七年级数学下册第五章相交线与平行线周周测8全章新版新人教版11193

合集下载

人教版数学七年级下册第五章相交线与平行线 测试卷含答案

人教版数学七年级下册第五章相交线与平行线 测试卷含答案

人教版数学七年级下册第五章相交线与平行线一、单选题1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或32.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2 B.∠1和∠4 C.∠2和∠3 D.∠3和∠43.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对7.如图,直线DE截AB,AC,其中内错角有()对.A.1 B.2 C.3 D.48.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个二、填空题11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是_____(填序号)12.已知直线a∥b,b∥c,则直线a、c的位置关系是_____.13.如图所示,请你填写一个适当的条件:_____,使AD∥BC.14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是_____.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.17.如图,DF∥AC,若∠1=∠2,则DE与AH的位置关系是_____.18.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是_____.19.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.20.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n 格.则不停留棋子的格子的编号有_____.三、解答题21.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.22.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO 的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.24.如图1,已知AB∥CD,那么图1中∠PAB、∠APC、∠PCD之间有什么数量关系?并说明理由.如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.25.(1)如图,它的周长是cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.26.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.参考答案1.D【解析】试题分析:根据两直线平行和相交的定义作出图形即可得解.解:如图,三条直线的交点个数可能是0或1或2或3.故选D.2.D【解析】根据对顶角的定义:“有公共顶点,且两边分别互为反向延长线的两个角互为对顶角”分析可知,在图中所标示的4个角中,互为对顶角的是∠3和∠4.故选D.3.C【解析】解:∵OA⊥OC,∴∠AOC=90°.∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.点睛:本题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.4.D【解析】【分析】根据垂线段的性质:垂线段最短进行解答.【详解】要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选D.【点睛】本题考查垂线段的性质:垂线段最短.5.B【解析】【分析】根据点到直线的距离是指垂线段的长度,即可解答.【详解】解:线段AD的长表示点A到直线BC距离的是图B故选:B.【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.6.C【解析】【分析】根据同旁内角的定义依次【详解】解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选C.【点睛】此题主要考查同旁内角的定义,解题的关键是每条直线依次判断.7.D【解析】如果两条直线被第三条直线所截,那么位于截线的两侧,在两条被截直线之间的两个角是内错角.两条直线被第三条直线所截,可形成两对内错角.解:直线DE截AB,AC,形成两对内错角;直线AB截AC,DE,形成一对内错角;直线AC截AB,DE,形成一对内错角.故共有4对内错角.故选D.8.D【解析】根据平行线的描述,易选D.9.C【解析】【分析】根据两直线的位置关系即可解答.【详解】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.【点睛】此题主要考查两直线的位置关系,熟知定义是解题的关键.10.A【解析】【分析】根据相交直线的位置关系综合判定即可.【详解】解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,故选A.【点睛】此题主要考查相交线之间的关系,解题的关键是根据每项找到反例说明.11.①②④【解析】【分析】根据平行线的判定与性质即可判断.【详解】解:①在同一平面内,不相交的两条线段叫做平行线,正确;②过一点,有且只有一条直线平行于已知直线,正确;③两条平行直线被第三条直线所截,当两直线平行,同位角相等,故原命题错误;④同旁内角相等,两直线平行,正确.故答案为①②④.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知平行线的判定与性质.12.a∥c【解析】试题解析:∵在同一平面内,直线a∥b,直线b∥c,根据平行公理:平行于同一条直线的两条直线平行,∴直线c与直线a的位置关系是:a∥c.故答案为a∥c.13.∠FAD=∠FBC(答案不唯一)【解析】根据同位角相等,两直线平行,可填∠FAD=∠FBC;根据内错角相等,两直线平行,可填∠ADB=∠DBC;根据同旁内角互补,两直线平行,可填∠DAB+∠ABC=180°.14.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】分析:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断.详解:若180A ABC ∠+∠=︒,则BC ∥AD ;若∠C +∠ADC =180°,则BC ∥AD ;若∠CBD =∠ADB ,则BC ∥AD ;若∠C =∠CDE ,则BC ∥AD ;故答案为:∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE .(答案不唯一)点睛:本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.15.同位角相等,两直线平行【解析】分析:由全等三角形的对应角相等判定同位角∠1=∠2,则AB ∥CD .详解:根据题意,图中的两个三角尺全等,∴∠1=∠2 ,∴AB ∥CD (同位角相等,两直线平行).16.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.17.平行【解析】【分析】先根据DF∥AC得∠2=∠G,再通过等量替换得出∠1=∠G,再利用内错角相等,两直线平行即可判断.【详解】解:∵DF∥AC,∴∠2=∠G,又∵∠1=∠2,∴∠1=∠G,∴DE∥AH,故答案为平行.【点睛】此题主要考查平行线的判定与性质,解题的关键是利用两直线平行找到一个角与目标角相等.18.3【解析】【分析】根据平行线间的距离与点到直线的距离即可求出.【详解】解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为3.【点睛】此题主要考查平行线之间的距离,解题的关键是正确理解点到直线的距离.19.如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.20.2,4,5【解析】【分析】因棋子移动了n 次后走过的总格数是1+2+3+…+n =12n (n +1),然后再根据题目中所给的第n 次依次移动n 个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n 次后走过的总格数是1+2+3+…+n =12n (n +1),应停在第12n (n +1)﹣7p 格,这时p 是整数,且使0≤12n (n +1)﹣7p ≤6,分别取n =1,2,3,4,5,6,7时,12n (n +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n ≤10,设n =7+t (t =1,2,3)代入可得,12 n (n +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与n =t 时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 21.(1)见解析;(2)见解析.【解析】本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD 、BC 交于H ,则H 为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF 的线段.⑴连结AD ,BC ,交于点H ,则H 为所求的蓄水池点.于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,⑵过H作HK EF垂线段最短”.(如图)22.PN,PM,PN,0【解析】【分析】先根据题意画出图形,再根据点到直线的距离的定义得出即可.【详解】如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为PN,PM,PN,0.【点睛】本题考查了点到直线的距离,能熟记点到直线的距离的定义是解此题的关键.23.证明见解析【解析】试题分析:由CE为角平分线,利用角平分线的定义得到∠ACD=2∠ECD,再由∠AC D=2∠B,可得∠ECD=∠B,利用同位角相等两直线平行即可证得结论.试题解析:∵CE平分∠ACD,∴∠ACD=2∠ECD,∵∠ACD=2∠B,∴∠ECD=∠B,∴AB∥CE.24.(1)∠P=∠PCD﹣∠PAB,理由见解析;(2)∠F=40°【解析】【分析】(1)先根据两直线平行得到∠PCD=∠AHC,再根据三角形的外角定理,即可得出∠P=∠PCD﹣∠PAB;(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,再根据∠BDC=∠ABD+∠A,即2x=2y+80°求得x﹣y的度数,即可求出∠F的度数.【详解】(1)结论:∠P=∠PCD﹣∠PAB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠PAB+∠P,∴∠P=∠AHC﹣∠PAB,∴∠P=∠PCD﹣∠PAB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.【点睛】此题主要考查平行线的性质,解题的关键是熟知三角形的外角定理.25.(1)20;(2)a+b=﹣3或﹣7.【解析】【分析】(1)把图像平移为长方形即可求出周长;(2)根据绝对值的性质与a,b的大小分情况讨论即可.【详解】(1)(6+4)×2=10×2=20(cm).答:它的周长是20cm.(2)∵|a|=2,|b|=5,且a>b,∴a=2,b=﹣5;a=﹣2,b=﹣5,则a+b=﹣3或﹣7.故答案为20.【点睛】此题主要考查周长的计算及绝对值的化简,解题的关键是利用已知条件进行灵活解答. 26.(1)57°;(2)3.5cm.【解析】试题分析:(1)在Rt△ABC中,利用三角形内角和先求出∠CBA的度数,再由平移的性质得到∠E的度数;(2)由平移可得AB=DE,从而得AD=BE,由平移的距离为CF=BE=AD即可得.试题解析:(1)∵在Rt△ABC中,∠C=90°,∠A=33°,∴∠CBA=90°﹣33°=57°,由平移得,∠E=∠CBA=57°;(2)由平移得,AD=BE=CF,∵AE=9cm,DB=2cm,∴AD=BE=×(9﹣2)=3.5cm,∴CF=3.5cm.。

