时针所成角的度数为( )A .90°B .105°C .120°D .135°45.将一个正方形纸片依次按图①、图②方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所看到的图案是( )46.如图所示,∠A=32°,∠B=45°,∠C=38°,则∠DFE 的度数为( ) A .120°B . ll5°C .110°D .105°47.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是( ) A .19B . 29C .12D .2348.小珍用 12. 4 元恰好买了单价为 0.8 元和1. 2 元两种贺卡共 12 张,则其中单价为0. 8元的贺卡有( ) A .5 张 B .7 张C .6 张D . 4 张49.已知3040x y y z -=⎧⎨+=⎩(z ≠0),则x z =( )A . 12B .112-C .12-D .11250.下列说法中,错误的是( )A 保留3个有效数字,是0.618B .若40x +,则x =C .若30x =,则x =D 251.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定...正确的是( )A .∠COE=∠DOEB .CE=DEC .⌒AC =⌒AD D .OE=BE52.某种服装原价为200元,连续两次涨价a%后,售价为242元,则a 的值为( ) A .5B .10C .15D .2153.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( ) A .与原图形关于x 轴对称 B .与原图形关于k 轴对称 C .与原图形关于原点对称D .向x 轴的负方向平移了一个单位54.当k>0,b>0 对,函数y kx b =+与ky x-=的图象在同一直角坐标系内可能是( )A .B .C .D .55.一个画家有l4个边长为1 cm 的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有( )A .21m 2B .24 m 2C .33 m 2D .37m 256.在边长3和4的矩形中挖去一个半径为r 的圆,剩余部分的面积为s ,则s 关于r 的函数解析式为( ) A .s =7-πr 2B .s =12-πr 2C .s =(3―r )(4―r )D .=12-r 257. 一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5,则这个二 次函数的关系式是( ) A .y=4x 2-3x-5B .y=4x 2+3x+5C .y=4x 2-3x+5D .y=4x 2+3x-558.二次函数y=ax 2+bx+c 的图象的对称轴位置 ( ) A .只与a 有关B .只与b 有关C .只与a, b 有关D .与 a , b ,c 都有关59.抛物线()2212y x =-+的顶点坐标是( ) A .(-1,2)B .(-1,-2)C .(1,2)D .(2,1)60.一种花边是由如图的弓形组成的,弧 ACB 的半径为 5,弦AB=8,则弓高 CD 为( ) AA .8B .152C .7D .14361.如图,圆内接△ABC 的外角∠ACH 的平分线与圆交于D 点,DP ⊥AC ,垂足为 P ,DH ⊥BH ,垂足为 H ,下列推理:①CH = CP ,②⌒AD =⌒BD ,③AP=BH,④ ⌒AB =⌒BC ,其中一定成立的结论为( ) A .1 个B .2 个C .3 个D .4 个62.以下命题中,正确的命题的个数是( )(1)同圆中等弧对等弦. (2)圆心角相等,它们所对的弧长也相等. (3)三点确定一个圆. (4)平分弦的直径必垂直于这条弦. A . 1个B . 2个C . 3个D . 4个63.一个正方形的对角线长为2 cm ,则它的面积是( ) A .2 cm 2 8.4 cm 2C .6 cm 2D .8 cm 264.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm 时, 滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)( ) A .115°B .60°C .57°D .29°65.用反证法证明“a b <”时,一般应先假设( ) A .a b >B .a b <C .a b =D .a b ≥66.若两个图形位似,则下列叙述不正确的是( ) A .每对对应点所在的直线相交于同一 B .两个图形上的对应线段之比等于位似比 C .两个图形上对应线段必平行D .两个图形的面积比等于位似比的平方67.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( )A .x y 5=B .x y 54=C .x y 45=D .x y 209=68.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )69.已知二次函数263y kx x =-+,若k 在数组{3211234}---,,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的右方时的概率为( )A .17B .27C .47D .5770.给出下列四个事件: (1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形. 其中不确定事件是( ) A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)71.已知∠B 为锐角,且1sin 22B <<B 的范围是( ) A .0°<∠B <30°B . 30°<∠B<60°C. 60°<∠B<90°D .30°<∠B<45°72. 从某班学生中随机选取一名学生是男生的概率为35,则该班男生与女生的人数比是( )A .35B .23C .32D .2573.掷两枚均匀的锬子,出现正面向上的点数和为4 的概率是( ) A .16B .112C .118D .13674.如图,点 P 在⊙O 上,下列各条件中能判定直线 PT 与⊙O 相切的是( )①tan O=tan T=;②OP=2,PT=4,OT=5;③305oO'∠=,059.5T∠=;④OP=1,PT=OT=A.①B.①③C.①④D.①③④75.若⊙O1和⊙O2相交于A、B两点,⊙O1和⊙O2的半径分别为2 和,公共弦长为 2,∠O1AO2的度数为()A.105°B.75°或 15°C.105°或 15°D.15°76.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于()A B C D77.