新七年级下册第五章《相交线与平行线》测试题及答案

新七年级下册第五章《相交线与平行线》测试题及答案

人教版七年级下册第五章平行线与相交线单元能力提升测试卷一.选择题(共11小题)1.下面四个命题中,真命题是( )A.相等的角是对顶角B.和为180°的两个角互为邻补角C.两条直线被第三条直线所截,内错角相等D.两条直线相交形成的四个角相等,则这两条直线互相垂直2.如图,要测量两堵围墙形成的∠AOB的度数,先分别延长AO、BO得到∠COD,然后通过测量∠COD的度数从而得到∠AOB的度数,其中运用的原理是()A.对顶角相等B.同角的余角相等C.等角的余角相等D.垂线段最短3.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角4.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°5.如图所示,直线a、b、c、d的位置如图所示,若∠1=115°,∠2=115°,∠3=124°,则∠4的度数为()A.56°B.60°C.65°D.66°6.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α-β=90°7.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°8.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4-∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个9.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.10.根据图中数据可求阴影部分的面积和为()A.12 B.10 C.8 D.7二.填空题(共5小题)11.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD= °.12.命题“正数的平方根的和为零”.写成“如果……,那么……”是13.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于时,AB∥CD.14.对于同一平面内的直线a 、b 、c ,如果a 与b 平行,c 与a 平行,那么c 与b 的位置关系是 .15.把一张对边互相平行的纸条(AC ′∥BD ′)折成如图所示,EF 是折痕,若折痕EF 与一边的夹角∠EFB=32°,则∠AEG= .三.解答题(共7小题)16.直线AB 、CD 相交于点O,OE 平分∠BOD .OF ⊥CD,垂足为O ,若∠EOF=54°. (1)求∠AOC 的度数;(2)作射线OG ⊥OE,试求出∠AOG 的度数.17.如图,AB 和CD 相交于点O,∠DOE=90°,若∠BOE=13∠AOC,(1)指出与∠BOD 相等的角,并说明理由.(2)求∠BOD,∠AOD 的度数.18.如图,∠ABC=∠C,∠A=∠E.求证:∠DBE=∠BDA.19.如图,在△ABC中,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF相交于点H.(1)∠HDE与∠HED是否相等?并说明理由.解:∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴=()∵EF∥BC(已知)∴=()又∵∠A=∠B(已知)∴=().(2)如果∠C=90°,DG、EF有何位置关系?并仿照(1)中的解答方法说明理由.20.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.21.如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC的三个均在格点上,将三角形ABC向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF.(1)画出平移后的三角形DEF;(2)若点A向左平移n个单位长度在三角形DEF的内部,请直接写出所有符合条件的整数n的值.22.如图,将△ABC沿射线AB的方向平移2个单位到△DEF的位置,点A、B、C的对应点分别点D、E、F.(1)直接写出图中与AD相等的线段.(2)若AB=3,则AE=.(3)若∠ABC=75°,求∠CFE的度数.23.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.答案:1-5 DAACA6-10 DCCAC11.4012.如果两个数是一个正数的平方根,那么这两个数的和为零13. 50°14. 平行15. 116°16. 解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°-54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°-90°-36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°-36°=144°,又∵∠GOE=90°,∴∠AOG=360°-90°-144°=126°.综上所述,∠AOG的度数为54°或126°.17. 解:(1)∠AOC,对顶角相等;(2)∵∠BOD=∠AOC,又∵∠BOE=∠AOC,∴∠BOE=∠BOD,∵∠DOE=90°,∴∠DOE=∠BOE+∠BOD=∠BOD+∠BOD=90°,解得:∠BOD=67.5°;∴∠AOD=180°-∠BOD=180°-67.5°=112.5°.18. 证明:∵∠ABC=∠C,∴AB∥CD,∴∠A=∠ADC,又∵∠A=∠E,∴∠ADC=∠E,∴AD∥BE,∴∠DBE=∠BDA.19. :∠A,∠HDE,两直线平行,同位角相等;∠B,∠HED,两直线平行,同位角相等;∠HDE,∠HED,等量代换.DG⊥EF.20.(1)证明:∵DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴DC∥人教版版七年级下册第五章《相交线与平行线》单元提优测试卷一、单选题1. 如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A.①③B.①④C.②③D.②④2. 如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A.25°B.30°C.45°D.60°3. 如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠44. 如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BCB.若∠1=∠2,则AB∥DCC.若∠A=∠3,则AD∥BCD.若∠3=∠4,则AB∥DC5. 如图,已知 = ,那么()A.AB//CD,理由是内错角相等,两直线平行.B.AD//BC,理由是内错角相等,两直线平行.C.AB//CD,理由是两直线平行,内错角相等.D.AD//BC,理由是两直线平行,内错角相等.6. 如图,直线a//b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50° C .60° D.70°7. 已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°8. 在如图的图案中可以看出由图案自身的部分经过平移而得到的()A. B. C. D.9. 下列命题中,属于真命题的是()A.互补的角是邻补角B.在同一平面内,如果a⊥b,b⊥c,则a⊥c。

人教版七年级数学下册第五章 相交线与平行线 单元测试卷(word版含答案)

人教版七年级数学下册第五章 相交线与平行线  单元测试卷(word版含答案)

人教版七年级数学下册第五章相交线与平行线单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1.如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )A B C D2.如图,能与∠α构成同旁内角的角有( )A.1个B.2个C.5个D.4个3.如图,在所标识的角中,下列说法不正确的是()A.∠1和∠2是邻补角B.∠1和∠4是同位角C.∠2和∠4是内错角D.∠2和∠3是对顶角4.如图,与∠B是同旁内角的角有()A.1个B.2个C.3个D.4个5.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A.154° B.144° C.134° D.124°6.如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3的度数为()A.78° B.132° C.118° D.112°7.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD),开始挖渠才能使水渠的长度最短,这样做的依据是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短8.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使两侧管道对接,另一侧铺设的角度大小应为( )A.120° B.100°C.80° D.60°9.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足( )A.∠α+∠β=180°B.∠β-∠α=90°C.∠β=3∠αD.∠α+∠β=90°10. 如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长二.填空题(共6小题,每小题4分,共24分)11. “垂直于同一条直线的两条直线互相平行”这个命题的条件是12. 如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段BN的长度,这样测量的依据是_________.13. 如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=________,∠COB=________.14. 如图,直线a∥b,直线l与a相交于点P,与b相交于点Q,PM⊥l.若∠1=50°,则∠2=________.15.如图,AD∥BC,AC,BD交于点E,三角形ABE的面积等于2,三角形CBE的面积等于3,那么三角形DBC的面积等于________.16.如图,有一块四边形木板和一把直角尺(两边构成90°角),把直角尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把直角尺的一边紧靠木板的边缘MN,沿MN移动直角尺使其另一边过点B画直线,如果所画直线与BA重合,那么这块木板的对边MN与PQ 是平行的,其理论依据是________________________.三.解答题(共6小题, 56分)17.(6分) 如图,点E在AB的延长线上,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.18.(8分)如图,在方格中平移三角形ABC,使点A移到点M,点B,C应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形.如果直接把三角形ABC平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗?19.(8分) 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.20.(10分) 如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF.21.(12分) 如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.22.(12分) 在△ABC中,AD平分∠BAC交BC于点D.(1)在图①中,将△ABD沿BC的方向平移,使点D移至点C的位置,得到△A′B′D′,且A′B′交AC 于点E,猜想∠B′EC与∠A′之间的关系,并说明理由;(2)在图②中,将△ABD沿AC的方向平移,使A′B′经过点D,得到△A′B′D′,求证:A′D′平分∠B′A′C.参考答案1-5DCCCD 6-10DDDCD11.两条直线垂直于同一条直线12.垂线段最短13.52°;128°14.40°15.516.内错角相等,两直线平行17.解:(1)∠A 和∠D 是由直线AE,CD 被直线AD 所截形成的,它们是同旁内角.(2)∠A 和∠CBA 是由直线AD,BC 被直线AE 所截形成的,它们是同旁内角.(3)∠C 和∠CBE 是由直线CD,AE 被直线BC 所截形成的,它们是内错角.18. 解:如图所示,直接把△ABC 平移,使A 点移到点N,它和前面先移到M 后移到N 的位置相同.19.解:∵AB ∥CD,∠AEC =42°,∴∠A =∠AEC =42°,∠AED =180°-42°=138°.∵EF 平分∠AED,∴∠FED =12∠AED =69°.又∵AB ∥CD,∴∠AFE =∠FED =69°. 20.证明:如图,在∠BCD 的内部作射线CM,使∠BCM =25°,在∠CDE 的内部作射线DN,使∠EDN =10°.因为∠B =25°,∠E =10°,所以∠BCM =∠B =25°,∠EDN =∠E =10°.所以AB ∥CM,EF ∥ND.又因为∠BCD =45°,∠CDE =30°,所以∠DCM =20°,∠CDN =20°.所以∠DCM =∠CDN,所以CM ∥ND,所以AB ∥EF.21.解:∵四边形ABCD 是长方形,∴AD ∥BC,∴∠FED =∠EFG =55°,∠2+∠1=180°.由折叠的性质得∠FED =∠FEG,∴∠1=180°-∠FED -∠FEG =180°-2∠FED =70°,∴∠2=180°-∠1=110°.22.解:(1)∠B′EC =2∠A′,理由:∵△A′B′D′是由△ABD 平移而来,∴A′B′∥AB,∠A′=∠BAD,∴∠B′EC =∠BAC.∵AD 平分∠BAC,∴∠BAC =2∠BAD.∴∠B′EC =2∠A′.(2)证明:∵△A′B′D′是由△ABD 平移而来,∴A′B′∥AB,∠B′A′D′=∠BAD,∴∠B′A′C =∠BAC.∵AD 平分∠BAC,∴∠BAC =2∠BAD.∴∠B′A′C =2∠B′A′D′,∴A′D′平分∠B′A′C.。

最新人教版七年级下册第五章《相交线与平行线》测试题及答案

最新人教版七年级下册第五章《相交线与平行线》测试题及答案

人教版七年级数学下册第五章订交线与平行线:平行线性质与判断练习卷一、选择题1.将向来角三角板与两边平行的纸条如下图搁置,以下结论:(1)∠ 1=∠ 2;( 2)∠ 3=∠ 4;( 3)∠ 2+∠ 4=90°;( 4)∠ 4+∠ 5=180° . 此中正确的个数是( )A.1B.2C.3D.42.如图, DH∥EG∥ BC,DC∥ EF,那么与∠ DCB相等的角的个数为()A.2个B.3个C.4个D.5个3.如图是婴儿车的平面表示图, 此中 AB∥CD,∠ 1=120° , ∠ 3=40° , 那么∠ 2 的度数为()A. 80°B. 90°C. 100°D. 102°4. 假如两个角的两边分别平行,而此中一个角比另一个角的4倍少 30°,那么这两个角是()A.42 °、 138°B.都是 10°C.42°、 138°或 42°、 10°D.以上都不对5.如图, AB//CD,用含∠ 1、∠ 2、∠ 3 的式子表示∠ 4,则∠ 4的值为()A.∠ 1+∠2- ∠3B.∠ 1+∠3- ∠ 2C.180°+∠3- ∠1- ∠1D. ∠ 2+∠ 3- ∠ 1-180 °6.如图,已知 AB∥ CD,则∠α、∠β、∠γ之间的关系为()A. ∠ α +∠βC.∠ α +∠β+∠ γ =360°﹣∠ γ =180°B.∠α ﹣∠ β+∠ γ =180°D.∠α +∠ β+∠ γ =180°7.如图,将一张长方形的纸片沿折痕E、F翻折,使点 C、D分别落在点 M、N的地点,且∠ BFM=∠ EFM,则∠ BFM的度数为()A.30 °B.36°C.45°D.60°8.如图 , 有一条直的宽纸带 , 按图折叠 , 则∠α的度数等于 ( )A.50 °B.60°C.75°D.85°9.把一张对边相互平行的纸条 , 折成如下图 ,EF 是折痕 , 若∠ EFB=32°, 则以下结论正确的有 ( )(1) ∠ C′ EF=32° ;(2) ∠ AEC=148° ;(3) ∠ BGE=64° ;(4)∠BFD=116°.A.1 个B.2个C.3个D.4个10.如图 , 小明从 A 处出发沿北偏东 60°方向行走至 B 处,又沿北偏西 20°方向行走人教版七年级数学下册第五章订交线与平行线单元稳固卷一、选择题1. 如图,三条直线订交于点O.若 CO⊥ AB,∠ 1= 52°,则∠ 2 等于 (C)A. 52°B. 28°C. 38°D. 47°2.两条直线订交所组成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.此中能判断这两条直线垂直的有(D)A.1 个B.2个C.3 个D.4个3.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