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,•母线长50cm,则制成一顶这样的纸帽所需纸面积至少为()A.250πcm2B.500πcm2C.750πcm2D.100πcm278.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A.-1 B.0 C.1 D.279.不等式2x-7<5-2x的正整数解有()A.1个B.2个 C.3个 D.4个80.如果关于x的方程2435x a x b++=的解不是负值,那么a与b的关系是()A.35a b>B.53b a≥C.53a b=D.53a b≥81.将点M(-3,-5)向上平移7个单位得到点N的坐标为()A.(-3,2)B.(-2,-l2) C(4,-5)D.(-10,-5)82.已知点P(1,2)与点Q(x,y)在同一条平行于x轴的直线上,且Q点到y轴的距离等于2,那么点Q的坐标是()A.(2,2)B.(-2,2) C.(-2,2)和(2,2)D.(-2,-2)和(2,-2)83.将三角形ABC的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形是由三角形ABC ()A.向左平移3个单位得到B.向右平移3个单位得到C.向上平移3个单位得到D.向下平移3个单位得到84.一次函数的图象如图所示,这个一次函数的解析式是()A.1y x=-+B.1y x=-C.1y x=--D.1y x=+85.计算22(2(2-的结果是()A.0 B.-C.12 D.86.下列四个点中,可能在反比例函数y=kx(k>0)的图象上的点是()A.(2,-3)B.(-4,-5)C.(-3,2)D.(2,0)87.计算82⨯的结果是()A.2 B.4 C.8 D.16 88.下列说法错误的是()A.错误的判断也是命题B.命题有真命题和假命题两种C.定理是命题D.命题是定理89.下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形90.下列方程属于一元二次方程的是()A.22(2)x x x-⋅=B.20ax bx c++=C.15xx+=D.20x=91.一个五边形能画出的对角线条数为()A.2条B.3条C.4条D.5条92.等腰梯形的上底与高相等,下底是上底的3倍,则较小内角的度数是()A.30°B.45°C.60°D.80°93.在等腰梯形,直角梯形,等腰二三角形,平行四边形中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个94.口ABCD的周长为36 cm,AB=BC=2cm,则AD,CD的长度分别为()A.12 cm,6 cm B.8 cm,10 cm C.6 cm,12 cm D.10 cm,8 cmA .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形96.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( ) A .13B .12C .23D .3497.掷一枚硬币,正面向上的概率为( ) A .1 B .12C .13D .1498.方程1x x-=0的根是( ) A .1B .-1C .1或0D .1或-199.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( ) A .79B .29C . 23D . 59100.把分式方程1111xx x-=--变形后,下列结果正确的是( ) A .1(1)x x --= B .1(1)x x --=-C .1(1)x x ---=-D .1x x -=-101.下列运算结果是正数的是( ) A . 31(2)+-B .222(12)-⨯-C .32(2)(3)-÷-D .223(2)---102 )A .大于16小于18B .大于4小于5C .大于3小于4D .大于5小于6 103.下列各式中,变形不正确的是( ) A .2233x x=-- B .66a ab b-=- C .3344x xy y-=- D .5533n nm m--=- 104.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m ,则池底的最大面积是( ) A .600m 2B .625m 2C .650m 2D .675m 2105.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了 评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有( )A . 0个B .l 个C .2个D .3个106.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( ) A .14B .13C .16D .25107.如图,圆柱的俯视图是( )A .B .C .D .108.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是( ) A .四边形B .五边形C .六边形D .七边形109.如图,AB=CB ,以AB ,CB 为边分别向△ABC 外侧作两个全等的平行四边形ABDE 和CBFG ,∠BAC=70°,要使□ABDE 和□CBFG 成为矩形,则∠DBF 等于 ( ) A .105°B .120°C .130°D .140°110.函数24y x =-的图象与x 轴、y 轴的交点分别为点A 、B ,则线段AB 的长为( )A .B C . 2D . 5【参考答案】***试卷处理标记,请不要删除一、选择题3.D 4.C 5.B 6.A 7.A 8.C 9.D 10.D 11.B 12.B 13.B 14.C 15.C 16.A 17.C 18.C 19.B 20.B解析:B.21.A 22.A 23.D 24.C 25.C 26.D 27.C 28.A 29.C 30.D 31.D 32.B36.D 37.A 38.B 39.C 40.C 41.D 42.C 43.D 44.B 45.D 46.B 47.D 48.A 49.C 50.B 51.D 52.B 53.B 54.B 55.C 56.B 57.D 58.C 59.C 60.A 61.C 62.A 63.A 64.C 65.D 66.C70.B 71.B 72.C 73.B 74.C 75.C 76.C 77.B 78.C 79.B 80.D 81.A 82.C 83.D 84.D 85.B 86.B 87.B 88.D 89.D 90.D 91.D 92.B 93.B 94.B 95.A 96.C 97.B 98.D 99.C 100.B104.B 105.C 106.B 107.C 108.C 109.D 110.B。