最新人教版七年级下册第五章《相交线与平行线》单元测试及答案

最新人教版七年级下册第五章《相交线与平行线》单元测试及答案

人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为 D,则点 B 到直线 CD的距离是指()A.线段 BC的长度B.线段 CD的长度C.线段 AD 的长度D.线段 BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按如下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°9.如图,将三角板与直尺贴在一同,使三角板的直角极点C(∠ ACB=90°)在直尺的一边上,若∠ 2=56°,则∠ 1的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠2的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠ A=70°,O 是 AB 上一点,直线OD 与 AB 所夹的∠ AOD=100°,要使 OD∥ AC,直线OD 绕点 O 按逆时针方向起码旋转.15.将一块 60°的直角三角板DEF搁置在 45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为 a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线A B∥ CD,而且被直线 MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,七年级人教版数学下册第 5 章订交线与平行线单元测试题人教版七年级数学下册第 5 章订交线与平行线单元检测题一、选择题:1.下边四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点起码有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线订交所成的四个角中,假如此中有一个角是直角,那么其他三个角也必定相等.此中错误的选项是()A. ( 1)( 2)( 4)B. ( 1)( 3)( 4)C.( 2)( 3)( 4)D.(1)( 2)( 3)2.点 P为直线 MN外一点 , 点 A、B、C为直线 MN上三点 ,PA=4 厘米 ,PB=5 厘米 ,PC=2 厘米 , 则 P到直线MN的距离为()A.4 厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图 , 以下结论错误的选项是()A. ∠1与∠ B是同位角B.∠ 1与∠ 3 是同旁内角C. ∠2与∠ C是内错角D.∠ 4与∠ A是同位角4.如图, AB∥CD, CD⊥EF,若∠ 1=125°,则∠ 2=()A.25 °B.35°C.55°D.65°5.如图, a∥ b,将三角尺的直角极点放在直线 a 上,若∠ 1=40°,则∠ 2=()A.30 °B.40°C.50°D.60 °6. 将如下图的图案经过平移后能够获得的图案是()A. B. C. D.7.如图,AB ∥ CD,AE 均分∠CAB交 CD于点 E, 若∠C=50°, 则∠AED=()A.65 °B.115 °C.125 °D.130 °8.如图, AE∥BD,∠ 1=120°,∠ 2=40°,则∠ C的度数是()A.10 °B.20°C.30°D.40°9.如下图,已知AB∥CD, EF均分∠ CEG,∠ 1=80°,则∠ 2 的度数为 ()A.20°B.40°C.50°D.60°10.如图,若两条平行线EF, MN与直线 AB, CD订交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A. ①②B.②③人教版七年级数学下册第 5 章订交线与平行线单元测试题(分析版)一.选择题(共10 小题)1.如图各图中,∠ 1 与∠ 2 是对顶角的是()A.B.C.D.2.以下表达中正确的选项是()A.相等的两个角是对顶角B.若∠ 1+∠2+ ∠ 3= 180°,则∠ 1,∠ 2,∠ 3 互为补角C.和等于 90°的两个角互为余角D.一个角的补角必定大于这个角3.在如图图形中,线段PQ 能表示点P 到直线 L 的距离的是()A.B.C.D.4.在以下图形中,由条件∠1+∠ 2= 180°不可以获得AB∥ CD 的是()A.B.C.D.5.如图,已知∠1=68°,要使AB∥ CD ,则须具备另一个条件()A .∠ 2= 112°B .∠ 2= 122°C.∠ 2=68°D.∠ 3= 112°6.如下图,点 E 在AC 的延伸线上,以下条件中能判断AB∥ CD ()A.∠1=∠2B.∠3=∠ 4C.∠ D =∠ DCE D.∠D +∠ ACD= 180°7.如图,直线a∥ b, AC⊥ AB, AC 交直线 b 于点C,∠1=55°,则∠ 2 的度数是()A .35°B .25°C. 65°D. 50°8.如图,已知AB∥ DE,∠ ABC = 75°,∠ CDE = 145°,则∠BCD的值为()A .20°B .30°C. 40°D. 70°9.如下图是一条街道的路线图,若 AB∥ CD ,且∠ ABC = 130°,那么当∠CDE等于()时, BC∥ DE.A .40°B .50°C. 70°D. 130°10.如图,在直角三角形ABC 中,∠ BAC= 90°, AB= 3,AC= 4,将△ ABC 沿直线 BC 平移 2.5 个单位获得三角形DEF ,连结 AE.有以下结论:① AC∥ DF;② AD∥BE,AD=BE ABE DEF ED ACA.4 个B.3 个C.2 个D.1 个二.填空题(共8 小题)11.在体育课上某同学立定跳远的状况如下图,l 表示起跳线,在丈量该同学的实质立定跳远成绩时,应丈量图中线段PC 的长,原因是.12.如图,直线 AD 与 BE 订交于点O,∠ COD = 90°,∠COE = 70°,则∠ AOB=.13.如图,直线a, b 与直线 c 订交,给出以下条件:① ∠ 1=∠ 2;② ∠ 3=∠ 6;③ ∠ 4+∠ 7= 180°;④ ∠ 5+∠ 3= 180°;⑤ ∠ 6=∠ 8,此中能判断a∥b 的是(填序号)14.如图:请你增添一个条件能够获得DE∥AB15.如图, AB∥ EF ,设∠ C= 90°,那么x, y,z 的关系是.16.如图,将一张矩形纸片按图中方式折叠,若∠1= 63°,则∠ 2 为度.17.如图,已知长方形纸片的一条边经过直角三角形纸片的直角极点,则图中∠1与∠2之间的数目关系为.18.如下图,一块正方形地板,边长60cm,上边横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是.三.解答题(共7 小题)19.如图,点O 在直线 AB 上, CO⊥ AB,∠ BOD﹣∠ COD = 34°,求∠ AOD 的度数.20.如图, AO⊥ CO, DO⊥ BO.(1)∠ AOD 与∠ BOC 相等吗?为何?(2)已知∠ AOB= 140°,求∠ COD 的度数.21.已知:如图,直线AB 与 CD 被 EF 所截,∠ 1=∠ 2,求证: AB∥ CD .22.如图,∠ DAC +∠ACB= 180°, CE 均分∠ BCF ,∠ FEC =∠ FCE ,∠ DAC = 3∠ BCF ,∠ACF =20°.(1)求证: AD ∥ EF;(2)求∠ DAC、∠ FEC 的度数.23.如图,在△ ABC 中,GD ⊥ AC 于点 D,∠AFE =∠ ABC,∠1+∠ 2= 180°,∠ AEF =65°,求∠ 1 的度数.解:∠ AFE =∠ ABC(已知)∴(同位角相等,两直线平行)∴∠ 1=∠(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴(等量代换)∴EB∥ DG∴∠ GDE=∠ BEAGD⊥ AC(已知)∴(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠﹣∠= 90°﹣ 65°= 25°(等式的性质)24.如图,已知∠1=∠ 2= 50°, EF∥ DB .(1)DG 与 AB 平行吗?请说明原因.(2)若 EC 均分∠ FED ,求∠ C 的度数.25.直线AB、 CD 被直线EF 所截, AB∥ CD ,点 P 是平面内一动点.设∠PFD =∠ 1,∠PEB=∠ 2,∠ FPE =∠α.( 1)若点 P 在直线 CD 上,如图①,∠α= 50°,则∠ 1+∠ 2=°;(2)若点 P 在直线 AB、CD 之间,如图②,试猜想∠α、∠ 1、∠ 2 之间的等量关系并给出证明;(3)若点 P 在直线 CD 的下方,如图③,( 2)中∠α、∠ 1、∠2 之间的关系还建立吗?请作出判断并说明原因.人教版七年级数学下册第 5 章订交线与平行线单元测试题参照答案与试题分析一.选择题(共10 小题)1.【剖析】依据对顶角的定义判断即可.【解答】解:依据两条直线订交,才能构成对顶角进行判断,A、C、 B 都不是由两条直线订交构成的图形,错误,D是由两条直线订交构成的图形,正确,应选: D.【评论】本题主要考察了对顶角的定义,有一个公共极点,而且一个角的两边分别是另一个角的两边的反向延伸线,拥有这类地点关系的两个角,互为对顶角.2.【剖析】依据余角、补角、对顶角的定义进行判断即可.【解答】解: A、两个对顶角相等,但相等的两个角不必定是对顶角;故 A 错误;B、余、补角是两个角的关系,故 B 错误;C、假如两个角的和是一个直角,那么这两个角互为余角;故 C 正确;D 、锐角的补角都大于这个角,而直角和钝角不切合这样的条件,故 D 错误.应选: C.【评论】本题考察对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.3.【剖析】依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点判断.P 到直【解答】解:图A、B、C中,线段PQ不与直线L 垂直,故线段PQ 不可以表示点线 L 的距离;图 D 中,线段 PQ 与直线 L 垂直,垂足为点 Q,故线段 PQ 能表示点 P 到直线 L 的距离;应选:D.【评论】本题考察了点到直线的距离的观点,重点是依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点解答.4.【剖析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解: A、∠ 1 的对顶角与∠ 2 的对顶角是同旁内角,它们互补,因此能判断AB∥CD;B、∠ 1 的对顶角与∠ 2 是同旁内角,它们互补,因此能判断AB∥ CD;C、∠ 1 的邻补角∠BAD =∠ 2,因此能判断AB∥CD ;D 、由条件∠ 1+ ∠ 2=180°能获得AD ∥ BC,不可以判断AB∥ CD;应选: D.【评论】本题考察了平行线的判断,解题的重点是注意平行判断的前提条件一定是三线八角.5.【剖析】欲证 AB∥ CD,在图中发现AB、CD 被向来线所截,且已知∠ 1= 68°,故可按同旁内角互补,两直线平行增补条件.【解答】解:∵∠ 1= 68°,∴只需∠ 2= 180°﹣ 68°= 112°,即可得出∠ 1+∠2= 180°.应选: A.【评论】本题主要考察了判断两直线平行的问题,可环绕截线找同位角、内错角和同旁内角.本题是一道探究性条件开放性题目,能有效地培育学生“执果索因”的思想方式与能力.6.【剖析】依据平行线的判断分别进行剖析可得答案.【解答】解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得C、依据内错角相等,两直线平行可得 D 、依据同旁内角互补,两直线平行可得应选: A.BD ∥AC,故此选项错误;BD ∥AC,故此选项错误;BD ∥ AC,故此选项错误;【评论】本题主要考察了平行线的判断,解答此类要判断两直线平行的题,可环绕截线找同位角、内错角和同旁内角.7.【剖析】依据平行线的性质求出∠3,再求出∠ BAC= 90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3= 55°,∵AC⊥ AB,∴∠ BAC= 90°,∴∠ 2= 180°﹣∠ BAC﹣∠ 3= 35°,应选: A.【评论】本题考察了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.8.【剖析】延伸 ED 交 BC 于 F,依据平行线的性质求出∠MFC =∠ B= 75°,求出∠ FDC = 35°,依据三角形外角性质得出∠C=∠ MFC ﹣∠ MDC ,代入求出即可.【解答】解:延伸ED 交 BC 于 F,如下图:∵AB∥DE ,∠ABC=75°,∴∠ MFC =∠ B= 75°,∵∠ CDE= 145°,∴∠ FDC = 180°﹣ 145°= 35°,∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,应选: C.【评论】本题考察了三角形外角性质,平行线的性质的应用,解本题的重点是求出∠ MFC 的度数,注意:两直线平行,同位角相等.9.【剖析】第一利用平行线的性质定理获得∠BCD = 130°,而后利用同旁内角互补两直线平行获得∠ CDE 的度数即可.【解答】解:∵ AB∥CD ,且∠ ABC = 130°,∴∠ BCD=∠ ABC= 130°,∵当∠ BCD +∠ CDE = 180°时 BC∥ DE,∴∠ CDE= 180°﹣∠ BCD= 180°﹣ 130°= 50°,应选: B.【评论】本题考察了平行线的判断与性质,注意平行线的性质与判断方法的差别与联系.10.【剖析】依据平移的性质获得AC∥ DF ,AB∥ DE ,AD ∥ CF,AD = CF= 2.5,∠ EDF =∠BAC=90°,则利用平行线的性质得∠ ABE=∠ DEF ,利用垂直的定义得 DE ⊥ DF ,于是依据平行线的性质可判断 DE⊥ AC.【解答】解:∵将△ ABC 沿直线向右平移 2.5 个单位获得△ DEF ,∴ AC∥ DF ,AB ∥ DE,AD ∥ CF , AD= CF = 2.5,∠ EDF =∠ BAC=90°,∴∠ ABE=∠ DEF ,DE⊥ DF ,∴ DE⊥ AC,∴ ①②③④ 都正确.应选: A.【评论】本题考察了平移的性质:把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样;新图形中的每一点,都是由原图形中的某一点挪动后获得的,这两个点是对应点.连结各组对应点的线段平行(或共线)且相等.二.填空题(共8 小题)11.【剖析】依据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的原因是依据垂线段最短.故答案为:垂线段最短.【评论】本题主要考察了垂线段的性质,重点是掌握性质定理.12.【剖析】由题意可知∠DOE= 90°﹣∠ COE,∠ AOB 与∠ DOE 是对顶角相等,由此得解.【解答】解:∵已知∠COD = 90°,∠ COE= 70°,∴∠ DOE= 90°﹣ 70°= 20°,又∵∠ AOB 与∠ DOE 是对顶角,∴∠ AOB=∠ DOE= 20°,故答案为: 20°.【评论】本题考察了对顶角与邻补角,利用余角的定义、对顶角的性质是解题重点.13.【剖析】直接利用平行线的判断方法分别剖析得出答案.【解答】解:① ∵∠ 1=∠ 2,∴ a∥ b,故此选项正确;② ∠ 3=∠ 6 没法得出a∥b,故此选项错误;③ ∵∠ 4+∠ 7= 180°,∴ a∥ b,故此选项正确;④ ∵∠ 5+∠ 3= 180°,∴∠ 2+∠ 5= 180°,∴ a∥ b,故此选项正确;⑤ ∵∠ 7=∠ 8,∠ 6=∠ 8,∴∠ 6=∠ 7,∴a∥ b,故此选项正确;综上所述,正确的有①③④⑤ .故答案为:①③④⑤ .【评论】本题主要考察了平行线的判断,正确掌握平行线的几种判断方法是解题重点.14.【剖析】依照平行线的判断条件进行增添,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠ EDC =∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA=180°,则 DE∥ AB,故答案为:∠ EDC=∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA= 180°等.【评论】本题主要考察了平行线的判断,正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.【剖析】过 C 作 CM ∥AB ,延伸 CD 交 EF 于 N,依据三角形外角性质求出∠CNE= y ﹣z,依据平行线性质得出∠ 1= x,∠ 2=∠ CNE ,代入求出即可.【解答】解:过 C 作 CM∥ AB,延伸 CD 交 EF 于 N,则∠ CDE=∠ E+∠ CNE,即∠ CNE= y﹣ z∵CM∥ AB,AB∥ EF,∴CM∥ AB∥EF,∴∠ ABC= x=∠ 1,∠ 2=∠ CNE,∵∠ BCD= 90°,∴∠ 1+∠ 2= 90°,∴x+y﹣ z=90°,∴z+90 °= y+x,即 x+y﹣ z= 90°.【评论】本题考察了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补,题目比较好,难度适中.16.【剖析】依据平行线的性质和平角的定义即可获得结论.【解答】解:∵ a∥ b,∴∠ 5=∠ 1= 63°,∠ 2=∠ 3,又由折叠的性质可知∠4=∠ 5,且∠ 3+∠ 4+∠ 5= 180°,∴∠ 3= 180°﹣∠ 5﹣∠ 4= 54°,∴∠ 2= 54°,故答案为: 54.【评论】本题主要考察平行线的性质和判断,掌握平行线的判断和性质是解题的重点,即①两直线平行 ? 同位角相等,②两直线平行 ? 内错角相等,③两直线平行 ? 同旁内角互补,④ a∥ b, b∥ c? a∥c.17.【剖析】先依据平角的定义得出∠3= 180°﹣∠ 2,再由平行线的性质得出∠4=∠ 3,依据∠ 4+∠ 1= 90°即可得出结论.【解答】解:∵∠ 2+∠ 3=180°,∴∠ 3= 180°﹣∠ 2.∵直尺的两边相互平行,∴∠ 4=∠ 3,∴∠ 4= 180°﹣∠ 2.∵∠ 4+∠ 1= 90°,∴ 180°﹣∠ 2+∠1= 90°,即∠ 2﹣∠ 1= 90°.∴∠ 1 与∠ 2 之间的数目关系为:∠2﹣∠ 1=90°,故答案为:∠2﹣∠ 1= 90°.【评论】本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.【剖析】由题意可知:利用“挤压法”,将图形中的花纹挤去,求出节余的正方形的边长,即可求出白色部分的面积.【解答】解:( 60﹣ 2× 5)2,=50×50,=2500(平方厘米);∴空白部分的面积是 2500 平方厘米.故答案为: 2500平方厘米【评论】本题考察了生活中的平移现象,解答本题的重点是:利用“挤压法”,求出节余的长方形的边长,从而求其面积.三.解答题(共7 小题)19.【剖析】依据垂直的定义获得∠AOC=∠ BOC= 90°,获得∠ BOD +∠ COD =90°,根据已知条件即可获得结论.【解答】解:∵ CO⊥ AB,∴∠ AOC=∠ BOC= 90°,∴∠ BOD+∠ COD = 90°,∵∠ BOD﹣∠ COD = 34°,∴∠ COD = 28°,∴∠ AOD=∠ AOC+∠ COD = 118°.【评论】本题主要考察了垂线以及角的计算,正确掌握垂线的定义是解题重点.20.【剖析】( 1)依据垂线的定义获得∠AOC=∠ BOD= 90°,依据余角的性质即可获得结论;(2)依据角的和差即可获得结论.【解答】解:( 1)∠ AOD=∠ BOC,原因:∵ AO⊥ CO,DO⊥ BO,∴∠ AOC=∠ BOD= 90°,∵∠ COD =∠ COD ,∴∠ AOC﹣∠ COD =∠ BOD ﹣∠ COD ,∴∠ AOD=∠ BOC;(2)∵∠ AOB=140°,∠ BOD = 90°,∴∠ AOD=∠ AOB﹣∠ BOD = 50°,∴∠ COD =∠ AOC﹣∠ AOD =40°.【评论】本题考察了垂线,余角的定义,娴熟掌握垂线的定理是解题的重点.21.【剖析】依据对顶角相等,等量代换和平行线的判断定理进行证明即可.【解答】证明:∵∠ 2=∠ 3(对顶角相等),又∵∠ 1=∠ 2(已知),∴∠ 1=∠ 3,∴ AB∥ CD (同位角相等,两直线平行).【评论】本题考察的是平行线的判断,掌握平行线的判断定理是解题的重点.22.【剖析】( 1)依据同旁内角互补,两直线平行,可证BC∥ AD,依据角均分线的性质和已知条件可知∠FEC =∠ BCE ,依据内错角相等,两直线平行可证BC∥ EF,依据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥ EF;( 2)先依据CE 均分∠ BCF,设∠ BCE=∠ ECF =∠ BCF=x.由∠ DAC=3∠ BCF可得出∠ DAC = 6x,由平行线的性质即可得出x 的值,从而得出结论.【解答】( 1)证明:∵∠ DAC +∠ACB= 180°,∴ BC∥ AD,∵ CE 均分∠ BCF ,∴∠ ECB=∠ FCE ,∵∠ FEC=∠ FCE ,∴∠ FEC=∠ BCE,∴BC∥ EF,∴AD∥ EF;(2)设∠ BCE=∠ ECF =∠ BCF = x.由∠ DAC =3∠ BCF 可得出∠ DAC= 6x,则6x+x+x+20°= 180°,解得 x=20°,则∠ DAC 的度数为120°,∠ FEC 的度数为20°.【评论】本题考察的是平行线的判断,平行线的性质,用到的知识点为:同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;两直线平行,同旁内角互补.23.【剖析】依据平行线的性质和判断可填空.【解答】解:∠ AFE =∠ ABC(已知)∴EF∥ BC(同位角相等,两直线平行)∴∠ 1=∠ EBC(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴∠ EBC+∠ 2= 180°(等量代换)∴EB∥ DG (同旁内角互补,两直线平行)∴∠ GDE=∠ BEA (两直线平行,同位角相等)GD⊥ AC(已知)∴∠ GDE= 90°(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠ BEA﹣∠ AEF = 90°﹣ 65°= 25°(等式的性质)故答案为: EF∥ BC ,∠ EBC,∠ EBC +∠ 2= 180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE ,∠ BEA,∠ AEF .【评论】本题考察了平行线的判断和性质,灵巧运用平行线的性质和判断解决问题是本题的重点.24.【剖析】(1)依照 EF ∥ DB 可得∠ 1=∠ D,依据∠ 1=∠ 2,即可得出∠ 2=∠ D,从而判断 DG∥ AC;( 2)依照 EC 均分∠ FED ,∠ 1=50°,即可获得∠DEC =∠ DEF=65°,依照DG∥AC,即可获得∠C=∠ DEC= 65°.【解答】解:( 1) DG 与 AB 平行.∵EF∥ DB∴∠ 1=∠ D,又∵∠ 1=∠ 2,∴∠ 2=∠ D,∴DG ∥AC;( 2)∵ EC均分∠FED ,∠ 1=50°,∴∠ DEC=∠DEF =×( 180°﹣ 50°)= 65°,∵DG ∥AC,∴∠ C=∠ DEC= 65°.【评论】本题考察了平行线的性质和判断的应用,能正确运用定理进行推理是解本题的重点.25.【剖析】( 1)依据平行线的性质即可获得结论;(2)过点 P 作 PG∥ AB,依据平行线的性质即可获得结论;(3)过点 P 作 PG∥ CD ,依据平行线的性质即可获得结论.【解答】解:( 1)∵ AB∥ CD ,∴∠ α= 50°,故答案为: 50;(2)∠α=∠ 1+∠2,证明:过点P 作 PG∥∵ AB∥ CD,∴PG∥ CD,∴∠ 2=∠ 3,∠ 1=∠ 4,∴∠ α=∠ 3+∠ 4=∠ 1+ ∠2;( 3)∠α=∠ 2﹣∠ 1,证明:过点P 作 PG∥ CD ,∵AB∥ CD ,∴ PG∥ AB,∴∠ 2=∠ EPG,∠ 1=∠ 3,∴∠ α=∠ EPG﹣∠ 3=∠ 2﹣∠ 1.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.。

新人教版七年级下册第五章《相交线与平行线》单元测试题及答案

新人教版七年级下册第五章《相交线与平行线》单元测试题及答案

七年级人教版数学下册第5章相交线与平行线单元测试题人教版七年级数学下册第5章相交线与平行线单元检测题一、选择题:1.下面四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点至少有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线相交所成的四个角中,如果其中有一个角是直角,那么其余三个角也一定相等.其中错误的是()A.(1)(2)(4)B.(1)(3)(4)C.(2)(3)(4)D.(1)(2)(3)2.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图,下列结论错误的是()A.∠1与∠B是同位角B.∠1与∠3是同旁内角C.∠2与∠C是内错角D.∠4与∠A是同位角4.如图,AB∥CD,CD⊥EF,若∠1=125°,则∠2=()A.25°B.35°C.55°D.65°5.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=40°,则∠2=()A.30°B.40°C.50°D.60°6.将如图所示的图案通过平移后可以得到的图案是()A. B. C. D.7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°8.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°9.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为( )A.20°B.40°C.50°D.60°10.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611.下列条件中能得到平行线的是()①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线.A.①②B.②③人教版七年级下册第五章《相交线与平行线》单元过关测试卷一、选择题(每小题3分,共30分)1.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25°B.35°C.50°D.65°2.如图,直线AB与CD相交于点O,则下列选项错误的是()A.∠1=∠3 B.∠2+∠3=180°C.∠4的邻补角只有∠1 D.∠2的邻补角有∠1和∠3两个角3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于()A.60°B.50°C.40°D.30°4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图①,展开后测得∠1=∠2 B.如图②,展开后测得∠1=∠2,且∠3=∠4C.如图③,展开后测得∠1=∠2,且∠3=∠4 D.如图④,展开后测得∠1+∠2=180°6.如图,AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等7.如图,△ABC沿BC方向平移a cm后,得到△A′B′C′,已知BC=6 cm,BC′=17 cm,则a的值为()A.10 cm B.11 cm C.12 cm D.13 cm8.如图,下列命题是假命题的是()A.如果∠2=∠3,那么a∥c B.如果C.如果∠4+∠5=180°,那么∠2=∠3 D3=180°9.如图,AB∥CD,点E在线段BC上,若∠1=则∠3的度数是()A.70°B.60°C.55°D.50°10.如图,AB∥EF,BC⊥CD,垂足为C,则∠1,∠2,∠3之间的关系为() A.∠2=∠1+∠3 B.∠1+∠2+∠3=180°C.∠1+∠2-∠3=90°D.∠2+∠3-∠1=90°二、填空题(每小题3分,共18分)11.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD=____.12.如图,DE∥BC,∠1=40°,当∠B=____°时,EF∥AB.13.如图,长方形ABCD中,AB=3,BC=4,则图中五个小长方形的周长之和为____.14.把命题“两条平行线被第三条直线所截得的同位角的平分线互相平行”改写成“如果……那么……”的形式为,它是一个___命题.(填“真”或“假”)15.如图,∠ACB=90°,CD⊥AB,垂足为D,AB=13 cm,AC=5 cm,BC=12 cm,那么点B到AC的距离是____,点A到BC的距离是____,点C到AB的距离是____.16.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=____.三、解答题(共52分)17.(8分)画图并填空,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是;(2)确定由B地到河边l的最短路线的依据是.18.(8分)如图,直线AB,CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB,∠BOF的度数.19.(8分)如图,已知∠1=50°.(1)当∠2=____°时,a∥b;(2)当∠3=____°时,c∥d;(3)若∠1+∠5=180°,且∠3∶∠4=3∶2,求∠6的度数.20.(8分)如图,∠FED=∠AHD,∠GF A=40°,∠HAQ=15°,∠ACB=70°,且AQ 平分∠F AC,试说明:BD∥GE∥AH.21.(8分)已知∠ABC的两边与∠DEF的两边平行,即BA∥ED,BC∥EF.(1)如图①,若∠B=40°,则∠E=____°;(2)如图②,猜想∠B与∠E有怎样的关系?试说明理由;(3)如图③,猜想∠B与∠E有怎样的关系?试说明理由;(4)22.(12分)已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,点P是直线l3上任意一点.(1)如图①,当点P在线段CD上时,若∠PAC=30°,∠PBD=50°,求∠APB的度数;(2)如图②,当点P在DC的延长线上时,试探索∠APB,∠P AC,∠PBD之间有怎样的关系?并说明理由;(3)如图③,当点P在CD的延长线上时,猜想∠APB,∠P AC,∠PBD之间的关系为.第五章《相交线与平行线》单元过关测试卷参考答案一、选择题A CB AC A B C A C二、填空题11.50°12.4013.1414.如果两条平行线被第三条直线所截,那么同位角的平分线互相平行真6015.12 51316.9.5°三、解答题17.(1)两点之间,线段最短;(2)垂线段最短.18.解:∠COB=40°,∠BOF=100°.19.(1)50;(2)130;(3)∵∠3∶∠4=3∶2,∴设∠3=3x人教新版七年级下册第5章相交线与平行线培优卷一.选择题(共10小题)1.下列所示的图案分别是奔驰、雪铁龙、大众、三菱汽车的车标,其中可以看作由“基本图案”经过平移得到的是( )A.B.C.D.2.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有( )A.28个交点B.24个交点C.21个交点D.15个交点3.下列命题中是真命题的是()A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线4.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.5.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB于点E.给出下列结论:①∠1是∠DCE的余角;②∠AOB=∠DCE;③图中互余的角共有3对;④∠ACD=∠BEC.其中正确结论有()A.①②③B.①②④C.①③④D.②③④6.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,入射角∠ODE与反射角∠ADC 相等,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′7.如图:AB∥DE,∠B=50°,∠D=110°,∠C的度数为()A.120°B.115°C.110°D.100°8.如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°9.下列四种说法:①线段AB是点A与点B之间的距离;②相等的角是对顶角;③经过一点有且只有一条直线与已知直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短,其中正确的是()A.④B.①④C.③④D.①③④10.新农村建设中一项重要工程是“村村通自来水”,如图所示是某一段自来水管道,经过每次拐弯后,管道仍保持平行(即AB∥CD∥EF,BC∥DE).若∠B=70°,则∠E等于( )A.70°B.110°C.120°D.130°二.填空题(共10小题)11.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=°.12.如图,已知AB∥ED,∠ACB=90°,∠CBA=40°,则∠ACE是度.13.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).14.如图,DE∥BC,EF∥AB,图中与∠BFE互补的角有个.15.如图,AB∥CD,直线MN交AB、CD于点M和N,MH平分∠AMN,NH⊥MH于点H,若∠MND=64°,则∠CNH=度.16.如图,已知AB∥DC,AD∥BO,点C在BO上,点E在OD的延长线上,若∠B=76°,∠EDA=48°,则∠CDO的度数是°.17.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=度.18.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为时,可以使∠OEB=∠OCA.19.如图,直线EF∥GH,点A在EF上,AC交CH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,则∠BDC的度数为.20.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=°.三.解答题(共6小题)21.如图,已知点E在线段AD上,点B、C、F在同一直线上,CD与EF交于点G,∠A+∠B=180°.求证:∠BCD=∠GED+∠EGD.22.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.23.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求证:CE∥DF.请完成下面的解题过程.解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠,∠ECB=∠()又∵∠ABC=∠ACB (已知)∴ = .又∵ = (已知)∴∠F= .∴CE∥DF().24.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A对应点A′,点B,C分别对应点B′,C′.(1)画出平移后的△A′B′C′.(2)连接AA′,CC′,则这两条线段之间的位置和数量关系是.25.如图,AB∥EF,AD平分∠BAC,且∠C=45°,∠CDE=125°,求∠ADF的度数.26.已知AB∥CD,解决下列问题:(1)如图①,写出∠ABE、∠CDE和∠E之间的数量关系:;(2)如图②,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数;(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系,并说明理由.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.A.5.B.6.B.7.A.8.B.9.A.10.B.二.填空题(共10小题)11.【解答】解:∵将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,∴∠E=30°,∠ABC=45°,∵EF∥BC,∴∠DBC=∠E=30°,∴∠ABD=45°﹣30°=15°,故答案为:1512.【解答】解:∵∠ACB=90°,∴∠CAB+∠ABC=90°,∴∠CAB=90°﹣40°=50°.∵AB∥CD,∴∠CAB=∠ACE=50°.故答案为:5013.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC互为补角和∠DOE不是补角,错误;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑤⑥.14.【解答】解:∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE互补的角有:∠DEF、∠EFC、∠ADE、∠B.故答案为:4.15.【解答】解:∵AB∥CD,∴∠MND=∠AMN=64°,∵MH平分∠AMN,∴∠HMN=∠AMN=32°,又∵。

人教版数学七年级下册第五章《相交线与平行线》周练习含答案

人教版数学七年级下册第五章《相交线与平行线》周练习含答案

人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。

人教版七年级下册数学第五章相交线与平行线-测试题含答案

人教版七年级下册数学第五章相交线与平行线-测试题含答案
【详解】
图中对顶角有:∠AOC 与∠BOD、∠AOD 与∠BOC,共 2 对.
故选 B.
【点睛】
本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的
两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的
反向延长线形成的夹角即可
8.C
【解析】
【详解】
然后由 AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.
【详解】
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠BAC=120°,
∴∠ACD=180°-120°=60°,
∵AC∥DF,
∴∠ACD=∠CDF,
∴∠CDF=60°.
故选 A.
【点睛】
本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
A.120°
B.125°
C.135°
10.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(

D.145°
)
第 2 页
A.60°
B.65°
C.50°
D.45°
二、填空题
11.如图, AB、CD 相交于点 O , OE 平分 AOD ,若 BOC 60 ,则 COE 的度数是
∴∠1=∠EBC=16°,
故选:C.
【点睛】
考查了平行线的性质,解题时注意:两直线平行,内错角相等.
4.D
【解析】
【分析】
直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三
条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.
【详解】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线周周测8
一选择题
1.下列选项中能由左图平移得到的是()
A. B. C. D.
2.在四边形ABCD中,下列各图中∠1与∠2相等的是( )
3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在( )
A.A点
B.B点
C.C点
D.D点
4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()
A.如果两个角相等,那么它们是对顶角
B.如果两个角是对顶角,那么它们相等
C.如果对顶角,那么相等
D.如果两个角不是对顶角,那么这两个角不相等
5.如图,与∠1是同旁内角的是()
A.∠2
B.∠3
C.∠4
D.∠5
6.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()
A.46°
B.23°
C.26°
D.24°
7.如图,下列条件中,不能判断直线l1∥l2的是()
A.∠1=∠3
B.∠4=∠5
C.∠2=∠3
D.∠2+∠4=180°
8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是( )
C
A.60°
B.65°
C.70°
D.80°
9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()
A.30°
B.60°
C.90°
D.120°
10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )
A.70º
B.50º
C.40º
D.30º
二填空题
11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’=cm.
12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是
______.
13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.
14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C 两点.若∠1=42°,则∠2的度数是.
15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________
16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).
三解答题
17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB(已知),
∴∠1=∠3(______ ).
又∵HG∥CD(已知),
∴∠2=∠4.
∵AB∥CD(已知),
∴∠BEF+______=180°(______ ).
又∵EG平分∠BEF(已知),
∴∠1=∠______.
又∵FG平分∠EFD(已知),
∴∠2=∠______,
∴∠1+∠2=(______ ),
∴∠1+∠2=90°,
∴∠3+∠4=90°(______ ),即∠EGF=90°.
18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.
求证:∠=∠.
19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)证明:∠B=∠ADG;(2)求∠BCA的度数.
20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.
(1)证明:DC∥AB;(2)求∠PFH的度数.
22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;
(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.
第五章相交线与平行线周周测8参考答案与解析
一、选择题
1.C
2.B
3.A
4.B
5.A
6.C
7.C
8.C
9.B 10.D
二、填空题
11.4 12.36° 13.110° 14.48° 15.40° 16.180n
三、解答题
17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换
18.证明:如图,延长交于点.
∵∥,∴∠1=∠3.
又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.
又∵∠=∠,∴∠=∠.
19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.
∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.
(2)解:∵DG∥BC,∴∠3=∠BCA.
∵∠3=80°,∴∠BCA=80°.
20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.
∵∠DAC=120°,∴∠ACB=60°.
又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.
∵CE平分∠BCF,∴∠BCE=20°.
∵EF∥BC,∴∠FEC=∠BCE=20°.
21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.
(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.
∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.
∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,
∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.
22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.
(2)如图,过点E向左作EF∥AB.
∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.
(3)如图①,过点E向左作EF∥AB.
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.
∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.
图①图②
如图②,过点E向左作EF∥AB.
∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.
∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,
∴∠BED=∠BEF-∠DEF=n°-35°.
综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.。

相关文档
最新文档